
Chapter 1

SAFETY AND LIVENESS FOR AN RBAC/
MAC SECURITY MODEL

C. Phillips, S. Demurjian, and T.C. Ting
Department of Electrical Engineering and Computer Science, U.S. Military Academy

and Department of Computer Science and Engineering, University of Connecticut

charles.phillips@usma.edu and [steve, ting]@engr.uconn.edu

Abstract Our role-based/mandatory access control (RBAC/MAC) security model
and enforcement framework for inter-operating legacy, COTS, GOTS,
databases, servers, etc., limits: who (user/user role) can invoke which
methods (based on value and MAC level) of artifact APIs at what times,
and who (user) can delegate which responsibility (user role) at what
times. In this chapter, we focus on assurance for the timeframe of access
(of a user to a role, of a role to a method, etc.) and the attainment of
the Simple Security Property (i.e., a subject cannot read information for
which it is not cleared) and Simple Integrity Property (i.e., a subject is
limited to writing information at its own level and lower), which together
can be used to support safety and liveness.

Keywords: Security Assurance, Simple Security, Simple Integrity, Safety, Liveness.

1. Introduction

As agencies continue to assemble software artifacts (i.e., legacy, COTs,
GOTS, databases, clients, servers, etc.), into interoperating applications,
security assurance is critical [?, ?, ?, ?]. In the area of mandatory ac-
cess control (MAC), assurance-related properties are: Simple Security
Property, a subject can read information at the same or lower clearance
level [?]; Strict *-Property, a subject can only write information at ex-
actly the level for which it is cleared [?]; Liberal *-Property, a subject
with a low clearance level can write to an object with the same or higher
clearance level [?, ?]; and Simple Integrity Property, a subject can write
information at its own level and lower [?]. In addition, assurance must

1



2

focus on application behavior with respect to its defined and realized
security policy, to attain safety (nothing bad will happen to a subject or
object during execution) [?] and liveness (all good things can happen to
a subject or object during execution) [?].

In this chapter, we explore assurance for our role-based/mandatory
access control (RBAC/MAC) security model and enforcement frame-
work for interacting software artifacts [?, ?, ?]. Our approach focuses
on which methods of APIs can be invoked based on the security classi-
fication level of a role, the security clearance level of the user, and the
values (parameters), time, and classification level of the method. Assur-
ance guarantees are provided to insure that: a user (with one lifetime)
playing a role (with another lifetime) can invoke a method (yet another
lifetime) at the current time; the method invocation does not violate
MAC domination (Simple Security for read-only and read-write meth-
ods, and Simple Integrity for read-write methods); and, a degree of safety
(nothing bads happens when a user invokes a method) and liveness (all
good things happen when a user invokes a method) is attained.

In the remainder of this chapter, Section 2 defines our RBAC/MAC
security model. Section 3 focuses on the formal proofs of the security as-
surance guarantees for the available timeframe of method invocation and
satisfaction of Simple Security and Simple Integrity Properties, leading
to the attainment of safety and liveness. Section 4 concludes the chapter.

2. A RBAC/MAC Security Model

This section reviews the security model [?, ?] with delegation [?].

Def. 1: A lifetime, LT, is a time interval with start time (st) and end
time (et), [st, et], et > st, and st/et is of the form (mo., day, year,
hr., min., sec.). Concepts of LTs X and Y are: X.Y means Y.st ≥
X.st and Y.et ≤ X.et; X / Y ≡ Y . X; If ST = max{X.st, Y.st}
and ET = min{X.et, Y.et}, then Y ∩X is ∅ if ET ≤ ST or [ST,
ET] if ET > ST ; and LT = [ct,∞] is current time (ct) onward.

Def. 2: MAC concepts are: Sensitivity levels, SLEV EL= {U,C, S, T}
with unclassified (U), confidential (C), secret (S), and top secret
(T) forming a hierarchy: U < C < S < T ; clearance (CLR), the
SLEVEL given to users; and, classification (CLS), the SLEVEL
given to roles, methods, etc.

For assurance, LTs can guarantee that definition and access to privileges
will always satisfy time limits. MAC will be used to guarantee the Simple
Security and Integrity Properties [?, ?].

Defs. 3 to 6 are for a distributed application of resources, services,
and methods, with LTs and CLSs.



Safety and Liveness for an RBAC/MAC Security Model 3

Def. 3: A distributed application, DAPPL, is composed of a set of
software resources (e.g., a legacy, COTS, DB, etc.), R = {Ri|i =
1..m}, each composed of services, Si = {Sij |j = 1..ni}, each com-
posed of methods, Mij = {Mijk|k = 1..qij}.

