
 i

A Configurable Framework for RBAC, MAC,
and DAC for Mobile Applications

Yaira K. Rivera Sánchez

Doctoral Dissertation
Major Advisor: Dr. Steven A. Demurjian

Associate Advisors: Dr. Jinbo Bi, Dr. Bing Wang, Dr. Thomas
Agresta

In the last decade, mobile computing as evidenced by the emergence of mobile

devices (smartphones, phablets, tablets) has dominated personal and business

computing. Users of traditional computing devices (e.g., PCs, laptops, etc.) are

transitioning to mobile devices to perform daily tasks such as managing emails,

playing games, viewing/editing documents, paying bills, managing healthcare data,

etc. The majority of these tasks can be performed through the means of mobile

applications, which is a piece of software specifically made to run on a mobile

device. Mobile applications (apps) can contain data that ranges from being non-

sensitive to highly-sensitive. Specifically, for those apps that contain highly-

sensitive data (e.g., banking apps, electronic health records (EHRs), etc.), there is a

need to provide authentication and authorization mechanisms in order to secure the

application’s data. Many mobile apps provide basic user authentication, and, after

successful authentication, the user has access to all of its features. Nevertheless,

even though there are critical requirements for mobile apps to secure highly-

sensitive data, developers have failed to establish sophisticated and multi-faceted

authorization mechanisms within the mobile computing design and development

process. Specifically, an argument can be made that mobile computing would

significantly benefit through the adoption of the three classic access control models:

 ii

Role-Based Access Control (RBAC), Mandatory Access Control (MAC), and

Discretionary Access Control (DAC).

The overall high-level focus of this dissertation is to propose and realize a

configurable framework for RBAC, MAC, and DAC for mobile applications that

is capable of supporting access control in different security layers. Security is

controlled from three perspectives. The first perspective is for the user interface in

terms of which screens and/or their components are accessible to a user under

RBAC with optional delegation via DAC. This security layer focuses on

modifications to the UI. The second perspective is to control the mobile

application’s API services in order to define the API services that can be invoked

by a particular user based on RBAC and/or MAC permissions with optional

delegation via DAC. This security layer between the UI and mobile application API

replicates the mobile application’s API by creating a mirrored set of services that

invoke the original API services so that each call can be intercepted to add RBAC,

MAC, and or/ DAC security checks. The third perspective focuses on interactions

between the services of the mobile application’s API and server-side APIs for the

various data servers, to again control whether the user via the mobile application

service is authorized to invoke specific server-side APIs by RBAC and/or MAC

with optional delegation. This security layer between the two different APIs

(mobile app and server-side) is accomplished through the creation of a server

interceptor API associated with a cloud computing infrastructure to intercept

invocations for RBAC, MAC, and DAC checks. In support of these three

perspectives, there is a unified mobile computing and security model with RBAC,

 iii

MAC, and/or DAC can be leveraged to define and enforce UI and service-based

permissions in a mobile application. Choosing security features from one or more

of these three perspectives provides for the dynamic combination of access control

models and configuration options to allow for custom security on a mobile-app-by-

mobile-app basis. The final step is the ability for the framework to provide human

assisted processes and automated algorithms for access control security

enforcement code generation and interceptors. The end result is that the mobile app

can secure the data that can be managed (e.g., inserted, retrieved, updated, deleted)

via it’s APIs from differing and complementary perspectives, creating multiple

additional security layers for RBAC, MAC, and/or DAC that are then adaptable to

different mobile apps.

 iv

Table of Contents

Chapter 1 ..1
1.1. Motivation for Access Control for Mobile Applications4

1.2. Motivation for Mobile Healthcare Applications ..7

1.3. Mobile Healthcare Applications Requirements and Challenges9

1.4. A High-Level View of Proposed Approach ...14

1.5. Research Objectives and Expected Contributions ...21

1.6. Research Progress to Date ...23

1.7. Dissertation Outline ...26

Chapter 2 ..29
2.1. Logical Architecture of a Mobile Application ...30

2.2. Role-Based Access Control ...31

2.3. Mandatory Access Control ..33

2.4. Discretionary Access Control ..34

2.5. Application Programming Interface ..36

2.6. Fast Healthcare Interoperability Resources (FHIR) ..38

2.7. Connecticut Concussion Tracker (CT2) Prototype ..40

Chapter 3 ..45
3.1. Generalized Structure of Mobile Application ..46

3.2. RBAC and MAC Model Definitions ...50

3.3. RBAC UI Permission Definitions ..55

3.4. RBAC and MAC API Permission Definitions ..61

3.5. DAC Model Definitions ...68

3.6. Combining Access Control Models and Options ...77

 v

3.7. Relational Database Design for the Unified Security Model79

3.8. Related Work on Access Control in Mobile Computing82

Chapter 4 ..86
4.1. Reviewing the Unified Model and Permissions ...87

4.2. ER Diagram Subset for Unified Model ...92

4.3. Access Control API and Programmatic Changes to UI99

4.4. A Guide for Programmatic Changes in a Mobile App104

4.5. Related Research of Customizing UIs ...107

Chapter 5 ..110
5.1. Motivating the Intercepting API Calls Option ...111

5.2. High-Level Processing of Intercepting API Calls Option114

5.3. Categorizing Services of APIs ...117

5.4. Interactions and Infrastructure ...119

5.5. Algorithm Generation of Intercepting API Calls Option123

5.6. Example of the Intercepting API Calls Option ..128

5.7. Related Work ...130

Chapter 6 ..133
6.1. Motivating the Server Interceptor API Option ..134

6.2. Access Control in FHIR ...137

6.3. Access Control Server Interceptor ...139

6.4. Implementation ..146

6.5. Related Work ...157

Chapter 7…… .. Error! Bookmark not defined.

Conclusion ..162
7.1. Summary ..163

 vi

7.2. Research Contributions ..168

7.3. Ongoing and Future Work ...170

References….. ...175
Appendix….... ...184

Appendix A – Sample Programmatic Changes for CT2 (Android version)184

RBAC API – getScreenAccessJSON method: ..184

Screen Permissions: ...184

Appendix B – Intercepting API ..187

Generate Code for the Intercepting API ..187

Generate Code for the Intercepting API – Output ...190

Renaming API Code ..203

Renaming API Code - Output ...204

Appendix C – Server Interceptor API ...221

1) Pseudocode for Access Control Interceptor function221

2) Source Code for incomingRequestPostProcessed function223

3) Source Code for registering the server interceptor in HAPI FHIR226

List of Tables

Table 3.1. Mobile Computing Assertions. .. 47

Table 3.2. RBAC and MAC Assertions. ... 51

Table 3.3. RBAC and MAC UI Permissions Assertions. ... 55

Table 3.4. Permissions for the Coach Role of CT2. ... 58

Table 3.5. Summary of Permissions for Roles in CT2 mobile app. 59

 vii

Table 3.6. RBAC and MAC API Permissions Assertions. ... 62

Table 3.7. Classifications for Labeled Services of CT2. ... 62

Table 3.8. Secure/Unsecure Services of CT2. ... 64

Table 3.9. Labeled/Unlabeled Services of CT2. .. 65

Table 3.10. DAC Assertions. .. 70

Table 3.11. Combinations of Access Control Configurations. ... 78

Table 3.12. Entities and Explanations. .. 82

Table 4.1. Screen and Component Permissions for Nurse and Sub_Nurse roles. 92

Table 4.2. API Services for RBAC & DAC Security Enforcement. 102

Table 4.3. Additional API Services for the Direct UI Modifications Option. 102

Table 6.1. Service permissions of CT2 FHIR resources. .. 155

Table 6.2. Permission assignment of CT2 users. ... 155	

List of Figures

Figure 1.1. Flow of Proposed Configurable Framework. ... 4

Figure 1.2. Per Capita Cost by Industry Classification. .. 9

Figure 1.4. High-Level View of Configurable Access Control Framework for Mobile

Apps. ... 21

Figure 2.1. Logical Architecture of a Client Mobile Application. 31

Figure 2.2. General structure of the RBAC model (Slideshare, 2012). 32

Figure 2.3. A MAC Example. ... 33

Figure 2.4. A DAC Example. .. 35

Figure 2.5. General Idea of how APIs work. .. 37

 viii

Figure 2.6. HAPI FHIR Server Interceptors ... 40

(HAPI FHIR Server Interceptors, 2016). .. 40

Figure 2.7. CT2 Mobile Application - Android Version. .. 43

Figure 2.8. CT2 Mobile Application - iOS Version. ... 44

Figure 2.9. CT2 Structure. ... 44

Figure 3.1. Permissions for API Services. .. 68

Figure 3.2. DAC Permissions. .. 76

Figure 3.3. Entity-Relationship Diagram for Unified Security Model. 81

Figure 4.1. A Screen with Components (left) that are Customized (right) in CT2. 90

Figure 4.2. A Screen with the Edit button enabled (screen 1), disabled (screen 2), and

hidden (screen 3). .. 91

Figure 4.3. A Subset of the ER Diagram from Figure 3.3. for Supporting the Unified

Security Model for the Direct UI Modifications Option. ... 95

Figure 4.4. Authorization Process with respect to Screens and Components. 96

Figure 4.5. Enforcement Process for a Mobile Application. .. 97

Figure 4.6. Result of RBAC in Connecticut Concussion Tracker (Nurse, Parents, and

Coach view). ... 98

Figure 5.1. Intercepting API-Based Approach Architecture. ... 116

Figure 5.2. Conceptual API Process. .. 117

Figure 5.3. RBAC, MAC, and DAC Permissions for API Services. 119

Figure 5.4. Interactions for Intercepting API Calls. .. 121

Figure 5.5. A Subset of the ER Diagram from Figure 3.3 for Supporting the Unified

Security Model for the Server Interceptor API option. ... 123

 ix

Figure 5.6. Pseudo Code Algorithm for Generating Code of the Intercepting API Calls

Option. .. 125

Figure 5.7. Code for Generating the Body of the Services in the CT2 API. 127

Figure 5.8. Portion of Generated Code for the Intercepting API. 127

Figure 5.9. Portion of Generated Code for the Renamed API. 127

Figure 5.10. ‘Cause’ screen for the role of Coach in CT2. ... 130

Figure 6.1. Intercepting Server Original Idea. .. 136

Figure 6.2. Server Interceptor API Option General Idea. ... 136

Figure 6.3. Security system placement in deployment architecture (FHIR, 2016). 138

Figure 6.4. Server Interceptor API Option Architecture. .. 140

Figure 6.5. A Subset of the ER Diagram from Figure 3.3 for Supporting the Unified

Security Model for the Server Interceptor API option. ... 146

Figure 6.6. CT2-OpenEMR FHIR Mapping. .. 149

Figure 6.7. JSON Response Messages from Interceptor. ... 157

Figure 6.8. JSON Response – Disallowed Request. ... 157

 1

Chapter 1
Introduction

 The increase of capabilities and features of mobile computing devices have changed

the way that individuals perform many of their daily activities. Numerous tasks previously

performed with a desktop or laptop have transitioned to mobile devices (phones, phablets,

and tablets). As we have seen in recent years, mobile devices have become mainstream and

begun to serve as a replacement for traditional PC-based computing in numerous and varied

consumer and industrial markets. Nevertheless, all of these advances come with critical

security risks that can lead to the compromising of confidential data that could affect a

user, a group of individuals, and/or an organization. Despite the presence of secure highly-

sensitive data, mobile development frameworks and developers have failed to establish

sophisticated and multi-faceted authorization mechanisms within the mobile computing

design and development process. Access control mechanisms are commonly utilized to

secure highly-sensitive data and are able to determine which information each user can

access/store in a particular system, with the proviso that disclosing the wrong information

could lead to serious consequences (Rindfleisch, 1997). One important dimension of

security that has been largely overlooked for mobile applications and that has been

dominant in traditional systems and database applications are the three classic access

control models: Role-Based Access Control (RBAC) (Ferraiolo & Kuhn, 1992),

Mandatory Access Control (MAC) (Sandhu & Samarati, 1994), and Discretionary Access

Control (DAC) (Department of Defense, 1985). The other dimension that has been often

not adequately considered is that almost all mobile applications in all domains access data

not directly but via a wide array of web and cloud application programmer interfaces

 2

(APIs). In fact, in healthcare, the Meaningful Use Stage 3 (Himss, 2016) guidelines require

all health information technology (HIT) systems (e.g., electronic health records (EHR),

personal health records (PHR), etc.) to have API services to access, modify, and exchange

health-related data. This necessitates the consideration of the usage of RBAC, MAC, and

DAC to control access to the services that are utilized by a mobile application.

