
Applying Role-Based Access Control to
Collaborative Web Portals

Steven A. Demurjian
University of Connecticut

371 Fairfield Way
Storrs, CT 06269-2155

steve@engr.uconn.edu

Haiying Ren
University of Connecticut

371 Fairfield Way
Storrs, CT 06269-2155

haiying.ren@pw.utc.com

Solomon Berhe
University of Connecticut

371 Fairfield Way
Storrs, CT 06269-2155

solomon.berhe@engr.uconn.edu
M. Devineni

Serebrum Cooperation
555 US Highway Route 1

Iselin, NJ 08830
mahitha@serebrum.com

S. Kopparti
Serebrum Cooperation

555 US Highway Route 1
Iselin, NJ 08830

surekha@serebrum.com

K. Polineni
Serebrum Cooperation

555 US Highway Route 1
Iselin, NJ 08830

krishna@serebrum.com

ABSTRACT
Collaborative portals are emerging as a viable technology
to allow groups of individuals to easily author, create, up-
date, and share content via easy-to-use web-based interfaces.
Freeware and open source products (e.g., SourceForge’s Me-
diaWiki) as well as commercial solutions (e.g., Microsoft’s
Sharepoint) are prevalent in today’s marketplace. From a
security perspective, these products are often very limited
and coarse grained in both their authorization and authenti-
cation. For example, in the case of Wikis, the security model
ranges from anonymous users (no authorization and limited
access) to the feature-rich system via registration with rigid
roles, super users, and read-only browser. In the latter case,
once access via registration is granted, that access is often
the full range of actions and capabilities that are available in
the Wiki. However, in practice, such full access may not be
appropriate for all applications, particularly as the collabo-
rative technology moves into other domains such as health
care (which have stringent HIPAA requirements). In this
paper, we report on our research and development effort of
a hierarchical role-based access control for collaborative web
portals that encompasses and realizes security at the appli-
cation level, the document level (authoring and viewing),
and the look-and-feel of the portal itself.

Categories and Subject Descriptors
H.4 [Collaborative Web Portals,]: Miscellaneous; D.2.8
[Access Control Models]: [Security Administration]Security
and Protection

Keywords
RBAC, Wiki, Access Control Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Over the past decade, the World Wide Web (WWW) has

come to the forefront as a viable means to allow individuals
and organizations to collaborate. As a result, web portals
have emerged as a means to facilitate these interactions, for
many different purposes, ranging from information reposi-
tories to full-fledged authoring and document collaboration.
For instance, Web sites like WebMD (www.webmd.com) and
Wikipedia (www.wikipedia.org) are utilized by unregistered
users to browse existing content on an array of different
topics via easy-to-use web-based interfaces. At the other
end of the spectrum, for registered users, these web por-
tals provide a means to author, create, modify, and track
documents of all types within a consistent framework or in-
frastructure. A registered user of Wikipedia has the ability
to create new document content and modify existing con-
tent. In fact, freeware and open source products such as
SourceForge’s Mediawiki or a commercial solution such as
Microsoft’s Sharepoint allows any individual with sufficient
expertise to generate their own web portal to meet specific
purposes and needs.

However, from a security perspective, these products are
often very limited in the level of protection that is offered to
information content that is created and uploaded to these
various sites. For example, a registered Wikipedia user could
create and upload intentionally erroneous content (e.g., a
document that says that the world is flat). Some of these
web sites depend on the community of users themselves
to monitor document content; as the volume of content
at these sites grows, it becomes problematic to attempt
to maintain this information in this fashion. In addition,
many corporate and governmental users are hesitant to uti-
lize such technologies for information content and collabo-
ration, restricting their usage to an information repository.
For example, consider health care, where there are stringent
HIPAA (www.hhs.gov/ocr/hipaa/) requirements regarding
the security of health care data. In order to utilize a web
portal or Wiki to allow clinical researchers to collaborate
on studying diabetes in a patient population, there would
need to be much more rigorous security requirements than
the coarse-grained authorization and authentication (user
names/passwords) that are typically offered by Wikis/web
portals.

In this paper, we report on our research and development
effort of applying role-based access control (RBAC) to web
portals as part of a funded research effort [19] for collabo-
rative software requirements elicitation [21]. In this effort,
the Axon Wiki has been prototyped with RBAC security
at the application level, the document level (authoring and
viewing), and the look-and-feel of the portal itself. Axon is
a Java-based, Ajax (developers.sun.com/ajax) Wiki that is
targeting enterprise adoption by offering a wide range of doc-
ument authoring, collaboration, publishing, versioning, and
other capabilities. The intent is to provide a full-capability
Wiki that has fine-grained RBAC that meets the require-
ment in terms of security requirements, flexibility and ad-
ministration so that it is more suitable than open source and
other commercial products.