Def. 4: Each method Mijk = [MName
ijk ,MLT

ijk ,M
CLS
ijk ,MParams

ijk ] for

i = 1..m, j = 1..ni, k = 1..qij , of Sij of Ri has name MName
ijk ,

LT MLT
ijk (default [ct, ∞]), MCLS

ijk ∈ SLEV EL (default U), and

MParams
ijk parameters.

Def. 5: Each service Sij = [SName
ij , SLT

ij , SCLS
ij ] for i = 1..m, j = 1..ni,

of Ri has name SName
ij , LT SLT

ij = [min{MLT.st
ijk },max{MLT.et

ijk }]
∀k = 1..qij , and SCLS

ij = min{MCLS
ijk |k = 1..qij}.

Def. 6: Each resource Ri = [RName
i , RLT

i , RCLS
i ] for i = 1..m, has

name RName
i , LT RLT

i = [min{SLT.st
ij },max{SLT.et

ij }] ∀j = 1..ni,

and RCLS
i = min{SCLS

ij |j = 1..ni}.
For assurance, we guarantee the dependencies that exist among the LTs
(resource LT spans its services’ LTs; service LT spans its resources’ LT),
and the minimality of CLS (resource CLS is minimum of its services’
CLS; service CLS is the minimum of its methods’ CLS). For examples,
we use the U.S. Global Command and Control System (GCCS), with
Figure ?? containing Joint and Component services with (CLSs).

Defs. 7 to 18 involve the privilege specification process for user roles
against resources, services, and methods.

Def. 7: A user role UR = [URName, URLT , URCLS ], represents a set
of responsibilities, and has name URName, LT URLT (default [ct,
∞]), and URCLS ∈ SLEV EL (default U).

Def. 8: A user-role list, URL = {URi|i = 1..r}, has the r roles (Def.
7) for DAPPL.

For assurance, URs have specific LTs, used to check the “when” of access
(i.e., can a user invoke a method at current time) and CLSs to check the
“if” of access (i.e., does a UR’s CLS dominate a method’s CLS). For
privileges, URs can be granted access to methods which have CLSs at
or below the role’s CLS (see Figure ??).

Def. 9: A user, U = [UUserId, ULT , UCLR] is an entity accessing a
client, and has a unique UUserId, LT LLT (default [ct,∞]), and
UCLR ∈ SLEV EL (default U).

Def. 10: A user list, UL = {Ui|i = 1..u}, has the u users (Def. 9) for
DAPPL.

For assurance, users have specific LTs for checking the “when” of access
(i.e., can a user play a role at current time) and CLRs for checking the



4

(S) Joint Service (S) Weather (Token);

(S) VideoTeleconference (Token, fromOrg, toOrg);

(S) JointOperationsPlannning (Token, CrisisNum);

(S) CrisisPicture (Token, CrisisNum, Grid1, Grid2);

(S) TransportationFlow (Token);

(S) LogisitcsPlanningTool (Token, CrisisNum);

(S) DefenseMessageSystem (Token);

(T) NATOMessageSystem (Token);

(S) Component Service (S) ArmyBattleCmdSys (Token, CrisisNum);

(S) AirForceBattleManagementSys (Token, CrisisNum);

(S) MarineCombatOpnsSys (Token, CrisisNum);

(S) NavyCommandSystem (Token, CrisisNum);

Figure 1.1. GCCS Joint and Component Services and their Methods.

Roles: [CDR_CR1, [01dec02,01dec03], T] [JPlanCR1, [01dec02, 01jun03], S]

[JPlanCR2, [01jul01,01sep03], C] [ArmyLogCR1, [10dec02,01mar03], S]

[ArmyLogCR2, [01jul03,01aug03], C]

Users: General DoBest: [DoBest, [ct, infinity], T]

Colonel DoGood: [DoGood, [01dec02,01jun03], T]b

Major DoRight: [DoRight, [01dec02,01jan03], S]

Major CanDoRight: [CanDoRight, [01jan03,01feb03, T]

URAs: [JPlanCR1, CrisisPicture, [ct, infinity],true]

[JPlanCR1, ArmyBattleCmdSys, [10dec02,16feb03], true]

[ArmyLogCR1, CrisisPicture, [10dec02,16feb03], Grid1<NA20 AND Grid2<NC40]

[ArmyLogCR2, LogPlanningTool, [10dec02,16feb03], CrisisNum=CR1]

Figure 1.2. Sample Users, User-Roles, and User-Role Authorizations.