The approach in this dissertation is to explore the different ways or configurations

that RBAC, MAC, and/or DAC capabilities can be included as multiple separate and

interacting security layers in a mobile application that range from the mobile application’s

user interface to the server side APIs utilized by the mobile application’s API services to

access multiple data sources. Mobile applications contain dynamic data and are

characterized by a set of interacting components that include: a user interface (UI) to

facilitate interactions; a middle layer component that is an Application Programming

Interface (API); and a data source (e.g., database, repository, cloud, server, etc.) that are

the APIs that the mobile app’s API services invoke to interact with multiple data sources.

In the process, data is retrieved from a data source (e.g., repository, database, etc.) and/or

stored into the source, at varied intervals. To illustrate, Figure 1.1 augments the

components of a mobile application with three additional security layers: one layer to

control the look-and-feel and content of the UI and two layers to control data that is

interchanged between the mobile app UI, the mobile app API, and the data source via

server-side API. The two security layers for data interchange involve the invocation of

services for the mobile app. In the first of these two layers, the mobile app invokes its own

API services, and there is a need to provide RBAC and MAC permissions to intercept these

invocations to control which services can be invoked by which user based on RBAC and/or

 3

MAC permissions. In the second of these two layers, the mobile app’s API services invoke

server-side APIs for multiple data sources, and there is a need to provide another intercept

to control which server-side services of data sources the mobile app can invoke based on

RBAC and MAC permissions. In the top of Figure 1.1, the different access control models

are shown and can be utilized to generate a set of RBAC, MAC, and/or DAC security

policies that are enforced in the mobile application. From left to right in Figure 1.1, this

includes:

• Defining for each user a role (RBAC) and a sensitivity level (MAC) (i.e., a clearance

such as top secret, secret, confidential, unclassified, etc.) that are utilized to define and

support permissions and providing the ability for a user to delegate via DAC RBAC

and/or MAC permissions to another user.

• Defining user interface (UI) permissions on the mobile app user interface to control

which screens and/or their components are accessible to a user under defined roles

(RBAC) and are delegable from one user to another by role in support of DAC.

• Defining API permissions that identify which services of the mobile app’s API need to

be securely controlled using RBAC and/or MAC and creating a mirrored API that

replicates the signature of each mobile app’s API service of the mobile app’s API and

servers as an intercepting API to intercept mobile app service invocations in order to

embed and perform RBAC and MAC permission checks.

• Defining server interceptor API permissions for the data source/repository/database

that provides an additional level of RBAC, MAC, and DAC permission checks on the

server-side APIs that are invoked by the mobile app’s API services.

 4

The end result is the ability to generate and enforce permissions (shown in the middle part

of Figure 1.1) utilizing the RBAC, MAC, and/or DAC models to create a customized

version of the user interface (UI), to create a customized version of the mobile app’s API,

and/or to create a customized version of the server-side API that can check RBAC, MAC

and DAC permissions.

Figure 1.1. Flow of Proposed Configurable Framework.

1.1. Motivation for Access Control for Mobile Applications
Mobile devices are highly portable and can be utilized to perform daily tasks such

as reading a document, browsing the internet, and managing emails. In addition, mobile

devices contain a wide range of mobile applications including: games, social media, health

& fitness, ebooks, banking, email, music, etc. According to ‘The 2015 U.S. Mobile App

Report’ (Lella, Lipsman, & Martin, 2015), mobile application usage is rapidly increasing

among mobile device users, surpassing the time they spend on their mobile device web

browser as well as the time they spend utilizing a PC/laptop. For both personal and business

usage, there is a need to protect secure information in mobile applications ranging from

 5

personally identifiable information (PII) to protected health information (PHI) to

confidential work product that is displayed, accessed, modified, and stored. Commonly,

developers of software and mobile applications focus on applying typical authentication

mechanisms (e.g., passwords, PINs, fingerprints, etc.) in order to protect a user’s data

(Rivera Sánchez & Demurjian, 2016). In addition, an authenticated user often receives all

or nothing; successful authentication means the ability to access (read, write, or modify)

all of the resources of the application, which may not always be desired on an application-

by-application and user-by-user basis. This mentality has led the developers to not take

into consideration the fact that they need to verify the user’s identity each time a user

performs an action. As a result, this can lead to the possibility of having malicious attacks

in the system since an unauthorized user could attempt to become over privileged or could

obtain improper access to resources.

In addition, many mobile applications do not support fine-grained security policies

that are able to specify which resources/features a specific user has access to. For instance,

suppose that we have a mobile application utilized by personnel at a pharmacy to fill and

process prescriptions for customers with a user interface (UI) that has five screens to: look

up the status of a prescription (Screen 1); enter a new prescription to be filled (Screen 2);

fill and dispense the prescription with the appropriate medication (Screen 3); look up to

see if a medication is in inventory (Screen 4); and, order medications for inventory (Screen

5). The five screens could be linked by next and back buttons or could be five different

tabs on one screen. There are two types of users: pharmacy technicians that interact with

the customer to receive and enter the prescription; and, licensed pharmacists that have the

legal authority to fill and dispense the prescription. A pharmacy technician would be

 6

limited to Screens 1, 2, and 4, while a licensed pharmacist would have access to all five

screens. To achieve this in practice, access control policies can be adapted in order to grant

them the necessary permissions to view only the resources they need to work with in order

to avoid improper disclosure of information. Users that have access to data that does not

pertain to them could benefit from this. For example, in 2013, a billing technician at a

hospital spent several months looking for people that had recently been in car accidents

and then sold that information to an attorney. The attorney would then contact the

individuals who were involved in the car accident and offered them legal representation

(Wiech, 2013). This issue highlights the need for access control in systems that contain

highly sensitive information, such as hospitals and health insurance companies.

Mobile devices and computing are being improved on a daily basis in terms of

hardware and software, increasing capabilities, features, and capacity. This in turn has

resulted in the rise of new security risks. In the worst-case, a mobile device may be lost or

stolen; if there are available techniques to control and securely access highly sensitive data,

then damage can be mitigated. For example, healthcare data stored in a mobile device is

being created, retrieved, and manipulated from multiple sources and by varied applications

and this sensitive information must be protected from disclosure. This security requirement

is juxtaposed against a recent survey (West & Miller, 2009) where a strong majority of

people wanted to manage their healthcare electronically, including: email access with

providers (74%), diagnostic test results electronically (67%), and access to their EMR

(64%). These tasks require a great amount of security as the information to be shared is

highly sensitive and pertains to specific people from multiple sources and ultimately

resides in a patient’s mobile device.

 7

1.2. Motivation for Mobile Healthcare Applications
Mobile computing devices and applications have exploded in the marketplace, with

the Gartner group forecasting worldwide shipments in 2015 (Gartner Newsroom, 2015) of

1.9 billion mobile phones and 230 million tablets, which is outpacing PC/laptop sales

significantly (300 million estimate). In the United States, a PEW Research Center report

of smartphone usage (Smith, 2015; PEW Research Center, 2015) found that as of October

2014, 64% of American adults own a Smartphone while as of January 2014, 42% own a

Tablet, and 32% own an e-reader. Predictive statistics project that tablet users will surpass

1 billion in 2015 worldwide (eMarketer, 2015) while the total of mobile devices will exceed

12.1 billion by 2018 (Radicati, 2014). In addition, Cisco reported (Cisco, 2014) in 2014

that 497 million mobile devices were added that year, and 88% of that growth is accounted

to smartphones and, predicted that by 2019, there will be approximately 1.5 mobile devices

per capita giving a total of 11.5 billion mobile devices around the world. As mobile devices

become more mainstream, they have begun to serve as a replacement for traditional PC-

based computing in major consumer and industrial markets.

One such domain that is exploding is healthcare, where there is a growing desire

for an individual seeking to utilize his/her mobile device to monitor and track health

conditions and fitness that includes both protected health information (PHI) and personally

identifiable information (PII). For example, consider the proliferation of health and fitness

applications on multiple mobile platforms for: pharmacies and organizing medications

(myCVS (CVS Pharmacy, 2015), MEDWatcher (MedWatcher, 2012), Drugs.com

Medication guide and Pill Identifier Applications (Drugs.com, 2008), etc.); personal health

record (PHR) applications (CAPZULE PHR (Capzule, 2012), MTBC PHR (MTBC PHR,

2011), suite of WebMD Applications (WebMD, 2016), etc.); a wide array of fitness

 8

applications that work with phones and wearables (Duffy, 2016; Cohen, 2015); Apple’s

HealthKit app (iOS 9 Health, 2014) and the Google Fit fitness tracker (Google Play, 2013),

where both companies have pushed strongly into the smartwatch market to track activity,

heart rate, blood pressure, etc. (Kelly, 2014); and, Apple’s ResearchKit, which is an open

source framework for mobile applications to support medical research (Apple, 2015).

Patients also seek to have access via their mobile devices to the electronic medical records

(EMRs) utilized by their medical providers, as well as various health information

technology (HIT) systems that contain medical testing results (Care360, 2014) or results

from imaging testing (My Imaging Records App, 2013). All of these systems must adhere

to the Health Insurance Portability and Accountability Act (HIPAA) (HHs.gov, 2013) for

the security, availability, transmission, and release of a patient's medical information.

In this dissertation, our approach for a Configurable Framework for RBAC

(Ferraiolo & Kuhn, 1992), MAC (Sandhu & Samarati, 1994), and DAC (Department of

Defense, 1985) for Mobile Applications is presented and discussed by utilizing a healthcare

setting as a means to illustrate and demonstrate the concepts and ideas of this work. We

have chosen the healthcare domain since improper disclosure of data (both PHI and PPI)

can have serious impact on patients, which can include: personal embarrassment, prejudice,

ostracization from family and community groups, death, and issues with insurability

(Rindfleisch, 1997). Moreover, a report by Ponemon Institute (2009) revealed that the cost

of data breaches in the majority of the industries (e.g., communications, retail) per lost or

stolen record averages approximately $154 per record as shown in Figure 1.2 (Ponemon

Institute, 2015). This cost is even higher in the healthcare industry, as high as $363 per

record, which is more than double the cost to manage a data breach in comparison to other

 9

industries. While we utilize a healthcare setting as an appropriate and informative manner

to present the work in this dissertation, note that our proposed approach is generalized to

any mobile application as was illustrated in Figure 1.1.

Figure 1.2. Per Capita Cost by Industry Classification.

1.3. Mobile Healthcare Applications Requirements and Challenges
 Mobile applications span a broad spectrum of complexity, including games, social

networking, email, web browsing, financial management, health and fitness,

pharmaceutical, etc. For both personal and business usage, there is a need to insure that

access to secure information is controlled, ranging from protected health information (PHI)

and personally identifiable information (PII) to confidential work product that is displayed,

accessed, modified, and stored. In support of such a scenario of usage for healthcare, one

motivation and justification factor for this dissertation involves the transition from paper-

based to electronic health records (EHRs) systems which has greatly increased in the past

 10

decade with eight out of ten physicians in the U.S. utilizing EHRs in their practices

(Heisey-Grove & Patel, 2015). Despite this progress, there is still a need for a significant

next step to allow patients and medical providers to easily access healthcare data that is

distributed across multiple EHRs and other health information technology (HIT) systems.