The remainder of this paper is organized into 5 sections.
Section 2 explains background concepts on the Axon Wiki
including its capabilities and architecture. Using this as a
basis, Section 3 details security assumptions and concepts,
that while specific to Axon, can be generalized to collabora-
tive Web portals. Section 3 also includes a detailed discus-
sion of the permissions that support RBAC/security at the
application level, the document level (authoring and view-
ing), and the look-and-feel of the Wiki itself. Section 4 de-
scribes the set of relational database tables that are utilized
to realize the permissions given in Section 3; these tables
are consulted when a user starts a session with Axon to
customize the Wiki capabilities and content based on role.
Section 5 reviews related research efforts. Section 6 contains
the conclusions and reviews ongoing research.

2. BACKGROUND CONCEPTS
Axon is a full-function Wiki for content creation (WYSI-

WYG), document publishing (Web, PDF, RTF), document
distribution (Email, Print, Fax), mobile access (limited via
a BlackBerry), and role-based access control to allow col-
laboration among users that are sharing a particular task.
As shown in Fig. 1, the Axon Wiki is loaded from a web
server into a multi-framed structure that includes: a top
bar of functions (i.e., Hide, History, Import, Export, Email,
etc.) which includes full text search; three tabs for Topics,
Documents, and Index, where the Topics tab is organized
as accordions (e.g., US Travel, Project Brianstorm, etc.)
with parent topics (Brainstorm), child topics (e.g., Project
Drivers, Project Constraints, etc.), and grandchild topics
(e.g., The Purpose of the Project); and, a main document
window (xhtml) that is editable and stores past versions
(Edit, History). The accordions and their Topic trees are
customizable based on domain. Each topic (parent, child, or
grandchild) can have a single xhtml document (in the main
window) along with one or more other documents (PDF,
Word, MPEG, etc.) that are attachable and accessible via
the DOCS tab (see E in Fig. 1).

In addition, Axon has a number of other capabilities re-
lated to document creation, publishing, and viewing, as shown
in Fig. 2. At the top of the figure, the WYSIWYG editor
is shown that is very MS-Word like to allow the easy cre-
ation of content (the xhtml document in the main window).
Documents that are created in this fashion can be viewed
(and/or changed) by other authorized users; a detailed ver-
sion history is maintained. At the bottom left, the docu-
ments of a topic can be assembled in various ways to publish
a new combined document in different formats (PDF, RTF).

Figure 1: The Axon Wiki.

At the bottom right, Axon for a BlackBerry is illustrated,
which allows a limited set of actions to both view and edit
the application content.

Figure 2: Axon Document Capabilities.

Lastly, in Fig. 3, the Axon architecture is shown. The
involved technologies are indicated for the reader’s inter-
est. The clients can either be connected via workstations,
laptops, or mobile devices. The Presentation Layer pro-
vides the typical means to access the underlying application.
Brainstorm, which is the name of our software requirements
elicitation effort [19], contains two grayed boxes (application
specific, changeable) and two ungrayed boxes (representing
core Axon functionality). The Application Layer embod-
ies many of the various underlying technologies to support
Axon core functionality. Lastly, the Data Layer allows Axon
to be configured with any relational database as a backend.

3. SECURITY CONCEPTS AND PERMIS-
SIONS IN AXON

In this section, we detail the Axon security assumptions
and concepts as a means to define the relevant RBAC secu-
rity permissions that Axon will support. The intent is to de-
lineate the security granularity level in terms of the different
portions of the Axon Wiki that need to be controlled. While
the permissions that are presented are specific to Axon, the
reader will note through the discussion that the concepts and

Figure 3: The Axon Architecture and its Compo-
nents

permissions can be generalized to apply to a collaborative
setting where there is a need to control, on a role-by-role
basis, application content, access to documents, and GUI
look-and-feel. To get started, in Fig. 4, we provide a table
of permissions for Axon. Basic assumptions regarding roles
and permissions are as follows:

• A User is identified by a UserName (unique), UserID
(unique), and User duration (UserStartTime and UserEnd-
Time that the User is active).

• A role can be defined for any capability: Guest, Au-
thor, Manager, Admin in Fig. 4 are typical roles that
would be available across application domains when
using Axon. For each role, there is an indication of
the access to topics.