“if” of access (i.e., does a user’s CLR dominate a UR’s CLS). Repre-
sentative users for GCCS are shown in Figure ??.

Def. 11: A signature constraint, SC, is a boolean expression on
MParams

ijk , for i = 1..m, j = 1..n, k = 1..gij , to limit values.

Def. 12: A time constraint, TC, is a LT (default [ct,∞]), and is
utilized as follows: LTs of UR and method constrain the method
assignment; LTs of UR, method, and user, constrain the method
invocation; LTs of UR and user constrain the user authorization
to the role; LTs constrain the time span of a delegation.

Def. 13: A mandatory access control constraint, MACC, is the dom-
ination of the SLEVEL of one entity over another, e.g., U’s CLR
≥ UR’s CLS or UR’s CLS ≥ M’s CLS.

For assurance, we provide guarantees that a user playing a role can in-
voke a method limited by parameter values (SC - Def. 11), method avail-
ability (TC - Def. 12), and the Simple Security and Integrity Properties
applied by a user against a role invoking a method (Def. 13).

The next set of definitions is for authorizations of method(s) to user
role(s) and of user role(s) to user(s), to bring together all of the concepts.

Def. 14: A user-role authorization, URA = [UR,M, TC, SC], means
UR (Def. 7) authorized to invoke M (Def. 4) within time TC



Safety and Liveness for an RBAC/MAC Security Model 5

(Def. 12 - default [ct,∞]), limited by values SC (Def. 11 - default
true). Figure ?? has URAs for JPlanCR1, ArmyLogCR1, and
ArmyLogCR2.

Def. 15a: A r × q UR authorization matrix, URAM, where q =∑
i=1..m,j=1..ni

qij , is:

URAM(URi,Mj) =

{
1 URi is authorized to invoke Mj

0 otherwise

Def. 15b: A valid user-role authorization list, V URAL = {V URAi ∀
i = 1..v}, v ≤ r × q, has all valid URAs (Def. 15a).

Def. 16: A user authorization, UA = [U,UR, TC], means U (Def. 9)
is authorized to play UR (Def. 7) for time TC (Def. 12 - default
[ct,∞]) for when the role is available to U.

Def. 17a: An r × u user authorization matrix, UAM, is:

UAM(URi, Uj) =

{
1 Uj is authorized to URi

0 otherwise

Def. 17b: A valid user authorization list, V UAL = {V UAi|i = 1..w},
w ≤ r × u, has all valid UAs, VUAs (Def. 17a).

Def. 18: A client, C, is an authorized user U, identified by client token
C = [U, UR, IP-Address, Client-Creation-Time].

For assurance, a valid URA (Defs. 14, 15a and 15b) can only be created
if all required checks of a UR’s capabilities against a M’s characteristics
are satisfied (i.e., TC and MACC checks), and the VURA then sets the
criteria (UR, M, TC, SC) under which the invocation can occur. A
corresponding set of guarantees also holds for a VUA.

The remaining set of definitions are for role delegation [?].

Def. 19: A delegatable UR ∈ URL, DUR, is eligible for delegation.

Def. 20: The delegatable UR vector, DURV, ∀ r URs ∈ URL is:

DURV (URi) =

{
1 URi is a DUR
0 URi is not a DUR

Def. 21: An original user, OU ∈ UL, of a UR is authorized to
the UR via the security policy (∃ a VUA for the OU/UR, i.e.,
UAM(UR,OU) = 1), and not by a delegation.

Def. 22: A delegated user, DU ∈ UL, is a user U that can be delegated
a UR by an OU/DU (there is not a VUA for the DU/UR, i.e.,
UAM(UR,DU) 6= 1)), where DU is not an OU for the same UR.

Def. 23: The r × u user delegation/authorization matrix, UDAM, is:

UDAM(URi, Uj) =


2 URi is a DU of URi

1 Uj is an OU of URi

0 URj is not authorized to DUi



6

For assurance, there must be guarantees on the capabilities of an OU
with respect to the a DU to insure that LTs/TCs and CLS/CLR are
consistent; the delegation is defined and checked at runtime.

Def. 24: Delegation authority, DA, is given to OU for delegation of a
DUR to another user.

Def. 25: Pass-on delegation authority, PODA, is authority given to
an OU/DU to pass on DA for a DUR to another OU/DU.

Def. 26: The r × u delegation authority matrix, DAM, is:

DAM(URi, Uj) =


2 Uj has DA and PODA for URi

1 Uj has only DA for URi

0 URj has neither DA nor PODA for URi

Initially DAM has all 0 entries.