To support these actions, health information exchange (HIE) for the interoperation across

sources has the potential to reduce healthcare data expenses where healthcare institutions

could save up to $77.8B in the U.S. (Walker et al., 2005). In addition, the Office of the

National Coordinator issued a report (Health and Human Services Department, 2015) in

2015 on certification rules for EHRs that has required that HIT vendors develop RESTful

APIs for EHRs and other systems so that patients and medical providers using mobile

health (mHealth) applications (apps) can easily access their healthcare data from multiple

sources.

 Specifically, there is a diverse collection of stakeholders who are interested in

healthcare and medical data. From the patient side, stakeholders that directly interact on a

day-to-day basis include: patient (him/herself), family members (child care, elder care,

spousal care), nutritionists, personal trainers, therapists (physical, occupational,

pulmonary), home healthcare aides, etc. Accompanying mobile health (mHealth)

applications in healthcare and fitness for patients are numerous and diverse including:

tracking medications (myCVS (CVS Pharmacy, 2015), MedWatcher (MedWatcher, 2012),

etc.); personal health records (PHR) (CAPZULE PHR (Capzule, 2012), MTBC PHR

(MTBC PHR, 2011), etc.); fitness applications that work with phones and wearables

(Cohen, 2015); Apple’s HealthKit app (iOS 9, 2014) and the Google Fit fitness tracker

(Google Play, 2013), to track activity, heart rate, blood pressure, etc. (Kelly, 2014); Apple’s

 11

ResearchKit (Apple, 2015), an open source framework for mobile applications to support

medical research, etc. Patients also seek to have access via their mobile devices to the

electronic health records (EHRs) utilized by medical providers and health information

technology (HIT) systems that contain medical testing results (Care360, 2014) or results

from imaging testing (My Imaging Records App, 2013).

From the medical provider side, stakeholders include: for daily care, internist,

family medicine, nurse practitioner, physician assistants, and pediatrics; for periodic care

specialists, cardiologists, ENTs, orthopedic surgeons, etc.; for mental healthcare

physiatrist, phycologist, therapist, etc.; and, for medical services, individuals at

laboratories, imaging centers, pharmacies, etc. The interest in all of these stakeholders in

mobile applications is evidenced by a report that found 43,700+ medical applications in

the Apple application store, with approximately 54% targeting healthcare with 69% of the

applications targeting consumers/patients and 31% for use by medical providers (Aitken,

2013); this was further summarized with emerging mobile devices and applications for

healthcare professionals (HIT Consultant, 2014). The aforementioned healthcare

professionals utilize diverse mobile apps and mHealth apps for: administrative purposes

(information management (e.g., write notes, organize information) and time management

(e.g., schedule appointments, schedule meetings, etc.)), health record maintenance and

access (e.g., EHRs, medical imaging apps), communications and consulting (e.g.,

multimedia messaging, social networking), reference and information gathering (e.g.,

medical textbooks, medical journals), patient monitoring (e.g., clinical decision-making,

monitor patient health, collect clinical data) and, for medical education (e.g., case studies,

continuing medical education) (Ventola, 2014). All of these systems must adhere to the

 12

Health Insurance Portability and Accountability Act (HIPAA) (HHS.gov, 2013) for the

security, availability, transmission, and release of a patient's medical information.

Most of these health and fitness mobile applications that are centric to an individual

are accompanied by the desire by patients to be able to dictate and define the way that such

information can be shared with other individuals. One such effort has surveyed patients to

ascertain the degree that they wish to exert regarding the attainment of privacy control at

varying levels of granularity over their health and fitness information, which may be

present in electronic form in various locations (Caine & Hanania, 2013). For a given

patient, this effort highlights the potential recipients of the information (e.g., primary

physicians, spouse, family, emergency medical providers, etc.) and the type of information

to be controlled (e.g., contact info, current conditions, medications, recent test results,

genetic information, etc.). In such a setting, patients are also interested in actually defining

specific fine-grained access control (Sujansky et al., 2010) by designating access by role,

for example: a family member may view my medication list (but not all of them), a medical

provider may view my medication list and history of hospital visits (but not modify), my

personal physician may both view and modify my health care and fitness data, etc. These

efforts highlight a strong need to achieve fine grained role-based level of security to allow

patients to define who can see and/or modify what portions of their health/fitness data other

individuals can view/modify using mobile applications for health care, where the mobile

application itself can be customized based on role to meet the permission definition

provided by the patient (Peleg et al., 2008). In addition, one of the main challenges that

healthcare providers face when utilizing an EHR mHealth app is patient data privacy.

EHRs can contain patient data such as past medical history, medications, conditions, and

 13

insurance information. Depending on their area of work, users of the EHR could be limited

to only accessing certain parts of the patient data. For instance, a doctor has access to all

the data shown in the EHR but an administrative professional can only schedule

appointments and, view a patient’s demographics and a patient’s insurance information.

To fulfill these actions, we propose to protect the data of a user of a mHealth

application by applying the RBAC, MAC, and DAC models in order to allow the owner(s)

of the information to decide which data can be accessed/modified by other users. In support

of our efforts, the three dominant access control models (Sandhu & Samarati, 1994) that

could be utilized to secure highly-sensitive data are: role-based access control (RBAC);

discretionary access control (DAC); and, mandatory access control (MAC). RBAC has a

strong history in healthcare; a literature review (Fernández Alemán, Señor, Lozoya, &

Toval, 2013) identified access control models deployed by EHRs, where out of 45 articles

reviewed, 35 used access control methods, and 27 of these specifically utilized RBAC.

DAC has also been studied for EHRs in conjunction with RBAC (Alhaqbani & Fidge,

2008; Khan & Sakamura, 2012) in an attempt to combine the capabilities and advantages

of both approaches. There have been some very limited attempts to utilize MAC in the

health care domain; one study (Gajanayake, Ianella, & Sahama, 2014) considered the use

of MAC in EHRs; another (Hafner, Memon, & Alam, 2007) explored the combination of

MAC with RBAC and DAC; and, the HL7 vocabulary (HL7 v3, 2013) where the

confidentiality portion (HL7, 2013) defines sensitivity levels of low, moderate, normal,

restricted, unrestricted, and very restricted.

In order to provide the sharing and exchange of information, healthcare standards

have been developed including: Health Level Seven (HL7) v3 (Health Level Seven

 14

International, 2011) to manage, exchange, integrate, and retrieve electronic health

information; and, Digital Imaging and Communications in Medicine (DICOM, 2012) for

distributing and viewing medical images. In 2011, HL7 introduced the first draft of the Fast

Healthcare Interoperability Resources (FHIR) specification designed to enable

interoperability and integration with the newest and adopted technologies by the industry

with a particular focus on making healthcare data in different EHRs and other HIT systems

easily available to mHealth apps via RESTful APIs in the cloud. FHIR has a set of security

requirements (FHIR, 2016) that identifies the major topics (communications security,

authentication, authorization, access control, auditing, digital signatures, etc.). However,

FHIR lacks concrete mechanisms that would be capable of controlling access to the

services of RESTful APIs that manage sensitive healthcare data stored in the cloud.

1.4. A High-Level View of Proposed Approach
The overall high-level focus of this dissertation is to propose and realize a

configurable framework for RBAC, MAC, and DAC for mobile applications that is capable

of supporting access control in different security layers. Security is controlled from three

perspectives. The first perspective is for the user interface in terms of which screens and/or

their components are accessible to a user under RBAC with optional delegation via DAC.

This security layer focuses on modifications to the UI. The second perspective is to control

the mobile application’s API services in order to define the API services that can be

invoked by a particular user based on RBAC and/or MAC permissions with optional

delegation via DAC. This security layer between the UI and mobile application API

replicates the mobile application’s API by creating a mirrored set of services that invoke

the original API services so that each call can be intercepted to add RBAC, MAC, and or/

 15

DAC security checks. The third perspective focuses on interactions between the services

of the mobile application’s API and server-side APIs for the various data servers, to again

control whether the user via the mobile application service is authorized to invoke specific

server-side APIs by RBAC and/or MAC with optional delegation. This security layer

between the two different APIs (mobile app and server-side) is accomplished through the

creation of a server interceptor API associated with a cloud computing infrastructure to

intercept invocations for RBAC, MAC, and DAC checks.

In support of the service level security in the second and third perspectives, we

evolve RBAC and MAC from permissions on objects/operations to an approach that can

control the services of an API that are available for usage, allowing each service to be

controlled by role (can a user by role access a service) or by sensitivity level (does a user

with a clearance level has the necessary permission to access a service with a classification

level). The intent is that for any mHealth app that needs to securely utilize services from

multiple HITs, each with their own specific RESTful API, will be controlled so that the

user is only allowed to invoke services to which they have permission. For example, a

mHealth app for patient data works differently depending on who is using the app. A patient

is able to invoke services to read all of his/her patient data, to invoke some services that

update basic information (e.g., demographics), but would be restricted from invoking

services that order medications or laboratory tests. These latter service invocations would

be appropriate for medical providers (e.g., physician, nurse, etc.) that have the authority to

change a patient’s medical record. Then, we can define a user (with a clearance level) with

a role (with permissions to invoke particular services) where each service has a

classification level, and have runtime enforcement to insure that a user with a particular

 16

role is allowed to invoke a service within the mobile app if the RBAC and/or MAC

permissions are met.

In support of RBAC, MAC, and/or DAC at the three perspectives of UI, mobile

application API, and server-side API, Figure 1.3 delineates the different ways that security

layers can be incorporated within the mobile application’s user interface (UI), application

programming interface (API), and server-side data source (database, cloud, server, etc.),

where permissions can be defined and enforced. The three locations are: the user interface

to change the look-and-feel by role; intercepting API calls to alter information

delivered/stored to the app; and/or by modifying the mobile app server. This leads to three

corresponding options for the inclusion of RBAC, MAC, and DAC corresponding to the

aforementioned three perspectives. The first option (perspective), direct UI modifications,

shown in the left side of Figure 1.3, would be to modify the mobile app itself with RBAC,

DAC, and MAC permissions on screens, UI widgets, etc., which would involve code-level

changes so that the look-and-feel of the UI would change based on the defined access

control security policies. The second option (perspective), intercepting API calls, shown

in the middle of Figure 1.3, would be to define RBAC, MAC, and DAC permissions on the

API (REST, web, cloud) and/or database calls of the mobile app and intercept them in order

to include access control permission checks that determine the filtered information returned

to the mobile app or control information that can be stored in the mobile application's

server. This may require minimal changes on the way that the mobile app calls the backend

or the way that the backend calls are intercepted by the access control code. Finally, the

third option (perspective), server interceptor API, shown in the right side of Figure 1.3,

involves making changes to the backend of the original mobile app (e.g., server for

 17

database, cloud, web, etc.) in support of RBAC, MAC, and DAC enforcement that would

retain the view of the mobile application’s API to the mobile app and embed access control

policies on the server side. The end result for each of these options (perspectives) is a

revised mobile application, a revised mobile application API, and a revised server

interceptor API, respectively, as shown in the bottom box of Figure 1.3.

Figure 1.3. Permissions and Three Options for Mobile Security.