• A user can be associated with one or more roles in
Axon. When a user starts a session with a tool, then
the user must be authenticated (user name, password),
and once authenticated, the user is given a set of au-
thorized roles to choose from. Once the user selects one
of these roles, Axon customizes itself based on the cho-
sen role using the permissions stored in the database.
Axon also provides the means to change role during a
session. A user may log on to multiple different sepa-
rate sessions each with its own role.

• To isolate the user from the role, we introduce a group
abstraction. Each User is the member of one or more
Groups, where each Group is identified by: Group-
Name (unique), GroupID (unique), and Group dura-
tion (GroupStartTime and GroupEndTime that the
Group is active). Users can be in multiple groups and
users can also have multiple roles. Each group can
have zero or more users.

• An active Session for a User limits the User to a par-
ticular Group <UserID, GroupID>. The idea is that
for any active Session, a User is limited to being in
a particular group from a permission perspective. A
User may have multiple active Sessions (simultane-
ously open Axon Wiki sessions with independent lo-
gons) at any given point in time.

• Permissions (as given in Fig. 4) will be assigned to
Roles, Roles will be assigned to Users/Groups, and
Users/Groups will be assigned to Accordions.

In addition to these basic assumptions, there are other
concepts that are relevant to define the security permissions
as given in Fig. 4 with respect to Axon as given in Fig. 1.

• The Axon Wiki has a Project that contains multiple
Accordions (i.e., accordions) such as US Travel, Brain-
storm, EGuru, and Report in Fig. 1, and for each of
these individual Accordions, a Topic Tree, a Document
List, and an Index is maintained. As defined, each Ac-
cordion can have one or more Users, and each Accor-
dion can have zero or more Groups (with each Group
having zero or more Users as defined previously).

• The Axon Accordions are intended to represent differ-
ent types or categories of topics that are to be main-
tained for each User. For example, in a University
setting, they could be Accordions such as Faculty, Ad-
ministrator, Grad Program Director which are very
type oriented and shared by multiple individuals. The
Faculty Accordion (corresponding to the Faculty Role)
would have a set of topics for that Faculty Role; these
topics would be shared by all individuals assigned the
Faculty Role. This perspective is strongly type ori-
ented, with the application data (for instance, the ad-
visees for each faculty member) showing up in the task
Topic Tree (e.g., an Advisee topic with child topics for
each student such as Student1, Student2, etc.)

• The Topic Tree contains three levels of parent, child,
and grandchild topics:

– Each topic in this tree is associated with exactly
one xhtml page.

– Each topic in this tree is associated with zero or
more documents of all types (Word, PPT, PDF,
GIF, etc.).

– The DOCS tab contains a list of documents. specif-
ically, for the selected topic - all documents for the
topic and its descendants are shown.

Lastly, given the discussion so far, there are many de-
tailed permissions that can be defined to realize alternative
look-and-feel and usage security of Axon on a role-by-role
(user-by-user) basis. These are summarized as follows, with
references to the different areas of Axon (A, B, C, D, and E)
as given in Fig. 1. In terms of the topics in the Topic Tree
there are three permission assignments that are maintained:

• Each Role can have one or more topics.

• Each Group can have zero or more topics.

• Each Accordion can have zero or more topics.

Thus, when a User in a Group Logs onto Axon, the Accor-
dions that are displayed are determined by the User being
authorized to the Accordion. In addition, the topics that are
displayed are determined by the topics assigned to the au-
thorized Accordions (which each have a list of zero or more
topics), the Groups that the User is a member of (which
each have a list of zero or more topics), and the specific

Figure 4: Axon Security Privileges.

Role (which each have a list of zero or more topics) that the
User is playing at logon time.

The permissions in Axon, given in matrix form in Fig. 4,
are explained using Fig. 1 (which has boxed certain Areas A,
B, C, D, and E) by reviewing permissions for a set of sam-
ple roles (Guest, Author, Manager, and Admin in Fig. 4).
These four different roles are assigned typical permissions
that would be given to different Wiki users: Guest is a
user with very limited permissions; Author is a user able
to create and manage topics and content, and perhaps even
have limited capabilities for assigning permissions to other
Users; Manager is essentially the Author with additional ca-
pabilities regarding topics and content and more wide scale
User management; and, Admin is essentially a system ad-
ministrator with access everywhere to all aspects of a Wiki.
Specifically, for Axon:

• Permissions Related to the Topic Tree (see A in Fig. 1):

– View Means that the User (via his/her Role) has
permission to View the Topic and View the xhtml
page associated with that topic.