For assurance, there must be DA and PODA guarantees; DA allows
an OU/DU to delegate, and PODA, allows an OU/DU to pass on that
delegation authority to another DU, which is a dangerous privilege.

3. Towards Assurance Guarantees

Security assurance is critical in our model to allow the consistency of
URs, CLR/CLS levels, LTs, role delegations, user authorizations, etc., to
be verified when the security policy is defined, changed, and executed.
Towards that end: Section 3.1 examines assurance guarantees on the
available time of access for a method invocation; Section 3.2 details the
attainment of the Simple Security and Simple Integrity Properties for
method invocations; leading to Section 3.3 which explores safety and
liveness. Overall, we have been influenced by others [?, ?, ?, ?, ?].

3.1 Time-Based Guarantees

To begin, we introduce available time, AT, which represents the max-
imum amount of time derived from various intersections of LTs and TCs
of the authorizations for URs, OU, DU, and users, as given in Section 2.
For example, URA = [UR,M, TC, SC] involves LTs (for UR and M) and
a TC, which must overlap to be a VURA. Formally, let ΣLT = ∩alliΣLT

i ,
where each ΣLT

i represents a LT or a TC, using intersection for LTs/TCs
as given in Def. 1. Then, any time t is in the maximum available time,
AT, or t ∈ ∩ΣLT

i ∀ i ⇔ t ∈ ΣLT . To assist in the proofs, we define:

Def. 1a: Let Compare(X,Y ) be a function that returns the overlap
of LTs X and Y . Compare(X,Y ) = {Y if X . Y ; X if Y . X; ∅ if
Y ∩X = ∅; Y ∩X otherwise}.

Using Def. 1a, we offer lemmas for the ATs for URAs (Def. 14), URs
(Def. 7), UAs (Def. 16), DUs (Def. 22) and Users (Def. 9).



Safety and Liveness for an RBAC/MAC Security Model 7

Lemma 1: If URAi = [UR,M, TC, SC] is a VURA, then URAAT
i =

MLT ∩ URLT ∩ TC.
Proof:

1 By Defs. 14 and 15a, URAi = [UR,M, TC, SC] as a VURA
means URAM(UR,M) = 1. By Def. 7, UR = [URName,
URLT , URCLS ]. Set URAAT

i = URLT .

2 By Def. 4, M = [MName,MLT ,MCLS ,MParams]. Apply
Def. 1a with URAAT

i = Compare(URAAT
i ,MLT ).

3 By Def. 12, a TC is a LT. In URAi = [UR,M, TC, SC], TC
constrains when UR authorized to M. Apply Def. 1a with
URAAT

i = Compare(URAAT
i , TC).

4 If URAAT
i ∩ ct = ∅, then URAAT

i = ∅ and proof completes.

5 Otherwise, URAAT
i = MLT∩URLT∩TC since it is equivalent

to URAAT
i = URAAT

i ∩ TC (by steps 2 and 3 of the proof
and substituting for URAAT

i on the r.h.s. with MLT∩URLT ).
Note that if URAAT

i = ∅, then there is no overlap.

Lemma 2: If UR = [URName, URLT , URCLS ], then URAT = ∩alli
URAAT

i , where each URAAT
i is a VURA where URAM(UR,Mj) =

1 for some j = 1..q.
Proof:

1 Consider URAM as given in Def. 15a. If URAM(UR,Mj) =
0 for some j, then UR not authorized to Mj , and there is no
need to use this entry to calculate URAT .

2 Consider all j where URAM(UR,Mj) = 1 (VURA of UR
to M). If ∃ at least one j s.t. URAM(UR,Mj) = 1 and
MLT = ∅, then set URAT = ∅, and proof completes.

3 Let URAM(UR,Mj) = 1 and URAM(UR,Mk) = 1 for
some j, k. Apply Def. 1a with URAT = Compare(URAAT

ij
,

URAAT
ik

), where ij/ik is the VURA for Mj/Mk.

4 Repeat this step for each remaining entry URAM(UR,Mj) =
1, apply Def. 1a with URAT = Compare(URAT , URAAT

ik
).

5 If URAT ∩ ct = ∅, then URAT = ∅ and proof completes.

6 Otherwise, URAT = ∩alliURAAT
i .

Lemma 3: If UA = [U,UR, TC] is a VUA, then UAAT = ULT ∩
URAT ∩ TC.
Proof:

1 By Defs. 16 and 17a, UA = [U,UR, TC] as a VUA means
UAM(UR,U) = 1. By Def. 9, U = [UUserId, ULT , UCLR].
Set UAAT = ULT .