Figure 1.4 presents a high-level view of the architecture of the configuration

framework, including the concepts of Figure 1.3 into this larger context. There are six

major components (outlined black boxes in Figure 1.4). Basically, the Mobile Application

(topmost component in Figure 1.4) consists of a UI, an API, and a data source (database,

cloud, server, etc.). The second component in Figure 1.4, Mobile Application Clients,

contains a set of users where each user is assigned a clearance (e.g., top secret, secret,

confidential, unclassified). In order to determine which resources of the mobile application

each user is allowed to access, the third component of Figure 1.4, Access Control Models

 18

is utilized to allow the assignment to each user of: a role (RBAC approach), a clearance

(MAC), or a role (RBAC) and a clearance (MAC extension) in combination; DAC may be

optionally included. Access control is defined to involve the mobile application main

structure of UI, API, and Data Sources as was shown in the first component. These models

are realized against the mobile application user interface, API, and data sources, which

allow RBAC, MAC, and/or DAC to be defined on: the screens and components of the UI

to control who can do what; the services of the API to control which are secure and which

can be called; and the data sources to control the information that can be read/written. This

requires the definition of a unified mobile computing and security model to define and

enforce permissions in complementary and combinable ways.

 For the application itself, the fourth component of Figure 1.4, Permissions and

Impact on Mobile App, contains the permissions on: the UI components of a mobile

application, the APIs of a mobile application, and/or the data source/server side.

Permissions involve: the look-and-feel of the UI per the allowable screens, their

components, and interactions; the ability to involve different services of the API; and, the

ability to control access to the data sources. These permissions can be based on a

combination of RBAC, MAC, and/or DAC. Assigning roles and clearances to users in a

system as well as identifying the permissions that are generated for certain parts of a mobile

application is part of creating a unified mobile computing and security model with access

control. Bringing together the mobile application’s UI, API, and data sources (first

component), its clients (second component), and the access control models RBAC, MAC,

and DAC (third component) allows for the realization of permissions for the three different

 19

options shown in Figure 1.3: direct UI modifications, intercepting API calls, and server

interceptor API.

Specifically, the first block in the fourth component, user interface

permissions/direct UI modifications, provides the ability to define permissions to modify

the existing mobile application itself with access control permissions (both RBAC and

MAC) on screens, UI widgets, etc., which would also involve code-level changes so that

the look-and-feel of the UI would change based on the enforcement of access control

policies. Permissions can be defined for a user by role on a UI screen, its components (text

fields, drop down, buttons, etc.), and interactions among screens, which may optionally

include classification levels (MAC) as well. This can be accomplished through a human-

assisted process that outlines the way that mobile application code changes are made. The

second block in the fourth component, API permissions/intercepting API calls, shown in

the middle of the fourth component of Figure 1.4, would be to define access control

permissions on the API (REST, web, cloud) and/or database calls of the mobile application

and intercept them in order to include access control permission checks that determine the

filtered information returned to the mobile application or control information that can be

stored in the mobile application’s server. Permissions are defined on the mobile application

API that is partitioned into secure/unsecure services (RBAC) and labeled/unlabeled

services (MAC), with service permission assignment to roles and users. This can be

accomplished through the automatic generation of security code. Finally, the third block of

the fourth component, data sources/server interceptor, involves making changes to the

backend or data source(s) of the existing mobile application (e.g., server for database,

cloud, web, etc.) that would retain the view of the mobile application’s API to the mobile

 20

application and embed access control policies on the server side. This can also be

accomplished through the automatic generation of security code.

Once the permissions are defined, we can generate access control security policies

as shown in the fifth component of Figure 1.4 by combining different aspects of access

control models in the components of a mobile application by utilizing a single option or a

combination of the options presented in Figure 1.3. This is further discussed in Section 3.2

that covers all the allowable combinations of: access control models (RBAC, MAC, and

DAC), the mobile application (UI, API, and data sources), and the options (direct UI

modifications, intercepting API calls, and server interceptor API). Collectively, the human-

assisted processes and algorithms to automatically generate code results in the fifth

component of Figure 1.4, generation of security policies at the UI or between the UI and

API or between the API and data sources. The proposed configuration framework allows

for the generation of different combinations based on access control models (RBAC, MAC,

and DAC), the mobile application (UI, API, and data sources), and the three options (direct

UI modifications, intercepting API calls, and server interceptor API). For example, a

mobile application for a pharmacy may only have RBAC, UI, and direct UI modifications,

while a more complex patient data mobile health app for medical providers (nurse,

physician, etc.) may use all capabilities in combination. After the policies are established,

we can enforce the security policies (sixth component of Figure 1.4) in the different

portions identified of a mobile application which lead us to an end result of a customized

mobile application. The final sixth component, enforcement of security policies, at the

bottom of Figure 1.4, is the resulting enforcement code from the human-assisted processes

 21

and automatic algorithm. For example, the modified code of the pharmacy app with RBAC,

UI, and direct UI modifications.

Figure 1.4. High-Level View of Configurable Access Control Framework for Mobile
Apps.

1.5. Research Objectives and Expected Contributions
From the research perspective, the proposed Configurable Framework for RBAC,

MAC, and DAC for Mobile Applications has the following expected contributions.

A. Software Architecture for a Configurable Access Control Framework for

Mobile Applications: The contribution is the specification, design, and description of a

software architecture for the configurable access control framework as given in Figure 1.4.

 22

This allows the ability to insert role-based, mandatory, and discretionary access controls at

alternate and multiple locations throughout the architecture.

B. Unified Mobile Computing and Security Model with Access Control: The

contribution is a unified model (the first three components of Figure 1.4) that contains:

generalized structure of a mobile application as a user interface of screens, components

(text fields, drop down, buttons, etc.), and interactions among screens; roles, sets of roles,

users, and sets of users; allowable permissions defined on screens, components, and screen

interactions which includes classification levels (MAC); permission assignments of users

and roles on screens, components, and interactions; mobile application API that is

partitioned into secure/unsecure services (RBAC) and labeled/unlabeled services (MAC);

and service permission assignment to roles and users. This allows the ability to model role-

based, mandatory, and discretionary access controls on the mobile application and its API.

C. Dynamic Combination of Access Control Models and Configuration Options:

The contribution is the ability to combine different aspects of access control models

(RBAC, MAC, and DAC), of the mobile application (UI, API, and Data Source), and of

the configuration options (Direct UI Modifications, Intercepting API Calls, and Server

Interceptor API) into custom access control solutions for a mobile application. All of the

allowable combinations are defined as part of this contribution as shown in the third and

fourth components of Figure 1.4.

D. Access Control Security Enforcement Code Generation and Interceptors: The

contribution is the generation of processes for the Direct UI Modifications option and

algorithms for the different configuration options for the framework that support the

interceptors for the Intercepting API Calls, and Server Interceptor API options. Processes

 23

for the Direct UI Modifications are often human assisted and involve the need to actually

modify limited portions of the mobile application code, API, and/or server database.

Algorithms for the Intercepting API Calls, and Server Interceptor API options are defined

for those cases where actual code is generated. This is part of the fifth and sixth components

in Figure 1.4.

Throughout the remainder of the dissertation, these expected contributions are high-lighted

when relevant.

1.6. Research Progress to Date
In support of the work presented in this dissertation, we summarize our 10

publications (8 published and 2 submitted) and their role in support of the material in this

dissertation: lead author directly related to the work are 2 published refereed book chapters,

2 published referred full conference articles, and 1 submitted journal article; coauthor of 1

published refereed book chapter and 1 submitted refereed full conference article; and co-

author of three other papers as an REU student. First in this area initially focused on

authentication requirements for mobile apps (Rivera Sánchez & Demurjian, 2016) that was

expanded to define an approach for role-based access control (RBAC) for mobile

computing (Rivera Sánchez et al., 2016) that delineates security permissions on the screens

and components of a mobile app that customizes both the appearance and functionality

based on role which is the foundation of the Direct UI Modifications option.

● Rivera Sánchez, Y. K., & Demurjian, S. A. (2016). Chapter 6: User Authentication

Requirements for Mobile Computing. Handbook of Research on Innovations in

Access Control and Management. IGI Global.

 24

● Rivera Sánchez, Y. K., & Demurjian, S. A., Conover, J., Agresta, T., Shao, X., &

Diamond, M. (2016). Chapter 6: An Approach for Role-Based Access Control in

Mobile Applications. Handbook of Mobile Application Development, Usability,

and Security. S. Mukherja (ed.). IGI Global.

Using this as a basis, we expanded RBAC in (Rivera Sánchez, Demurjian, & Gnirke, 2017)

to control the services that are accessible by role for each mobile application with

intercepting API calls to check permissions before a service can be invoked; this is the

foundation of the Intercepting API Calls option. This was generalized in (Rivera Sánchez,

Demurjian, and Baihan, 2017a) to apply to services in a cloud computing setting using the

FHIR standard and RESTful APIs that facilitate ease of mobile health application

development. The combination of RBAC and MAC using the interceptor concepts (Rivera

Sánchez, Demurjian, & Baihan, 2017b) and the FHIR standard and its infrastructure allows

a mHealth app that is FHIR-compliant to exchange healthcare data that is in the cloud with

multiple EHRs/HIT systems. This is achieved by defining on a role-by-role basis and/or on

a sensitivity level basis (i.e., classification-clearance), the subset of the FHIR RESTful API

services that are available to users of a mHealth app, to intercept calls that are not allowed,

thereby prohibiting access to the sensitive healthcare data associated with those calls; these

last two are the foundation of the server interceptor API option.

● Rivera Sánchez, Y. K., Demurjian, S.A., & Gnirke, L. (2017). An Intercepting

API-based Access Control Approach for Mobile Applications. In Proceedings of

The 13th International Conference on Web Information Systems and Technologies

(WEBIST 2017).

 25

● Rivera Sánchez, Y. K., Demurjian, S.A., & Baihan, M. (2017). Achieving RBAC

on RESTful APIs for Mobile Apps using FHIR. In Proceedings of The 5th IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering

(IEEE Mobile Cloud 2017).

● Rivera Sánchez, Y.K., Demurjian, S. A., & Baihan, M. S. (2017). A Service-Based

RBAC & MAC Approach Incorporated into the Fast Healthcare Interoperable

Resources (FHIR) standard. Submitted to special issue on 2017 IEEE Mobile Cloud

Conference submissions, Elsevier journal of Digital Communications and

Networks, https://www.journals.elsevier.com/digital-communications-and-

networks/call-for-papers/special-issue-on-the-security-privacy-and-digital-

forensics.

The final two efforts (one published and one submitted) involve collaboration on the shared

HAPI FHIR Infrastructure to support RBAC and MAC interceptors.

● Baihan, M., Rivera Sánchez, Y. K., Shao, X., Gilman, C., Demurjian, S. A., &

Agresta, T. (2017). A Blueprint for Designing and Developing an mHealth

Application for Diverse Stakeholders Utilizing Fast Healthcare Interoperability

Resources. IGI Global.

● Baihan, M. S., Demurjian, S. A., Rivera Sánchez, Y. K., Toris, A., Franzis, A.,

Onofrio, A., Cheng, B., & Agresta, T. (2017). Role-Based Access Control for Cloud

Computing Realized within HAPI FHIR. Submitted to 16th International

Conference of WWWINTERNET 2017, 18 – 20 October, Vilamoura Algarve,

Portugal.

 26

Other publications that I have participated in are:

● De La Rosa Algarin, A., Ziminski, T., Demurjian, S., & Rivera Sánchez, Y. K.

(2014). Generating XACML Enforcement Policies for Role-Based Access Control

of XML Documents. In Web Information Systems and Technologies, Revised

Selected Papers, Lecture Notes in Business Information Processing, Springer-

Verlag, 189, 21-36.

● De La Rosa Algarin, A., Demurjian, S., Ziminski, T., Rivera Sánchez, Y. K., &

Kuykendall, R. (2013). Chapter 13: Securing XML with Role-Based Access

Control: Case Study in Health Care. In Architectures and Protocols for Secure

Information Technology. A. Ruiz-Martínez, F. Pereñíguez-García and R. Marín-

López (eds.). IGI Global. 334-365.

● De La Rosa Algarin, A., Ziminski, T., Demurjian, S., Kuykendall, R., & Rivera

Sánchez, Y. K. (2013). Defining and Enforcing XACML Role-Based Security

Policies within an XML Security Framework. Proceedings of the 9th Intl. Conf. on

Web Information Systems and Technologies (WEBIST2013).