– Edit Means that the User (via his/her Role) has
permission to modify, delete, update, etc., the
xhtml page associated with that topic.

• Permissions Related to Topic Buttons (see B in Fig. 1):

– Edit having a value of Yes means the Edit button
is enabled. So, if the Topic Tree has a Permission
of Edit for a Topic, then the permission for the
Topic Button Edit should be set to Yes.

– History View and History Rollback are assigned
on a Yes/No basis to each Role.

• Permissions Related to Global Menu (see C in Fig. 1):

– There are permissions on the Global Menu for
Hide, History, Import, Export, Email, Fax, and
Print.

– These permissions are Yes/No assigned on a role-
by-role basis. The assignment of No means that
the associated ICON does not appear.

• Permissions Related to Topic Menu (see D in Fig. 1):

– There are permissions on five icons for: New Topic
to Create a new Topic; Copy to Make a Copy of
an Existing Topic; Paste to Paste a Copy of an
Existing Topic; Rename to Change the Name of a
Topic; and, Archive to Store a new Version of the
xhtml page associated with the topic - Archive the
topic and all the associated documents related to
the topic.

– These permissions are Yes/No assigned on a role-
by-role basis. The assignment of No means that
the associated ICON does not appear.

• Permissions Related to Documents (see E in Fig. 1).
Specifically, a User (via a Role) can have permission to
a Topic but have No permission to see any Documents
associated with a Topic, namely:

– View: Open Document with associated desktop
viewer but do not save changes. However, note

that it is possible to, within the capabilities of the
associated document viewer (e.g., Word, PPT,
Acrobat, etc.), to perform a ”Save as” operation
of the document to the local file system. This
”Save as” operation has no impact on the Wiki
and what is stored in the Wiki.

– Add: Be able to Import a Document. Documents
have a different set of buttons. The attach or
upload button is enabled if the user has add per-
missions for a document.

– Replace: Be able to Substitute a new Document
for an Existing Document This means to replace
an existing document (say spec.doc) with an en-
tirely different document (say impl.doc) that has
nothing to do with the first document - so replace
is really ”Substitute this new document while sav-
ing all versions of the old one.”

– Archive: Archive means to transition a document
to being ”logically offline”as it exists at that point
in time and remove it from the list of active docu-
ments. Users will not be able to view the archived
documents. An Administrator has the authority
to restore archived documents if required.

• Permissions Related to Search Tab: Search terms and
results need to be filtered based on Accordion to parent
topic to child topic associations

4. REALIZING RBAC AND SECURITY IN
AXON

As shown in Fig. 3, the realization of security in Axon is
achieved in the Application layer via a combination of LDAP
and our own custom RBAC implementation. LDAP, the
Lightweight Directory Access Protocol, is utilized to track
directory information on users during interactive sessions.
Our focus in this section is on achieving RBAC, to allow the
look-and-feel of Axon to be customized according to the per-
missions defined in Section 3 on a role-by-role basis. Given
the tight time constraints of the Phase I SBIR NSF grant
(6 months), we have prototyped a basic RBAC and other
security using relational database tables to capture permis-
sions, and once captured, these same tables are consulted to
customize Axon based on the chosen role of a user.

In arriving at this decision, we also considered other avail-
able technologies to support RBAC. First, XACML [20] the
eXtensible Access Control Markup Language, is a web ser-
vices policy constraint language that provides a standard
infrastructure for security policy definition in a web con-
text. There are many different implementations that have
begun to emerge for XACML, for example, one open source
implementation [24] was available, but in our timeframe
(September 2006), the associated releases seemed prema-
ture and incomplete. As another example, there was the
Bandit Role Engine [2], an open source RBAC solution
based on the available RBAC standard from NIST [18] and
XACML (Sun’s implementation). However, it too had a to-
be-announced Version 2 (no due date posted) that made it
less attractive for our use. Thus, given our time constraint,
and the fluidness of these products, we decided to not take
the route of using an existing product, but to instead, de-
velop a straightforward database model and associated im-
plementation to realize RBAC for Axon.