8

2 By Lemma 2, URAT is the AT of UR for all of its URAs. Ap-
ply Def. 1a with UAAT =Compare(UAAT , URAT ). UAAT

represents the time that U can engage an authorized UR.

3 By Def. 12, a TC is a LT. For UA = [U,UR, TC], apply Def.
1a with UAAT =Compare(UAAT ,TC).

4 If UAAT ∩ ct = ∅, then UAAT = ∅ and proof completes.

5 Otherwise, UAAT = ULT ∩URAT ∩ TC since it is equivalent
to UAAT = UAAT ∩ TC (by steps 2 and 3 of the proof and
substituting for UAAT on the r.h.s. with ULT ∩ URAT ).

Lemma 4: If OU delegates one of its DUR, UR, to DU, then DUA =
[DU,UR, TC] has DUAAT = OUAAT ∩DULT .
Proof:

1 Let OUA = [U,UR, TC] be a VUA for OU. By Lemma 3,
OUAAT is the AT for an OU to a UR. SetDUAAT = OUAAT .

2 For OU to delegate UR to DU, UAM(UR,OU) = 1. When
OU delegates UR to DU, then UAM(UR,DU) must be set
to 1, and a DUA = [DU,UR, TC] is created. The UR and
TC in the DUA are as given in the OUA (Step 1), and thus
do not impact DUAAT since they are already in OUAAT .

3 By Def. 9, DU = [DUUserId, DULT , DUCLR]. Apply Def. 1a
with DUAAT = Compare(DUAAT ,DULT ).

4 If DUAAT ∩ ct = ∅, then DUAAT = ∅ and proof completes.

5 DUAAT = OUAAT∩DUAT since it is equivalent toDUAAT =
DUAAT ∩DULT (by Step 3 of the proof and substituting for
DUAAT on the r.h.s. with OUAAT ).

Lemma 5: If U = [UUserId, ULT , UCLR], then UAT = ∩alliUAAT
i ,

where each UAAT
i represents one VUA where UAM(URj , U) = 1

for some j = 1..r. This proof similar to Lemma 2 and omitted.

3.2 MAC Guarantees

Mandatory access controls are governed by strict rules for subjects
(users) to access stored information or objects, and include many differ-
ent properties: Simple Security Property [?], the Strict *-Property [?],
the Liberal *-Property [?, ?], and the Simple Integrity Property [?]. In
this section, we prove that our RBAC/MAC model (see Section 2) satis-
fies both the Simple Security Property and the Simple Integrity Property
as applied to methods, roles, and users. To do so, consider:



Safety and Liveness for an RBAC/MAC Security Model 9

Def. 4a: Each Mij = {Mijk | k = 1..qij}, has read-only methods,
MRO

ij = {MRO
ijk for some k} and read-write methods, MRW

ij =

{MRW
ijk for some k}; MRO

ij ∩MRW
ij = ∅ and MRO

ij ∪MRW
ij = Mij .

Def. 28: Let Dominate(X,Y ) be a boolean function, with X and Y ei-
ther CLR/CLS (Def. 2) with U < C < S < T . Dominate(X,Y ) =
{true if X ≥ Y ; false if X < Y }.

Given these definitions, we present a series of lemmas on URAs, URs,
and UAs in regards to the Simple Security and Integrity Properties.

Lemma 6.1: If URAi = [UR,M, TC, SC] is a VURA, then URAi

satisfies the Simple Security Property for all MRO and MRW .
Proof by contradiction:

1 By Defs. 14 and 15a, URAi = [UR,M, TC, SC] as a VURA
means URAM(UR,M) = 1. By Def. 7, UR = [URName,
URLT , URCLS ], where URCLS is the role’s CLS. By Def. 4,
M = [MName, MLT , MCLS , MParams], where MCLS is the
method’s CLS. UR is the subject and M is the object.

2 If M ∈ MRO
ij or M ∈ MRW

ij , it has a CLS, MCLS . Suppose

Dominate(URCLS ,MCLS) = false. Set URAM(UR, M) =
0 (Defs. 14, 15a, and 15b).

3 This contradicts Step 1 where URAM(UR,M) = 1.

4 Then, Dominate(URCLS ,MCLS) = true (URCLS ≥MCLS).

5 This is Simple Security (read-down/no-read-up) [?].

Lemma 6.2: If URAi = [UR,M, TC, SC] is a VURA, then URAi

satisfies the Simple Integrity Property for all MRW .
Proof: Exact Steps as Lemma 6.1 except for Steps 2 and 6 (below).
2. IfM ∈MRW

ij , it has a CLS,MCLS . SupposeDominate(URCLS ,

MCLS) = false.
6. This is Simple Integrity (write-down/no-write-up) [?].