1.7. Dissertation Outline
The remainder of the dissertation has six chapters. In Chapter 2, we review

background on: the logical architecture of a mobile application, Role-Based Access

Control (RBAC) (Ferraiolo & Kuhn, 1992), Mandatory Access Control (MAC) (Bell & La

Padula, 1976), Discretionary Access Control (DAC) (Department of Defense, 1985), the

application programming interface (API) concept, and the Fast Healthcare Interoperable

Resources (FHIR) specification (FHIR DSTU2, 2015) and the HAPI FHIR reference

implementation (HAPI FHIR, 2014), Chapter 2 also introduces the Connecticut

 27

Concussion Tracker (CT2) to be utilized in examples throughout the dissertation. In

Chapter 3, we primarily address Contribution B: Unified Mobile Computing and Security

Model with Access Control by defining a formal model to represent: the general structure

of a mobile application; RBAC concepts including roles, sets of roles, users, and sets of

users; MAC concepts including classifications and clearances; permissions related to

RBAC and MAC; permission assignment to the user interface and to control the services

of the mobile application API; and, delegation for mobile applications. Chapter 3 also

addresses Contribution C: Dynamic Combination of Access Control Models and

Configuration Options to combine RBAC, MAC, and DAC, the mobile app’s UI, API, and

Data Source with the Direct UI Modifications, Intercepting API Calls, and Server

Interceptor API options (see Section 1.3 and Figure 1.4). Chapters 4, 5, and 6 detail the

realization of Contribution D: Access Control Security Enforcement Code Generation via

both human-assisted processes that modify limited portions of the mobile application code

and algorithms that automatically generate security enforcement code. Chapter 4 focuses

on the Direct UI Modifications option which supports the inclusion of RBAC to control

the screens, components, and interactions among screens on a role-by-role basis. Chapter

5 focuses on the Intercepting API Calls option on the interactions between the UI and the

mobile applications’ API services to control by both RBAC and/or MAC permissions

which services are allowed to be invoked for on a user-by-user basis through the generation

of an intercepting API that mirrors the original mobile application’s API. Chapter 6 focuses

on the Server Interceptor API option on the interactions between the mobile application’s

API services and their invocations to server-side APIs of data sources, with a server

interceptor API defined using the HAPI FHIR reference implementation. Finally, Chapter

 28

7 summarizes the main points discussed throughout the dissertation and what was achieved

with the proposed approach.

 29

Chapter 2
Background

This chapter provides background information on the main concepts and topics that

support the discussion and explanation in the remainder of the dissertation in seven

sections. We have chosen the healthcare domain to support the explanation of our research

since healthcare data is highly sensitive, requires fine-grained security, and involves

multiple stakeholders. Section 2.1 presents the logical architecture of a mobile application

through a description of its different layers and their interaction. Section 2.2, 2.3, and 2.4

review, respectively, the three access control models that are the basis for our work: Role-

Based Access Control (RBAC) (Ferraiolo & Kuhn, 1992), Mandatory Access Control

(MAC) (Bell & La Padula, 1976), and Discretionary Access Control (DAC) (Department

of Defense, 1985). Section 2.5 reviews the application programming interface (API)

concept that is instrumental in our approach that necessitates permissions based on which

user is authorized to which API service call. Section 2.6 introduces and explains the Fast

Healthcare Interoperable Resources (FHIR) specification (FHIR DSTU2, 2015) and the

HAPI FHIR reference implementation (HAPI FHIR, 2014), both of which are utilized to

support the proof-of-concept discussion in Chapter 6. Section 2.7 introduces and reviews

the Connecticut Concussion Tracker (CT2) mobile application, a collaboration between the

Departments of Physiology and Neurobiology, and Computer Science & Engineering at

the University of Connecticut and Schools of Nursing and Medicine in support of a new

law passed to track concussions of children from kindergarten through high school in

public schools (CT Law HB6722) (Connecticut General Assembly, 2015).

 30

2.1. Logical Architecture of a Mobile Application
In this section, the logical architecture of a client mobile application is explored, as

shown in Figure 2.1 (Microsoft Corporation, 2008). The architecture consists of four main

layers: the User Layer which symbolizes the users of the mobile application; the

Presentation Layer which consists of the UI components of the mobile application; the

Business Layer which contains the logic of the mobile application (e.g., libraries, APIs,

source code); and, the Data Layer which contains all of the data the mobile application

manages (e.g., retrieves, inserts). For the purposes of our work in this dissertation, the

logical architecture in Figure 2.1 can be organized as a set of higher-level mobile

application components, namely: the user interface (UI), the application programming

interface (API), and the data source (database, cloud, server, etc.). This was shown in the

first component in Figure 1.4 of Chapter 1. The intent of the work presented in this

dissertation is to explore the inclusion of security within and between the layers of Figure

2.1 as realized in the mobile application as given in Figure 1.3 of Chapter 1.

 31

Individual User

ServicesData	
Sources

CR
O
SS
-C
U
TT
IN
G

UI	Components

Presentation	Logic	Components

PR
ES
EN

TA
TI
O
N

LA
YE
R

Application	Facade

Business
Workflow

Business
Components

Business
EntitiesB

U
SI
N
ES
S

LA
YE
R

Se
cu
ri
ty

Co
nf
ig
ur
at
io
n

Co
m
m
un

ic
at
io
n	
/	
Co

nn
ec
ti
vi
ty

Data	Access	
Components

Data	Helpers/	
Utilities

Service	
AgentsD

A
TA

LA
YE
R

Unreliable	Networks

Mobile	Client	Application

Mobile	Support	Infrastructure

U
SE
R

LA
YE
R

Figure 2.1. Logical Architecture of a Client Mobile Application.

2.2. Role-Based Access Control
Role-Based Access Control (RBAC) was proposed by David Ferraiolo and Richard

Kuhn (Ferraiolo & Kuhn, 1992) and transitioned to the National Institute for Standards and

Technology (NIST) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001) that was

adopted in 2004. The main concepts of the NIST RBAC standard (Sandhu, Ferraiolo, &

Kuhn, 2000) are conceptualized in Figure 2.2 (SlideShare, 2012) with four reference

models. RBAC0 in the middle portion of Figure 2.2 is comprised of: users that perform a

specific function within an organization, roles that are assigned to users based on their

responsibilities, and permissions (PRMS) that define which operations (OPS)/objects

(OBS) within a system/application a role can have access to. Users can have one or more

roles, and roles can contain one or more permissions to objects. RBAC1, shown in the upper

 32

middle portion of Figure 2.2, supports the ability of roles to be organized in a hierarchy.

RBAC2, shown in the upper left and on the lower right of Figure 2.2, provides the definition

of constraints, such as static (SSD) and dynamic (DSD) separation of duty. Lastly, RBAC3,

shown at the bottom part of Figure 2.2, captures the concept of sessions that represent the

lifetime of a particular user, role, and permissions in a dynamic runtime application.

Figure 2.2. General structure of the RBAC model (Slideshare, 2012).

The NIST RBAC standard (Sandhu, Ferraiolo, & Kuhn, 2000) controls the access

to system resources based on the roles available in an enterprise that a user can assume.

Each role contains different capabilities that allow a user with a particular role to complete

his/her tasks within the enterprise and nothing more (Rouse, 2006). Three key concepts are

utilized to complete this process (NIST Computer Security Resource Center, 2015): role

assignment allocates a role to a user based on what he/she is allowed to see, with each user

of the system having at least one role and being able to connect with one role per opened

session; role authorization to make sure the user was assigned the role necessary for

him/her to complete his/her tasks and nothing more; and transaction authorization where a

user can carry out a task if his/her role has permission to do so. Note that in RBAC,

permissions as defined are operations on objects, and for the purposes of this dissertation,

 33

this must be evolved so that permissions can be defined on services that are invoked (called

on objects).

2.3. Mandatory Access Control
Different from RBAC, in the Mandatory Access Control (MAC) model (Bell & La

Padula, 1976; Biba, 1977), a security administrator assigns sensitivity levels (Top Secret

(TS), Secret (S), Confidential (C), and Unclassified (U)) to objects (classifications) and

users (clearances) to control who can see what. As with RBAC, the permissions are defined

on objects and the allowable access modes/operations (e.g., read, append, write, or read-

write). These levels are ordered hierarchically from most to least secure: TS > S > C > U.

Basically, each of the users in a system has a clearance; therefore, if the user has a clearance

of secret this means that he/she is allowed to access the files/programs that are either secret,

confidential, or unclassified. Notice that he/she can’t access the files/programs that are

classified as top secret since he/she has a lower clearance status. An example of this model

can be seen in Figure 2.3. In the example we have two users: user A that has a clearance of

secret and user B has a clearance of top secret. In this case, both users are trying to access

a data server that is classified as top secret, therefore the attempt to access the data for user

A is not successful while user B can retrieve the data successfully.

Figure 2.3. A MAC Example.

 34

The allowable interaction of a user with a clearance to an object with a classification

are governed by a set of security properties presented in the Bell-LaPadula model (Bell &

LaPadula, 1976) and in the Biba model (Biba, 1977): simple security, simple integrity,

liberal star, and strict star. The security properties are evaluated based on the access

mode/operations (read, append, write, read-write). Simple security (SS) allows a user to

read elements (read or read-write access mode) with a sensitivity level equal to or lower

than their clearance level, but not those elements with a higher sensitivity level; Simple

integrity (SI) allows a user to write elements (append, write, read-write access mode) of

equal or lower sensitivity level when compared to their clearance level, but not to those

elements with a higher sensitivity; Liberal star (LS) is the permission to write to equal or

greater levels; and Strict Star Write (SSW) and Strict Star Read (SSR), or write (read) equal,

is the permission to write (read) only to equal levels. Note also as similar to RBAC,

permissions for MAC need to be upgraded from objects and operations to services and

invocations.

2.4. Discretionary Access Control
The Discretionary Access Control (DAC) model (Department of Defense, 1985;

Sandhu & Samarati, 1994) establishes security policies (e.g., read, write, execute

permissions) based on a combination of the objects and on the user’s identity and

authorization and can be delegated. In other words, a user has the ability to assign

permissions on the data that belongs to him/her. To illustrate, the example in Figure 2.4

has the case where User A owns the three files shown and gives read/write permissions to

User B and User C for each of the files. In a healthcare setting, a physician often sees

 35

patients in his/her office weekdays (9am-5pm) with an on-call physician handling calls

from patients at nights and on weekends. In this case, DAC can allow the physician to

delegate his/her responsibilities (some or all) to the on-call physician who would not

normally have access to those patients for a fixed period of time.

Figure 2.4. A DAC Example.

There exist several alternatives on the way that the owner of the information can

grant access to other users (Osborn, Sandhu, & Munawer, 2000). Two of the alternatives

that apply to our approach in this dissertation are:

• Strict DAC: The owner of an object is the only one who has authorization to grant

access of the object to another user and this ownership cannot be transferred.

• Liberal DAC: The owner of an object can delegate his/her access to the object with

other users. There are three alternatives of liberal DAC:

- One Level Grant: The owner of an object can delegate his/her access to the

object to another user, which does not have access to further delegate the

permission.

 36

- Two Level Grant: The owner of an object can delegate his/her access to the

object to another user, which has access to further delegate the permission

to another user but not further than this.

- Multilevel Grant: The owner of an object can delegate his/her access to the

object to another user, this user can delegate the permission to another user,

and so on indefinitely.

Again, DAC concepts need to be upgraded in support of this dissertation for the ability to

delegate services that can be invoked.