The remainder of this section contains the set of relational
database tables to handle the assumptions of Axon and its
permissions as defined in Sections 3 (and as given in Fig. 1
and 4) in order to realize RBAC for Axon. To begin, we
need to track the different Project configurations for Axon
that contain the set of Accordions for each Project. Then,
we can assign a particular Project configuration to a User.
The ProjectInfo and AccordionInfo tables given below keep
track of Projects and Accordions. ProjectAccordions maps
Accordions into Projects. Start and End Times have been
included for the ProjectAccordions table - that means that
the Accordion is only visible for that time period. Basically,
ProjectAccordions establishes the Accordions (e.g., in Fig. 1,
US Travel, Project Brainstorm, etc.) that are in a particular
Axon configuration for a given application.

ProjectInfo <ProjectID, ProjectName>

AccordionInfo <AccordionID, AccordionName>

ProjectAccordions <ProjectID, AccordionID,
AccStartTime, AccEndTime>

Next, we need to model the Topics (parent, child, and
grandchild), and associate Topics with Projects and Ac-
cordions to form a tree. Since a Project contains one or
more Accordions, it makes sense to track the topics per
Project/Accordions. Note that in this case, both Projec-
tID and AccordionID must be non-null. The idea is that
regardless of permissions, for a given ProjectID, there are
topics defined for each Accordion as identified by a Accor-
dionID. The topics (and their subtopics and sub-subtopics)
are all associated with a Accordion; all Topics (parents),
SubTopic1 (children), and SubTopic2 (grandchildren) asso-
ciated with a Accordion can be found by joining these three
tables on TopicID and then selecting (or sorting) by Accor-
dionID (or AccordionName if you join Topic and Accordion-
Info tables). Thus, using Topics, SubTopic1, and SubTopic2,
we are able to have a master list of all possible topics (and
their subtopics and sub-subtopics) that are associated with
each Accordion in a particular Project (ProjectID, Accor-
dionID in combination).

Topic <TopicID, TopicName, ProjectID, AccordionID>

SubTopic1 <SubtopicID1, SubTopic1Name, TopicID>

SubTopic2 <SubTopicID2, SubTopicID1, TopicID,
SubTopic2Name>

The TopicVersion table tracks different versions of a topic
(as related to the xhtml page that is associated with each
topic). The two tables, Attachment and AttachmentVer-
sions, track the various documents (PDF, Word, etc.) asso-
ciated with a Topic and their versions. They are as follows:

TopicVersion <VersionPK, VersionID, TopicID,
SubTopicID1, SubTopicID2, Author,
Description, VersionDate, Attachment>

Attachment <AttachmentPK, TopicID, LevelID>

AttachmentVersion <VersionPK, VersionID, AttachID,
FileName, DocType, Author, Size,
AttachmentDate, Comments, RandomName>

Given these tables, we can proceed to define a set of ta-
bles to support permissions. For Users, Groups, and Roles,
three tables are defined as below; all three have start and

end times to delineate the duration of the User, Group, or
Role. For authorizations there are two tables: one for User
to Group authorization and a second for User to Role autho-
rization. In this case, the start and end times are the dura-
tions of these authorizations and these times are constrained
by the involved tables, e.g., the User to Role authorization
is constrained by the start and end times of the User and of
the Role. In addition, a table of PermissionInfo is defined,
for the various types of permissions in Fig. 4 (e.g., View,
Edit, Archive, Replace, etc.).

UserInfo <UserID, LastName, FirstName, UserStartTime,
UserEndTime>

PermissionInfo <PermissionID, PermissionName>

GroupInfo <GroupID, GroupName, GroupStartTime,
GroupEndTime>

RoleInfo <RoleID, RoleName, RoleStartTime, RoleEndTime>

UserGroupAuthorization <UserID, GroupID, UGStartTime,
UGEndTime>

UserRoleAuthorization <UserID, RoleID, URStartTime,
UREndTime>

Using these tables, we defined two possible options to
model Topic authorization. First, in Option A, the ta-
bles TopicUserAuth, TopicGroupAuth, and TopicRoleAuth
are defined, to allow permissions to be established with re-
spect to Topics, by either UserID, GroupID or RoleID, re-
spectively, for a given ProjectID/AccordionID (which are
needed to clearly differentiate between the same Topic that
may be defined in multiple ProjectID/AccordionID combi-
nations). The idea is to utilize the three tables together
to establish the Topics that are actually listed (under a
Project/Accordions) for each User (as limited by Role and/or
Group). The Topic table defined previously contains all
Topics (subtopics and sub-subtopics) for all Accordions of a
Project (a superset); the TopicUserAuth, TopicGroupAuth,
and TopicRoleAuth customizes this superset to a subset
(which may be the entire superset) of the Topics authorized
to a User belonging to a Group and also playing a Role.