Lemma 6.3: Let UR = [URName, URLT , URCLS ] and α = ∪alliURAi,
where each URAi is a VURA (URAM(UR,Mj) = 1 for some
j = 1..q). If Dominate(URCLS ,MCLS

j ) = true for all URAi ∈ α,
then UR satisfies the Simple Security Property for all methods and
Simple Integrity Property for MRW .
Proof:

1 For each M ∈ MRO
ij and M ∈ MRW

ij , Dominate(URCLS ,

MCLS) = true (by Lemma 6.2), and, UR satisfies the Simple
Security Property for all methods.



10

2 For each M ∈ MRW
ij , Dominate(URCLS ,MCLS) = true (by

Lemma 6.2), and, UR satisfies Simple Integrity for all MRW .

3 Steps 1 and 2 means that UR satisfies Simple Security for all
methods and Simple integrity for MRW .

Lemma 7: If UA = [U,UR, TC] is a VUA, then UA satisfies the
Simple Security and Integrity Properties for U CLR vs. UR CLS.
Proof by contradiction:

1 By Lemma 6.3, UR satisfies Simple Security Property for all
methods and the Simple Integrity Property for MRW . Hence,
Dominate(UR,Mk) = true for all Mk authorized to UR.

2 By Defs. 16 and 17a, UA = [U,UR, TC] as a VUA means
UAM(UR,U) = 1. By Def. 9, U = [UUserId, ULT , UCLR],
with UCLR.

3 Suppose that Dominate(UCLR, URCLS) = false.

4 Then, UAM(UR,U) = 0 (Defs. 16, 17a, and 17b), which
contradicts Step 2.

5 Thus, Dominate(UCLR, URCLS) = true (UCLR ≥ URCLS).

6 Since UR satisfies both Simple Security and Integrity Prop-
erties, UA also does.

Lemma 8: If OU delegates UR in DUR to DU, then a delegated
user authorization DUA = [DU,UR, TC] satisfies both the Simple
Security and Integrity Properties for delegated user (subject) vs.
role (object). Proof similar to Lemma 7 and uses Lemma 4.

3.3 Safety and Liveness Guarantees

In this section, we explore safety (nothing bad will happen during a
method invocation or delegation) [?] and liveness (all good can happen
during a method invocation or delegation) [?] for our framework. We
begin with a review of security assurance rules, SARs [?], which are
logical statements that must be satisfied in order for a privilege to be
set (design-time) or an action to be performed (runtime). The first four
SARs are non-delegation checks at design time (Rule I for when an officer
attempts to assign a method to a UR and Rule II for when an officer
attempts to authorize a UR to a User) and runtime (Rule III for when
a user selects a UR to play for a session and Rule IV for when a user
attempts to invoke a method, via a client application).

Rule I: Let A ∈ UR and M be a method. URA = [A,M, TC, SC] is a
VURA iff ACLS ≥MCLS , TC = ALT ∩MLT ∩TC 6= ∅, TC.et > ct;
Set URAM(A,M) = 1, V URAL = V URAL ∪ URA.



Safety and Liveness for an RBAC/MAC Security Model 11

Rule II: Let A ∈ UR and X ∈ UL. UA = [X,A, TC] is a VUA iff
XCLR ≥ ACLS , TC = XLT ∩ ALT ∩ TC 6= ∅, TC.et > ct; Set
UAM(A,X) = 1, UDAM(A,X) = 1, V UAL = V UAL ∪ UA.

Rule III: Let A ∈ UR and X ∈ UL. A can be authorized to X at
runtime iff UAM(A,X) = 1 (Rule II is OK), and for the V UA =
[X,A, TC] ∈ V UAL, TC.et > ct.

Rule IV: Let A ∈ UR, X ∈ UL, and M be a method. X with A
can invoke M at runtime iff UAM(A,X) = 1 (Rule II is OK),
UDAM(A,M) = 1 (Rule I is OK), for V UA = [X,A, TC] ∈
V UAL, TC.et > ct, for V URA = [A,M, TC, SC] ∈ V URAL,
TC.et > ct, SCOracle([MName,MParams,MV alues], SC) = true.

Note that in support of SCOracle, we assert the following: There exists
a SC Oracle that does not fail. The number and type of parameters vary
with each method and SC will accept any combination. SC checks if the
Boolean is satisfied, which has a very high expectation of success.