2.5. Application Programming Interface
In order to perform data transactions between a server/database and a mobile

application, many developers utilize the Application Programming Interface (API)

concept. This consists of different tools or libraries utilized to interface data to an

application. Figure 2.5 illustrates a general idea of the way that an API connects a data

source to an application. Basically, the client sends a request through the means of a URL,

the API receives the URL and interprets it, and then sends this to the data source. The data

source then executes the request and sends back a response to the API. The API encodes

the response in a human-readable format (e.g., JSON, XML) and sends the response in this

format to the client. An example of a JSON response is:

[{"state_id":"1","state_name":"Connecticut","state_code":"CT"}]

Some of the advantages of APIs is that one API can be utilized in several applications as

most of them are modular (e.g., Facebook Graph API) and, they demonstrate their

usefulness in applications that contain dynamic data (data that changes in a frequent

 37

manner). This concept originated with traditional desktop devices and is now being heavily

utilized in mobile applications.

Figure 2.5. General Idea of how APIs work.

One of the most widely utilized architectures to build APIs is REST

(Representational State Transfer). A web service that utilizes the REST architecture to

build the APIs is referred to as RESTful APIs. The REST architecture usually runs over

HTTP and is commonly utilized between the client and the server of a mobile application

to manage the requests and responses between both (Rouse, 2014). There are several

architectural constraints that characterize REST (WhatIsREST.com, 2012):

• Client-Server: A web service needs to have a separation of concerns, which

consists of having an unambiguous separation between the consumers of a

system (who can request services) and the services the system provides (that

returns consumers a response to their request).

• Stateless: Each request a user sends to a service must contain all of the

necessary information for the service to return a response.

• Cache: The client, service, or middleware are able to cache the response for

reuse in later requests.

• Interface/Uniform Contract: Services and consumers of these services must

share a technical interface (e.g., HTTP).

 38

• Layered System: The web service must leverage a layered system. This

means that the interactions between a consumer and a service must remain

consistent regardless of the layer a consumer is communicating with.

Nevertheless, even though the constraints stated above are said to be required in order for

a web service to be considered as using a REST architecture, a great amount of services

lack at least one of these constrains, therefore, there are not many that are considered to be

fully utilizing the REST architecture (Bleigh, 2010).

2.6. Fast Healthcare Interoperability Resources (FHIR)
The Fast Healthcare Interoperable Resources (FHIR) specification (FHIR DSTU2,

2015) is a standards framework created by the health language seven (HL7) organization

(HL7, 2011) with the intention of providing easier and quicker implementation of

interoperability in healthcare systems to facilitate access of mHealth apps to healthcare

data in the cloud as stored in multiple EHRs/HIT systems. One of the main goals of FHIR

is to represent the entities and procedures in healthcare as resources (FHIR DSTU2, 2015).

There are currently ninety-three resources that can be utilized to map data from a healthcare

system and the implementers of these resources claim that more resources are going to be

added in a future (FHIR Resources, 2015). Sample resources include: for patients, Patient,

FamilyMemberHistory, Condition, Observation, Diagnostic Report, Medication,

Immunization, AllergyIntolerance, AdverseEvent, etc.; and, for insurance, Coverage,

EligibilityRequest, Claim, PaymentNotice, etc. The available resources can be accessed

through the means of a RESTful API, which allows to connect healthcare interfaces with

data sources that exist in the cloud. Different from SOAP (Simple Object Access Protocol)

(W3C, 2007), which has been the dominant approach to manage web services interfaces

 39

over the past years and it is utilized in HL7 v2, RESTful APIs are easier to understand and

to implement as they rely on HTTP and on Create, Read, Update, and Delete (CRUD)

operations to develop services.

One popular open-source library that implements FHIR specification is the HAPI

FHIR reference implementation (HAPI FHIR, 2014). HAPI FHIR was developed in the

Java programming language and offers the features of FHIR in addition to other features

such as the ability to intercept the server (by using Java servlets (Java, 2013)) that processes

the user’s requests. HAPI FHIR offers several server interceptor functions (depicted in

Figure 2.6) (HAPI FHIR Server Interceptors, 2016) that allow developers to perform

actions on the user’s request before it is executed and after its execution (before the

response is delivered to the user). The main interceptors the library provides are: the

incomingRequestPreProcessed interceptor which can be called before the request is

processed; the incomingRequestPostProcessed interceptor which can be called once the

request is classified (URL and request headers are examined in order to know this); the

incomingRequestPreHandled interceptor which can be called once the request has been

handled; and, the outgoingResponse interceptor, which can be called after the operation is

handled but before the response is returned. This intercepting feature is critical to support

our interception of RESTful API calls in order to check access control security permissions

to prevent unauthorized access to services that have not been assigned to a given

role/clearance/delegate for a mHealth app.

 40

Figure 2.6. HAPI FHIR Server Interceptors

 (HAPI FHIR Server Interceptors, 2016).

2.7. Connecticut Concussion Tracker (CT2) Prototype
To evaluate and demonstrate the proposed approach, we utilize the Connecticut

Concussion Tracker (CT2) mobile application throughout the dissertation. CT2 is being

developed for both Android (Figure 2.7) and iOS (Figure 2.8) platforms and is a

collaboration between the Departments of Physiology and Neurobiology, and Computer

Science & Engineering at the University of Connecticut and Schools of Nursing and

Medicine in support of a new law passed in the state of Connecticut to track concussions

of kids between ages 7 to age 19 in public schools (CT Law HB6722) (Connecticut General

Assembly, 2015). As shown in Figure 2.7, the Android version of the CT2 mobile

application consists of a UI of 7 tabs after the initial screen: ‘Home’, ‘List’, ‘Student’,

 41

Cause’, ‘Symptoms’, ‘Follow-up’, and ‘Return’. As shown in Figure 2.8, the iOS version

of the CT2 mobile application consists of a UI of 10 screens in which 5 of those are linked

with navigation actions (left swipe and right swipe to move through the aforementioned

five screens): ‘Student’, ‘Cause’, ‘Symptoms’, ‘Follow-up’, and ‘Return’ respectively, in

the bottom row of the figure. Briefly, we explain each of the 10 screens of the iOS version

in Figure 2.8; note that common screens of the Android version have the same

functionality. The ‘Login’ screen (second screenshot, top row) allows users to log in to the

application with a valid username/password combination. The ‘Registration’ screen (third

screenshot, top row) allows future users to create an account to be able to use the

application. The ‘User Information’ screen (fifth screenshot, top row), which is accessible

by pressing the ‘Home’ button found at the top of the List screen, allows the user to manage

his/her general information. The ‘List’ screen (fourth screen, top row) allows users to add

a new concussion; to search a student by name; and, contains the list of students the user

has permission to view and, for each student gives him/her the option to add a concussion,

edit the existing concussion, share the concussion, or close the concussion case (if he/she

has permission to access these components). The ‘Student’ screen, first screenshot in the

bottom row, allows the user to input the student’s general information (e.g., name,

birthdate, school). The ‘Cause’ screen, the second screenshot of the bottom row, allows the

user to insert the date that the incident occurred and, allows him/her via drop down options

to specify where the injury was caused, with what it was caused, etc. After the user saves

the data he/she entered in the ‘Cause’ screen, he/she can proceed to the ‘Symptoms’ screen

(third screenshot, bottom row), where the symptoms the student had within 48 hours and

other pertinent data are entered. To finish, the ‘Follow-up’ and ‘Return’ (fourth and fifth

 42

screenshot, respectively, bottom row) screens allow users to record the status of the student

over time (Follow-up) and when the student can return to various activities at school

(Return).

To illustrate the processing within CT2, Figure 2.9 depicts the general structure of

the mobile application and components. The CT2 mobile app allows users to manage

students’ concussion data from when the student got the concussion up to its resolution

(when the case is closed). The two boxes depicted on the top of Figure 2.9 represent the

databases utilized to store the data the mobile app manages. The CT2 mobile app DB

contains user account information, school data (school’s name and location), and other

non-sensitive data such as drop-downs, select lists, etc., in the mobile app (e.g., location of

incident, state, assessment tool used). Different from the CT2 DB, the OpenEMR DB stores

highly-sensitive data that is managed through the means of the CT2 mobile app. This

includes: students’ demographic data such as name and date of birth; concussion data such

as date of incident, contact mechanism, and symptoms; follow-up data such as lingering

symptoms, medical diagnosis, and post concussive syndrome diagnosis; and, return data

such as schedule modification, details of return, and date of returning to full participation.

In addition to the data sources, the CT2 mobile app utilizes an API in order to

retrieve/insert/update data as depicted in the CT2 Mobile Application API box in Figure

2.9. A subset of the services available in the CT2 API allow users to: view/insert/edit

students’ demographic data; manage their account information (name, password); search

for an specific student; and manage concussion, follow-up, and return data. While the data

that is retrieved/inserted from/to the CT2 DB is managed solely by the CT2 API, the data

that is retrieved/inserted from/to the OpenEMR DB requires an API (depicted in the

 43

OpenEMR API box in Figure 2.9) that is positioned between the CT2 API and the

OpenEMR DB, which contains the necessary services to handle the retrieval/insertion of

demographic data, concussion data, follow-up data, and return data. Finally, the bottom

box of Figure 2.9 indicates that there are two versions of the CT2 mobile app (as shown in

Figures 2.7 and 2.8): one for mobile devices that support Android OS and the other one for

mobile devices that support iOS.

Figure 2.7. CT2 Mobile Application - Android Version.

 44

Figure 2.8. CT2 Mobile Application - iOS Version.

Figure 2.9. CT2 Structure.

 45

Chapter 3
Unified Model of Access Control for Mobile

Applications

This chapter provides a detailed discussion of a unified model of access control for mobile

applications in 7 sections. Specifically, we define a Unified Mobile Computing and

Security Model with Access Control, contribution B in our work (see Section 1.5, Chapter

1), that is meant to capture the generalized structure of a mobile application, the different

access control models (role-based access control - RBAC, mandatory access control -

MAC, and discretionary access control - DAC), and the permissions that can be assigned

at the user interface, API, and data source of the mobile application; the presentation is

logically partitioned into groups. Section 3.1 introduces the first group of definitions for

the generalized structure of a mobile application which consists of a user interface of

screens, components (text fields, drop down, buttons, etc.), and interactions among screens.

Section 3.2 reviews the second group of definitions for RBAC and MAC concepts

including: roles, sets of roles, users, sets of users’ clearances and classification for MAC.

Section 3.3 presents the third group of definitions for RBAC permissions on the user

interface, namely: permission assignments of users and roles on screens, components, and

interactions (RBAC). Section 3.4 presents the fourth group of definitions for RBAC and

MAC permissions on the mobile application API that is partitioned into secure/unsecure

services (RBAC) and labeled/unlabeled services (MAC); and discusses service permission

assignment to roles and users. Section 3.5 explores the fifth and final group of definitions

for DAC that includes the delegation of permissions from one user/group to another

user/group for RBAC permissions on the UI of a mobile application and RBAC and/or

 46

MAC permissions on the services of the mobile application API. Collectively, the model

presented in Sections 3.1 to 3.5, allows for the ability to model role-based, mandatory, and

discretionary access controls on the mobile application and its API and supports

contribution B: Unified Mobile Computing and Security Model with Access Control from

Section 1.5 of Chapter 1. Section 3.6 discusses the ability to take the model concepts as

given in Sections 3.1 to 3.5 and pick-and-choose in order to define and design a unique set

of security capabilities for each mobile application; this supports contribution C: Dynamic

Combination of Access Control Models and Configuration Options. Section 3.7 contains

an entity relationship diagram to store information programmatically from the Unified

Security model in Sections 3.1 to 3.5. Finally, Section 3.8 presents related work on access

control in mobile computing.

3.1. Generalized Structure of Mobile Application

Table 3.1 contains assertions on mobile computing. The first assertion in Table 3.1

is that the mobile computing field is composed of mobile communication, mobile

hardware, and mobile software; corresponding assertions are 2, 3, and 4; the focus of our

work is on mobile software assuming that appropriate devices (hardware) exist and that

communication between these and the servers and/or databases and/or repositories is

secure. This is the fourth assertion in Table 3.1.