TopicUserAuth <UserID, PermissionID, ProjectID,
AccordionID, TopicID, SubTopicID1,

SubTopicID2>

TopicGroupAuth <GroupID, PermissionID, ProjectID,
AccordionID, TopicID, SubTopicID1,

SubTopicID2>

TopicRoleAuth <RoleID, PermissionID, ProjectID,
AccordionID, TopicID, SubTopicID1,

SubTopicID2>

The advantage of Option A is that it keeps the permissions
logically and physically separate. For the future, if we decide
to make changes to, for example, User permissions, such a
change would not impact Group permissions.

Next, in Option B, we defined a generic TopicAuth table
as:

TopicAuth <ProjectID, AccordionID, GroupID,
UserID, RoleID, PermissionID,
TopicID, SubTopicID1, SubTopicID2>

This table would be used as follows: for User authorizations
to Topics, ProjectID, and AccordionID would be defined
with GroupID and RoleID null; for Group authorizations to
Topics, GroupID would be defined with UserID and RoleID
null; and, for Role authorizations to Topics, RoleID would
be defined with UserID and GroupID null. The advantage

to Option B is that we have all permissions in a central lo-
cation; the disadvantage is that we must keep track of all
IDs (nulls) for all permissions and as a result, changes that
we make impact all three types of permissions. In the short
term for our Phase I effort, we selected Option B since it
allows us to expand the authorizations to Accordions and
Groups without introducing any new tables. For the longer
term (Phase II and commercialization), Option A is pre-
ferred, or in fact, we may redo all of this security to use
XACML or another technology that may have matured.

Lastly, for Wiki look-and-feel security, a set of tables are
defined to identify the widgets (buttons, etc.) of the Wiki
to be controlled, the privileges of those widgets, and then
to define the Wiki look-and-feel security on a role-by-role
basis. These are defined in the following three tables:

WikiLookandFeelAuthorization <RoleID, widgetID,
widgetprivilegeID>

Widget <widgetID, widgettype, widgetcategory, widgetname>

WidgetPrivilegeType <widgetprivilegeID,
widgetprivilegename>

Widget is being used to refer to a button, icon, link, or any
other aspect of the Wiki GUI that needs to be controlled.
To illustrate these tables, let’s consider some actual tuples.
First, there are all of the Widgets that are present in the
Axon Wiki, which are uniquely identified (W1 to W6) and
are all buttons (Table 1).

Table 1: Widget
WidgetID WidgetType WidgetCategory WidgetName
W1 Button TopicLinks HistoryView
W2 Button TopicLinks Edit
W3 Button TopicLinks HistoryRollback
W4 Button GlobalMenu History
W5 Button TreeMenu NewTopic
W6 Button TreeMenu Copy

Next, there are the privileges (permissions) for each wid-
get - Table 2 shows buttons that can either be Yes or No
(for buttons) or ActiveIcon or NoIcon (for icons like Email
in Fig. 1).

Table 2: WidgetPrivilegeType
WidgetPrivilegeID WidgetPrivilegeName
P1 Yes
P2 No
P3 ActiveIcon
P4 NoIcon

Lastly, on a role-by-role basis, for each role, we identify the
widget and the allowable permission, as given by the tuples
in Table 3 for role R1. To summarize, Widget is the list of
all of the look-and-feel components of the Wiki that need to
be controlled, WidgetPrivilegeType tracks the status of each
widget, while the WikiLookandFeelAuthorization tracks the
actual authorization by role to each <widget, type> pair.
Once the user has been established with a role for the Wiki
session, the customization of the Wiki screen is controlled
by lookups and joins into these very basic tables.

Table 3: WikiLookandFeelAuthorization
RoleID WidgetID WidgetPrivilegeID
R1 W1 P1
R1 W2 P2
R1 W3 P1
R1 W4 P1
R1 W5 P3