Rules V and VI are for the assignment of DA and PODA to a user X.
Rule VII is for design-time delegation of a UR by a user to another user.
Rule VIII is for setting DA or DA/PODA from one user (either OU or
DU) to another DU (Rule VII OK). Rule IX is for activating delegation.

Rule V: Let X ∈ UL and A ∈ URL. X has DA for A (DAM(A,X) =
1 ) iff UDAM(A,X) = 1(an OU), DURV (A) = 1(a DUR), and
∃ a V UA = [X,A, TC].

Rule VI: Let X ∈ UL and A ∈ URL. X can have DA and PODA for A
(DAM(X,A) = 2) iff UDAM(A,X) = 1(an OU), DURV (A) =
1(a DUR), and ∃ a V UA = [X,A, TC].

Rule VII: Let X ∈ UL and A ∈ URL, s.t. DAM(A,X) ≥ 1
(Rules V or VI). X can delegate A to user Y limited by TC iff
UDAM(A, Y ) 6= 1, Y CLR ≥ ACLS , TC = (Y LT ∩ ALT ∩ TC) 6= ∅,
and TC.et > ct. Set UAM(A, Y ) = 1, UDAM(A, Y ) = 2, and
V UAL = V UAL ∪ UA = [Y,A, TC].

Rule VIII: Let X ∈ UL be an OU/DU, A ∈ URL, and Y ∈ UL
be a DU of A. Y can have DA for A (DAM(A,Y) = 1 ) if X
has at least DA for A (DAM(A,X) ≥ 1). Y can have DA and
PODA for A(DAM(A,Y)=2 if X has both DA and PODA for A
(DAM(A,X)=2). Rule VIII limited to 2 levels in our framework.

Rule IX: Let X ∈ UL be an OU or a DU. Then X can delegate role
A to DU Y limited by TC iff (Rule V or VI) and Rule VII.

Now, we present theorems for the safety and liveness of Rules I to IV
(delegation omitted). We define: legal access as an access authorized by a
security policy; liveness to mean that every legal access is authorized [?];
and, safety to mean that no illegal access is authorized [?].



12

Theorem I: Rule I meets requirements for liveness and safety.
Proof:

1 Let A be a user role and M a method being authorized.
2 Initially, the URAM is set to all 0s. This is perfect access

control as there are no UR authorizations to any methods,
Mijk, in this system. This meets safety (no bad things can
happen), but not liveness, as no good things can happen.

3 Lemma 1 ensures that a URA is a VURA and URAAT
i =

MLT ∩URLT ∩TC. If URAAT
i 6= ∅ and URAAT

i ∩ct 6= ∅, then
M can be assigned to UR. Otherwise M cannot be assigned
to UR because it can never be available.

4 Lemma 6.1 insures ACLS ≥MCLS .
5 To change an entry from 0 to 1 in a URAM, there must be a

URA (Def. 14).
6 In order to build liveness, yet maintain safety, 0 entries in the

URAM must be changed to 1 (URAM(A,M) = 1) for only
those URs authorized to Ms (Defs. 15a and 15b). Validating
changes to URAM allows for both safety and liveness; there
is no access except for these specific authorizations and this
is precisely Rule I.

Theorem II: Rule II meets requirements for liveness and safety.
Proof:

1 Let X be a user and A be the role being authorized.
2 Initially, the UAM and UDAM are set to all 0s. This is perfect

access control as there are no users, U, authorized to any user
roles, UR, in this system. This meets safety requirements, but
not liveness, as no user can do anything.

3 U and UR must be available for access and URAT ∩UAT ∩ct 6=
∅. Lemma 3 insures the maximum AT for a U to a UR. The
intersection with the current time assures that available time
has not passed, which is obviously a requirement for use.

4 Lemma 7 insures XCLR ≥ ACLS .
5 To change an entry from 0 to 1 in UAM/UDAM, there must

be a UA (Def. 16).
6 In order to build liveness, yet maintain safety, 0 entries in the

UAM/UDAM must be changed. Validating changes to UAM
and UDAM allows for both safety and liveness, as there is
no access allowed except for these specific authorizations and
this is precisely Rule II.

The safety/liveness of Theorems III/IV focuses on the runtime autho-
rization of user to role, which is needed since the tranquility of CLR and
CLS is not guaranteed, URs can change, and LTs and TCs can expire.