 47

Mobile computing is composed by three main fields: mobile communication, mobile hardware,
and mobile software.
Mobile communication consists of establishing an infrastructure to assure a seamless and reliable
communication (e.g., the use of protocols, services, etc. to assist the communication).
Mobile hardware comprises mobile devices or device components that involve mobility. These
could be laptops, smartphones, and tablets.
Mobile software represents the programs that run on a mobile device and handles the
characteristics and requirements of mobile applications.

Table 3.1. Mobile Computing Assertions.

Given the assertions in Table 3.1, the first group of Definitions 1 to 6 describe the

main content and structure of a mobile application:

Defn. 1: A service αj = <αID, αNAME, αCLS, αSIG> has a unique ID, a service name, a

classification level (MAC from Section 2.3 of Chapter 2), and a signature defined

as αSIG = <αTYPE, αURI, αPARAMS, αRETURN> with αTYPE ∈ {Create, Read, Update,

Delete, GET, POST, PUT, READ}, a unified resource identifier, a set of

parameters, and a return value.

Example: The CT2 mobile application has a detailed REST API that is utilized to

store concussion information on students to/from a MySQL database. Sample

services include:

• Get the list of students of a specific school:

o αID = 26

o αNAME = /students/school/:schoolId

o αCLS = C

o αSIG:

§ αTYPE = GET

§ αURI = bmi10.engr.uconn.edu:10090/

§ αPARAMS (Service params) = school id

 48

§ αRETURN = Array

• Update a student’s general information (first name, last name, school,

student number, etc.):

o αID = 34

o αNAME = /students/update/:studentId

o αCLS = TS

o αSIG:

§ αTYPE = POST

§ αURI = bmi10.engr.uconn.edu:10090/

§ αPARAMS (Service params) = student id

§ αPARAMS (POST params) = first name, middle name, last name,

suffix, email, student number, school id, date of birth, gender

§ αRETURN = Bool

Defn. 2: A mobile application, MA =<UIMA, βMA >, consists of:

• a user interface (UI) UIMA = <UIName, UIS> with a name UIName and a set of n

screens, UIS = {S1, S2, …Sn}, where each screen Si = < sID, sName > is defined as

a two-pair < sID, sName > with unique sID identifier and name sName, that are

organized as either tabs (users can click among tabs) or a sequence of inter-

connected screens which are linked with next and previous buttons, and

• an API βMA = {α1, α2, …, αk} where each αj is as given in Defn. 1 and services

are either web or cloud APIs.

 Examples: The pharmacy application presented in Section 1.1 of Chapter 1 had

five screens while the CT2 mobile application from Section 2.7 of Chapter 2 is

 49

composed of eight screens with seven of them organized by tabs in the Android

version (see Figure 2.7 again). Meanwhile, the iOS version of the CT2 mobile

application (see Figure 2.8 again) is composed of ten screens and a subset of these

are linked through navigation actions (left swipe, right swipe).

Defn. 3: Each screen, Si, has a set of k screen components, SC, denoted, 𝑆𝐶#$, that allow a

user to select, enter, and manipulate data in a MA.

 Example: The ‘Cause’ screen which is depicted in the second screen shown at the

bottom of Figure 2.8 contains ten main screen components: three buttons (List,

Save, Cancel), one date picker (Date of Incident), five radio buttons (Location of

Incident, If Sport, Contact Mechanism, Impact Location on Head, Head Gear

Usage), and one text field (Others/Details).

Defn. 4: A component, Ci = < cID, cName > is defined as a two-pair < cID, cName > with

unique cID identifier and name cName is a portion of a screen that can be displayed

and/or entered by users and includes but is not limited to: a text field (TF) to enter

information; a button (BN) to effect the state of the application (save, cancel,

next, previous, etc.); a drop down (DD) where one value is chosen; a set of

checkboxes (CB) where multiple values can be chosen; a set of radio buttons (RB)

to select only one of a number of options; a spinner (SP) to select values; and, a

date picker (DP) to enter calendar dates; note that this is not an exhaustive

component list.

 Example: The ‘Student’ screen of the iOS version for the CT2 mobile application

in Figure 2.7 has: three buttons (List, Save, Cancel), three text fields (First Name,

 50

MI, Last Name), five drop downs (Gender, State, etc.), and one date picker (Date

of Birth).

Defn. 5: Each MA has a screen set, SS, which is classified as either:

● A collection of tabs where each tab is a screen, where there is an order among

the tabs in the way that they are displayed left to right within the MA.

● A collection of screens where each screen has an appropriate list of

buttons/actions to navigate among screens that is augmented with the screen

interactions, SI, necessary to switch among the various screens.

Example: The Android version of the CT2 mobile application, depicted in Figure

2.7, is composed of seven tabs while the iOS version of the CT2 mobile

application, depicted in Figure 2.8, is composed of six screens linked by

navigation actions (left swipe, right swipe).

3.2. RBAC and MAC Model Definitions

The second group of definitions for the unified model of access control for mobile

applications involve the way that RBAC and MAC can be defined for the mobile

application. In support of these definitions, the relevant assertions are in Table 3.2. The

first assertion focuses on the three parts of an application upon which RBAC, MAC, and

optional DAC can be defined, specifically: the user interface, the API, and the data sources.

The second assertion defines the locations that permissions on RBAC and/or MAC can be

defined. The third and fourth assertions primarily relate to RBAC. The fifth assertion

introduces a clearance level for a user in support of MAC. The sixth assertion supports

constraint checking in MAC (Bell & La Padula, 1976), via a set of properties that define

 51

the conditions under which a user with a CLR can read and/or write an object with a CLS:

from Section 2.3 of Chapter 2, recall Simple Security (SS), Simple Integrity (SI), Liberal*

(L*), and Strict* (S*) that has both Read and Write capabilities.

A mobile application contains a user interface, an API, and data sources. Each of these can be
secured using RBAC and/or MAC with optional delegation (DAC).
The user interface, UI, has RBAC and/or MAC permissions defined on screens, screen
components, and their interactions, where relevant.
Each role for a mobile application defines permissions as related to UI, API, and data sources
in support of RBAC.
Each mobile application has a set of roles and a set of users, and the assignment of a role to a
user in support of RBAC.
Each user has a clearance and resources that need to be secured has a classification chosen from
a sensitivity level Unclassified (U), Confidential (C), Secret (S), Top Secret (TS), where U < C
< S < TS, meaning that users that have a clearance of TS can view all of the resources (U, C,
S, TS) while users that have a clearance of U are limited to only viewing the resources that have
a classification of U.
Each user is assigned a read and write property that constrains the conditions under which a
user is allowed to view objects.

Table 3.2. RBAC and MAC Assertions.

The usage of MAC to control access to objects has to be upgraded in support of this

dissertation to apply to the services of a mobile application. The aforementioned MAC

properties are defined to determine under which conditions a user with a CLR level can

read or write a given data item with a CLS level. These concepts need to be adapted to the

different types of services for read (read, GET) and write (Create, Update, Delete, POST,

DELETE, PUT). A user is given both a read and a write property for MAC; suppose we

have SS for read and SI for write. For read services, the SS property (or read-down, no

read-up) is interpreted as the permission to invoke a read service that has an equal or lower

CLS level. That is, a user is allowed to invoke a read service with a CLS level equal to or

lower than their CLR level, but not those read services with a higher CLS level. For write

services, the SI property (or write-down, no write-up) is interpreted as the permission to

invoke a write service that has an equal or lower CLS level. That is, a user can invoke a

 52

create, update, or delete service of equal or lower CLS level when compared to their CLR

level, but not to those create, update, or delete services with a higher CLS level. From a

definition and management perspective, an Information Security Officer (ISO) would set

the CLR level of users following the predefined sensitivity levels (e.g., TS, S, C, and U) to

establish the levels for both users and services. These levels are then augmented on a user-

by-user basis by assigning a read property (via SS or S* Read) to invoke a read service and

a write property (via SI, L*, or S* Write) to invoke a write service.

Given the assertions in Table 3.2 and the extension of MAC to be applied to

services, the second group of Definitions 6 to 12 support the concepts of roles, clearances,

and users with both RBAC and MAC characteristics for a mobile application:

Defn. 6: A role r is defined as a two-pair r = < rID , rName > with unique identifier rID

and name rName.

Example: The CT2 app has many roles, one of which would be for a parent: r =

<rID4 , Parent>.

Defn. 7: Let RMA = {r1, r2, … , rj} be defined as the set of j roles for a given application

MA where rj ∈ RMA and rj = <rIDj , rNamej >.

Example: The CT2 app has four roles: RCT
2 = {r1 = <rID1 , AT>, r2 = <rID2 , Coach>,

r3 = <rID3 , Nurse>, r4 = <rID4 , Parent>} where AT is short for athletic trainer.

Defn. 8: A user u is defined as a tuple < uID, uName, uCLR >, with unique uID identifier,

name uName and optional clearance uCLR ∈ {TS, S, C, U} that signifies that a

user is limited to information (UI) in the GUI by RBAC and services (API) that

satisfy the established MAC properties (e.g., simple integrity, simple security,

liberal *, strict *, etc.).

 53

 Example: The CT2 app has a user with top secret clearance <uID1, Karen, TS>.

Defn. 9: Let UMA = {u1, u2,…, uj} be defined as the set of j users for a given application

MA, where uj ∈ UMA and uj = < uIDj, uNamej, uCLRj >.

Example: The CT2 app has three users each with different clearances:

UCT
2 = { u1=<uID1, Karen, TS >, u2=< uID2, Carmen, C >, u3=< uID3, Joe, C >,

u4=< uID4, Peter, S> }.

Defn. 10: A user u that has a clearance uCLR (Defn. 8) assigned has also a read property

and a write property assigned to control access to a service α (Defn. 1) as

follows:

• Read Properties:

- Simple Security (SS-r): User u has read access on service α iff uCLR ≥ αCLS.

- Strict * (Read) (S*-r): User u has read access on service α iff uCLR = αCLS.

• Write Properties:

- Simple Integrity (SI-w): User u has write access on service α iff uCLR ≥

αCLS.

- Strict * (Write) (S*-w): User u has write access on service α iff uCLR =

αCLS.

- Liberal *: (L*-w) User u has write access on service α iff uCLR ≤ αCLS.

Given Defn. 10, we revise Defn. 8 as below:
Defn. 8 v2: A user u is defined as a tuple < uID, uName, uCLR, uMACRD, uMACWR >, where

uMACRD ∈ {SS, S*} and uMACWR ∈ {SI, S*, L*}.

 54

Updated Example: The CT2 app has four users each with different clearances

and read/write properties: UCT
2 = {u1=<uID1, Karen, TS, SS-r, L*-w >, u2=<

uID2, Carmen, C, S*-r, S*-w >, u3=< uID3, Joe, C, SS-r, S*-w>, u4=< uID4,

Peter, S, SS-r, S*-w >}, where: nurse Karen can read down and write up and

has the most privileges, the parent Carmen is limited to one level secret; and,

the coach Joe an AT Peter can both read down and write equal.

Defn. 11: User Role Assignment (URA): Each user uj ∈ UMA can be assigned a role rj ∈

RMA for a user role assignment ura = <uIDi, rIDj> that signifies that a user is

limited to playing that and the authorized permissions. Note that a user can be

assigned multiple roles but only play one role in any session with the mobile

application.

Example: Karen is a nurse at a Connecticut middle school that utilizes the CT2

mobile application, therefore, she is assigned the role of Nurse and she is able to

access all of the screens/components that are allowed for that role: ura = < uID1,

rID3>.

Defn. 12: User Role Assignment Set (URAS) is the set of all user role assignments that

contains an entry for every user/role combination.