5. RELATED WORK
Our work in this paper has been influenced by many differ-
ent areas of research. To start, the role-based access con-
trol that we have designed for Axon has been influenced by
our own past work [10], as well as foundational work in
RBAC [23] and standards [12]. However, we have, for this
initial version of Axon, kept the RBAC rather limited in its
scope. In terms of security for collaborative computing, it is
interesting to note that non-web-based computer supported
cooperative work, proposed in the 1980s and explored into
the early 1990s, addressed many issues on individual and
group behaviors that are still relevant today[16]. This in-
cluded: work in dynamic collaboration for a work group over
space and time constraints [17]; multimedia communication
systems that support widely distributed work groups [15];
and, our own work [9] on RBAC for collaborative comput-
ing environments. Much of this work has been supplanted by
web-based research such as: an effort that seeks to construct
a security architecture that is capable of being tailored for
customer needs with a services-based approach for authen-
tication, authorization, and RBAC [8]; a survey effort that
seeks to identify the myriad of security issues that must be
considered when multiple individuals collaborate and share
information [1]; and, controlling access to information in a
repository where there is a dynamic and unknown user popu-
lation [22] using a trust-based approach. We are considering
these and other efforts to fully understand the security is-
sues that impact collaboration, in Axon, in our current work
(software requirements elicitation) as well as in other critical
domains such as health informatics.

From a more practical perspective, there have been a
number of efforts that employ service-oriented architectures
(SOA) or web-services as a basis for achieving security. For
instance, [5] proposes X-RBAC, an approach that lever-
ages XML as a means to first model RBAC, and then en-
force defined security for an application by interacting with
a security processor via SOAP (or other XML messaging).
In a related effort [6], X-GTRBAC provides a larger-scale
infrastructure based on X-RBAC for handling security for
enterprise (business) applications. The underlying security
infrastructure in both of these efforts must take advantage of
SOA and Web services in order to offer guarantees in terms
of security assurance, data integrity, confidentiality, etc. [4].
We agree with the idea that SOA and Web Services will be
critical to achieve security solutions that easily operate in a
web-and-collaborative setting such as Axon.

Lastly, as realized, our security for Axon is achieved in
three dimensions: the application by controlling the accor-
dions and topics that are available on a role-by-role basis;
the documents (xhtml and other attachments) by controlling
what is viewable/editable; and, the Wiki look-and-feel that
enables select buttons, options, and commands. A fourth
dimension that is of interest involves the xhtml document it-

self that is in the main window (see Fig. 1 again). Presently,
this document is controllable by being viewable (or not) and
editable (or not). However, in true collaboration, this doc-
ument itself, being based on XML, may be partitioned into
components, with RBAC utilized to control who can see/edit
each of the components. In that regard, we have explored
related efforts that involve security for the semantic web (in
general) and controlling access to XML documents (in par-
ticular). For the semantic web, there has been an effort
that essentially established a road-map for security for the
semantic web by identifying the key security issues [25], as
well as an effort that has focused the discussion of security
for the semantic web from the perspective of web databases
and services that are appropriate [13]. In terms of potential
solutions to control access to information at the document
level, there have been two efforts of note: [3] has proposed a
model for access control of XML documents with the policy
including credentials and privileges; and, [11] has extended
the concept of security views so that they are applicable
to XML DTDs in order to screen information for XML in-
stances before they are displayed. Both of these efforts of
our interest as we proceed to fine-tune our security in Axon
to control access to the components of the xhtml documents
associated with topics on a role-by-role basis.

6. CONCLUSIONS AND ONGOING WORK
In this paper, we have presented our work on role-based

access control (RBAC) for collaborative web portals, as at-
tained within the Axon Wiki. The intent was to expand
the security capabilities of portals/Wikis from beyond sim-
ple user and password authorization to a more robust set of
privileges that encompasses and realizes RBAC at the ap-
plication level, the document level (authoring and viewing),
and the look-and-feel of the portal itself. To accomplish
this, in Section 2, we presented the Axon Wiki capabili-
ties and architecture. With this, in Section 3, we detailed
assumptions of Axon in order to provide a detailed treat-
ment of permissions (see Fig. 4 again) and the attainment
of these permissions in the various Axon components. To
meet strict timeframe constraints of the funded effort [19],
we prototyped the RBAC as a set of relational database ta-
bles, as given in Section 4; these tables are consulted when
a user playing a role initiates a session in order to customize
Axon based on the privileges that are authorized to that
user. Lastly, we placed our work into context by consid-
ering related efforts in Section 5. The work as presented
herein, while specific to Axon, can be generalized to other
collaborative web/portal settings.