REFERENCES 13

Theorem III: Rule III meets requirements for liveness and safety.
Proof:

1 Let X be a user and A be the role being authorized.

2 If UAM(A,X) 6= 1, deny runtime authorization. QED.

3 Revalidate Rule II: XCLR ≥ ACLS , TC = XLT ∩ALT ∩TC 6=
∅, TC.et > ct. If XCLR < ACLS , then Rule II fails. If
TC = XLT ∩ALT ∩ TC = ∅, then Rule II fails. If either case
is true, deny runtime authorization. QED.

4 Else, Rule II is revalidated at runtime, so by Theorem II, Rule
II satisfies safety and liveness. Thus, Rule III does as well.

Theorem IV: Rule IV meets requirements for liveness and safety.
Proof:

1 Let X be a user, A its role, and M the method being called.

2 If SCOracle([MName,MParams,MV alues], SC) = false, deny
runtime authorization. QED.

3 If UAM(A,X) 6= 1, deny runtime authorization. QED.

4 If URAM(A,M) 6= 1, deny runtime authorization. QED.

5 If UAT = ∅, (Lemma 3) deny runtime authorization. QED.

6 If UTC.et ≤ ct, deny runtime authorization. QED.

7 Otherwise, Rules I and II are revalidated enusring safety and
liveness. Thus, Rule IV does as well.

Theorems V to IX correspond are structured in a similar fashion to prove
safety and liveness for Rules V to IX

4. Conclusions

This chapter has examined security assurance guarantees for a RBAC
and MAC security model and enforcement framework [?, ?, ?]. Section
2 reviewed our RBAC/MAC security model with delegation. Section 3
examined security guarantees with respect to available time (when an
invocation can occur), security levels (authorizations of methods to user
roles, and user roles to users), and for the attainment of safety and live-
ness (related to authorization, invocation, and delegation). The main
contribution in this chapter is the series of lemmas and theorems that
provide validation for the Simple Security and Simple Integrity Proper-
ties, which then lead to the stronger properties of insuring safety (noth-
ing bad happens) and liveness (something good happens) as methods are
invoked by users playing roles. Please see [?] for further information.

Acknowledgement: Thanks to Prof. C. Reynolds, USMA, Dept. of
EE&CS for his input on the various formalisms/notation in Section 3.



14

References

[1] K. Alford, et al., “Information Assurance Pedagogy,” Proc. of IEEE
Info. Assurance Wksp., 2001.

[2] B. Alpern and F. Schneider, “Defining Liveness,” Information Pro-
cessing Letters, Vol. 21, No. 4, 1985.

[3] D. Bell and L. LaPadula, “Secure Computer Systems: Mathematical
Foundations Model,” M74-244, Mitre Corp., Bedford, MA, 1975.

[4] E. Bertino, et al., “TRBAC: A Temporal Role-Based Access Control
Model,” Proc. of 5th ACM Wksp. on RBAC, 2000.

[5] K. J. Biba, “Integrity Considerations for Secure Computer Sys-
tems,” TR-3153, Mitre Corp, Bedford, MA, 1977.

[6] S. Gavrila and J. Barkley, “Formal Specification For Role Based Ac-
cess Control User/Role and Role/Role Relationship Management,”
Proc. of the 3rd ACM Wksp. on RBAC, 1998.

[7] Joint Operational Support Ctr., http://gccs.disa.mil/gccs/, 1999.

[8] L. Lamport, “Proving the Correctness of Multiprocess Programs,”
IEEE Trans. on Software Engineering, Vol. 3, No. 2, 1977.

[9] M. Liebrand, et al., “Role Delegation for a Resource-Based Security
Model,” Data and Applications Security: Developments and Direc-
tions II, E. Gudes and S. Shenoi (eds.), Kluwer, 2003.

[10] W. Maconachy, et al., “A Model for Information Assurance: An
Integrated Approach,” Proc. of IEEE Info. Assurance Wksp., 2001.

[11] J. McCumber, “Information Systems Security: A Comprehensive
Model,” Proc. of the 14th Natl. Computer Security Conf., 1991.

[12] S. Osborn, et al., “Configuring Role-Based Access Control to En-
force Mandatory And Discretionary Access Control Policies,” ACM
Trans. on Information and System Security, Vol. 3, No. 2, 2000.

[13] C. Phillips, et al., “Security Engineering for Roles and Resources in
a Distributed Environment,” Proc. of 3rd ISSEA Conf., 2002.

[14] C. Phillips, et al., “Towards Information Assurance in Dynamic
Coalitions,” Proc. of 2002 IEEE Info. Assurance Wksp., 2002.

[15] R. Sandhu, “Lattice-Based Access Control Models,” Computer
Journal, Vol. 26, No. 11, 1993.

[16] http://www.engr.uconn.edu/ steve/DSEC/dsec.html