In terms of ongoing efforts, in addition to this RBAC, we
have also recently completed a second SBIR Phase I grant
from the Department of the Navy to explore the ability of a
Wiki like Axon to support mandatory access control/multi-
level security. This also included exploring issues related
to security assurance in order to attain Evaluation Assur-
ance Level-6 (EAL6) [7]. In addition to this effort, we have
an ongoing effort with the University of Connecticut Health
Center on the feasibility and utility of the Axon Wiki in sup-
porting various aspects of clinical research and healthcare in-
formatics. As separation of duty and constraint delegation
of permission are essential in an emergency case, these fea-
tures will be addressed in our future work as well. As Axon
supports the idea of sessions, it is possible to create an role
authority component, which tracks the current roles logged

in. Thus, separation of duty can be implemented. (Con-
strained) Delegation of permission is more complex to im-
plement, as a role must have administrative right to change
the permissions of another role. Nevertheless, we’ll address
this as part of our future work along with the enabling Axon
to work in an distributed environment.

7. REFERENCES
[1] M. Attalah. Security Issues in Collaborative

Computing. In Computing and Combinatorics
COCOON 2006. D. Chen and D. Lee (eds.), Springer
LNCS, Vol. 4112, 2006.

[2] BANDIT,
www.bandit-project.org/index.php/Role Engine

[3] E. Bertino and E. Ferrari. Secure and selective
dissemination of XML documents. ACM Trans. Inf.
Syst. Secur., 5(3), 2002.

[4] E. Bertino and L. Martino. Security in SOA and Web
Services. Proc. of 2006 IEEE Intl. Conf. on Services
Computing (SCC 2006).

[5] R. Bhatti, et al. Access Control in Dynamic
XML-based Web Services with X-RBAC. Proc. of
Intl. Conf. on Web Services, ICWS ’03, 2003.

[6] R. Bhatti, et al. X-GTRBAC: An XML-Based Policy
Specification Framework and Architecture for
Enterprise-Wide Access Control. ACM Trans. Inf.
Syst. Secur., 8(2), 2005.

[7] Common Criteria,
http://www.commoncriteriaportal.org/public/files/ccusersguide.pdf

[8] Y. Demchenko, et al. Security Architecture for Open
Collaborative Environment. In Advances in Grid
Computing - EGC2005. P. Sloot, et al. (eds.),
Springer LNCS, Vol. 3470, 2005.

[9] S. Demurjian, et al. User-Role Based Security for
Collaborative Computing Environments. Journal of
Multi-Media Review, 4(2), Summer 1993.

[10] S. Demurjian, et al. A user role-based security model
for a distributed environment. In J. Therrien, ed.,
Research Advances in Database and Information
Systems Security. Kluwer, 2001.

[11] W. Fan, et al. Secure XML Querying with Security
Views. Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, 2004.

[12] D. Ferraiolo, et al. Proposed NIST standard for
role-based access control. ACM Trans. Inf. Syst.
Secur., 4(3), 2001.

[13] E. Ferrari and B. Thuraisingham. Security and
Privacy for Web Databases and Services. In Advances
in Database Technology - EDBT 2004. E. Bertino, et
al. (eds.), Springer LNCS, Vol. 2992, 2004.

[14] S. Foley and J. Jacob. Specifying Security for
Computer Supported Collaborative Working. Journal
of Computer Security, 3(4), 1995.

[15] E. Francik, et al. Putting Innovation to Work:
Adoption Strategies for Multimedia Communication
Systems. In [26].

[16] J. Grudin. CSCW Introduction. In [26].

[17] H. Ishii and N. Miyake. Toward an Open Shared
Workspace: Computer and Video Fusion Approach
to TeamWorkStation. In [26].

[18] National Institute of Standards and Technology,

http://www.csrc.nist.gov/rbac/

[19] NSF Award #0611053 to Serebrum, Inc., SBIR
Phase I: BrainStorm - Collaborative Customer
Requirements Elicitation for Distributed Software
Development.

[20] Organisation for the Advancement of Structured
Information Standards,
www.oasis-open.org/committees/xacml/

[21] P. Pia, et al. BrainStorm: Collaborative Customer
Requirements Elicitation for Distributed Software
Development. Proc. of 31st Annual Software
Engineering Workshop, March 2007.

[22] I. Ray and S. Chakraborty. A Framework for Flexible
Access Control in Digital Library Systems. In Data
and Applications Security XX, E. Damiani and P. Liu
(eds.), Springer LNCS, Vol. 4127, 2006.

[23] R. Sandhu, et al. Role-based access control models.
IEEE Computer, 29(2), 1996.

[24] Sun’s XACML Implementation,
http://sunxacml.sourceforge.net/

[25] B. Thuraisingham. Security Issues for the Semantic
Web. Proc. of the 27th Intl. COMPSAC 2003.

[26] Special Issue on Collaborative Computing. Comm. of
the ACM, 34 (12), 1991.