 Example: Karen, Joe, Carmen, and Peter are associated with a Connecticut

middle school in different ways. Karen is the school’s nurse, Joe is the school’s

coach, Carmen is a parent of a student whom has had a concussion and attends

the school, and Peter is the school’s athletic trainer. In this case Karen is assigned

the role of Nurse, Joe is assigned the role of Coach, Carmen is assigned the role

of Parent, and Peter is assigned the role of Athletic Trainer. As mentioned

 55

before, each of these users is able to see different features of the mobile

application depending on the permissions of their assigned role:

URASMA = {<uID1, rID3>, < uID2, rID4>, < uID3, rID2>, < uID4, rID1>}

3.3. RBAC UI Permission Definitions

The third group of definitions for the unified model of access control for mobile

applications involve establish the way that RBAC can be defined against the user interface

elements of a mobile application. In support of these definitions, the relevant assertions are

in Table 3.3. The first assertion involves the fact that UI permissions can be defined in

different UI elements of mobile application. The second assertion states the way that

RBAC can be assigned to the UI elements of a mobile application.

The UI of a mobile application can have RBAC permissions with optional delegation defined on
the screens, their components, and their interactions.

Each screen, component, or interaction of a mobile application can be assigned a set of roles that
have permission to access the screen in support of RBAC.

Table 3.3. RBAC and MAC UI Permissions Assertions.

Definitions 13 to 16 formalize the concepts of permissions in a mobile application’s

user interface that involves RBAC control on screens, components, and screen interactions:

Defn. 13: A screen permission, sp = < sID , ps >, where sID ∈ SS is a screen identifier and

ps is a screen permission, is utilized to define whether a screen s in SS as given

in Defns. 2 and 5, that is part of a mobile application MA is allowable (ps = true)

or not (ps = false).

 Example: The role of Coach in the CT2 mobile application can add a student,

add the student’s concussion information, and view the list of students the user

 56

with the specified role has entered. Nevertheless, the Coach role is not able to

add symptoms, add follow up data and, is not able to add return data. Therefore,

by looking at these permissions, for the Android version (Figure 2.7 of Chapter

2) a user that has the role of Coach has access to the Home, List, Student, and

Cause tabs in the CT2 mobile application as shown in Figure 2.7 (the role has

access to the second, third, and fourth screens at the top row of the figure as well

as the first screen of the bottom row of the figure). The Coach role has no access

to the Symptoms, Follow up, or Return tabs, which are depicted in Figure 2.7 as

the second, third, and fourth screens in the bottom row of the figure. Note that

MAC could alternatively be utilized to control access to screens where: Home,

List, Student and Cause tabs would be confidential (C), Symptoms tab would be

secret (S), and Follow up/Return tabs would be top secret (TS). In this case, the

user Joe would have a clearance level of C, to limit to the Home, List, Student,

and Cause tabs; Peter would be S to also get the Symptoms tab; and Karen would

be TS to get all tabs.

Defn. 14: A component permission, cp = < cID , pc >, where cID ∈ 𝑆𝐶#$ is a component

identifier (Defn. 3), is utilized to define permissions pc on various components

of each screen S (Defn. 4).

a. on/off permissions for button (BN), radio button (RB), drop down (DD),

checkbox (CB), date picker (DP), spinner (SP), or text field (TF). The

permission values for each component are: pc = enabled or disabled.

b. data permissions for text fields (TF). The permission values for a text field

are: pc = view, edit, or edit once.

 57

Example: As we described in the example of Defn.13, the role of Coach in the

CT2 mobile application has access to the Home, List, Student, and Cause tabs

shown in Figure 2.7. Nevertheless, there are certain components in these screens

that a user with the aforementioned role does not have access to or, he/she has

limited access to such components. For instance, a user with the role of Coach

can add general information about a student as well as add the general

information of the student’s concussion but, he/she does not have permission to

edit this information once it is saved.

Defn. 15: A screen interaction permission set, SIP = < si1 ,…, sie >, defines all permitted

screen interactions, where each si = [sIDx , sIDy] is a pair of screens that means

that screen sIDx interacts with screen, sIDy.

 Example: After a user with the Coach role successfully logs in on the iOS version

of the CT2 mobile application, he/she has access to the fourth and fifth screens

of the top row of Figure 2.8 and, to the first and second screens at the bottom

row of Figure 2.8. In this case, SIP = < [sID3, sID4], [sID3, sID5], [sID3, sID6], [sID4,

sID3], [sID5, sID3], [sID5, sID6], [sID6, sID3], [sID6, sID5] >.

Defn. 16: A role, r ∈ RMA, is assigned a set of role permissions, rp = < γ, χ , λ > for: a

subset m ≤ n screens of SS in MA where γ = <sp1, … , spm> are the m screen

permissions (Defn. 13) assigned to the role r, χ = < cp1, … , cpj > are j component

permissions (Defn. 14) for all m screens, and λ = < si1, … , siq > are the screen

interactions (Defn. 15) for non-tabbed UIs. Note that if γ is null then χ and λ

must also be null. If γ is not null, then either χ and λ can be null meaning that the

MA has only screen permissions. Other combinations are possible.

 58

Example: We can combine the examples given at Defns. 13, 14, and 15 to

generate the set of role permissions. The permissions for the Coach role are

summarized in Table 3.4 using the notation of our model, while Table 3.5

contains the permissions for the four roles available in the Android version of

the CT2 mobile app (Figure 2.7) along with clearance/classification permissions.

Permissions for <rID2,Coach>

Screens {<sID1,Home>,<sID2,List>,<sID3,Student>,<sID4,Cause>,<sID5,
Symptoms>,<sID6,Follow Up>,<sID7,Return>}

Screen
Permissions

{<sID1,true>,<sID2,true>,<sID3,true>,<sID4,true>,
<sID5,false>,<sID6,false>,<sID7, false>}

Components {<cID1,’Enter Student’ BN>,<cID2,’Retrieve Open Cases’
BN>,<cID3,’Last Name’ TF>,<cID4,’First Name’ TF>,
<cID5,’Search’ BN>,<cID6,’Enter New Student’ BN>,
<cID7,’View Student Info’ BN>, <cID8,’Edit’ BN>,
<cID9,’Add’ BN>,<cID10,’First Name’ TF>,<cID11,’Middle
Initial’ TF>,<cID12,’Last Name’ TF>,<cID13,’Gender’ DD>,
<cID14,’Date of Birth’ DP>,<cID15,’Date of Past
Concussions’ DP>,<cID16,’State’ DD>,
<cID17,’City/Town/Region’ DD>,<cID18,’District’ DD>,
<cID19,’School’ DD>,<cID20,’Save’ BN>,<cID21,’Cancel’ BN>,
<cID22,’Location of Incident’ BN>,<cID23,’If Sport’ DD>,
<cID24,’Others/Details’ TF>,<cID25,’Contact Mechanism’ DD>,
<cID26,’Impact Location of Head’ DD>,<cID27,’Head Gear
Usage’ DD>,<cID28,’Save’ BN>,<cID29,’Cancel’ BN>}

Component
Permissions

{<cID1,Enabled>,<cID2,Enabled>,<cID3,View/Edit>,<cID4,View/
Edit>,<cID5,Enabled>,<cID6,Enabled>,<cID7,Enabled>,<cID8,
Disabled>,<cID9,Enabled>,<cID10,View/Edit
Once>,<cID11,View/Edit Once>,<cID12,View/Edit
Once>,<cID13,View/Edit Once>,
<cID14,View/Edit Once>,<cID15,View/Edit Once>,
<cID16,View/Edit Once>,<cID17,View/Edit Once>,
<cID18,View/Edit Once>,<cID19,’School’ DD>,<cID20,Enabled>,
<cID21,Enabled>,<cID22,View/Edit Once>,<cID23,View/Edit
Once>,<cID24,View/Edit Once>,<cID25,View/Edit Once>,
<cID26,View/Edit Once>,<cID27,View/Edit Once>,
<cID28,Enabled>,<cID29,Enabled>}

Table 3.4. Permissions for the Coach Role of CT2.

 59

Table 3.5. Summary of Permissions for Roles in CT2 mobile app.

Screens/Components

Permissions for Role

Nurse Athletic Trainer Coach Parent

Home Tab
 ‘Enter New Student’ BN
 ‘Retrieve Open Cases’ BN
 ‘Last Name’ TF
 ‘First Name’ TF
 ‘Search’ BN

Show
Enabled
Enabled
View/Edit
View/Edit
Enabled

Show
Enabled
Enabled
View/Edit
View/Edit
Enabled

Show
Enabled
Enabled
View/Edit
View/Edit
Enabled

Show
Enabled
Enabled
View/Edit
View/Edit
Enabled

List Tab
 ‘Enter New Student’ BN
 ‘View Student Info’ BN
 ‘Edit’ BN
 ‘Add’ BN

Show
Enabled
Enabled
Enabled
Enabled

Show
Enabled
Enabled
Disabled
Enabled

Show
Enabled
Enabled
Disabled
Enabled

Show
Enabled
Enabled
Disabled
Enabled

Student Tab
 ‘First Name’ TF
 ‘Middle Initial’ TF
 ‘Last Name’ TF
 ‘Gender’ DD
 ‘Date of Birth’ SP
 ‘Date of Past Concussions’ DD
 ‘State’ DD
 ‘City/Town/Region’ DD
 ‘District’ DD
 ‘School’ DD
 ‘Save’ BN
 ‘Cancel’ BN

Show
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Cause Tab
 ‘Location of Incident’ DD
 ‘If Sport’ DD
 ‘Others/Details’ TF
 ‘Contact Mechanism’ DD
 ‘Impact Location of Head’ DD
 ‘Head Gear Usage’ DD
 ‘Save’ BN
 ‘Cancel’ BN

Show
Enabled
Enabled
View/Edit
Enabled
Enabled
Enabled
Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Symptom Tab
 ‘Mild and Severe Symptoms’ BN
 ‘Hour(s)’ TF
 ‘Minute(s)’ TF
 ‘Second(s)’ TF
 ‘Were Parents Notified?’ DD
 ‘Removed From Activity’ DD
 ‘Removed by’ DD
 ‘Concussion Assessment Tool’ DD
 ‘Additional Comments’ TF
 ‘Save’ BN
 ‘Cancel’ BN

Show
Enabled
View/Edit
View/Edit
View/Edit
Enabled
Enabled
Enabled
Enabled
View/Edit
Enabled
Enabled

Show
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once
View/Edit once

Enabled
Enabled

Hide
 -
-
-
-
-
-
-
-
-
-
-

Show
View
View
View
View
View
View
View
View
View

Disabled
Disabled

Follow Up Tab
 ‘Lingering Symptoms’ BN
 ‘If Other, Please Specify’ TF
 ‘All Symptoms Resolved in’ DD
 ‘Concussion Diagnosed by’ DD
 ‘Post Concussive Syndrome’ DD
 ‘Medical Imaging’ DD
 ‘Additional Comments’ TF
 ‘Save’ BN
 ‘Cancel’ BN

Show
Enabled
View/Edit
Enabled
Enabled
Enabled
Enabled
View/Edit
Enabled
Enabled

Show
View
View
View
View
View
View
View

Disabled
Disabled

Hide
-
-
-
-
-
-
-
-
-

Show
View
View
View
View
View
View
View

Disabled
Disabled

Return Tab
 ‘Days Absent From School’ TF
 ‘Schedule/Activity Modification’ DD
 ‘504 Plan Required’ DD
 ‘Date of Return to Learn’ SP
 ‘Date of Return to Full Part.’ SP
 ‘Save’ BN
 ‘Cancel’ BN

Show
View/Edit
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled

Hide
-
-
-
-
-
-
-

Hide
-
-
-
-
-
-
-

Hide
-
-
-
-
-
-
-

 60

To bring the concepts together on permissions, Table 3.5 contains detailed

permissions on the four user roles (Nurse, AT, Coach, and Parent) as well as the

clearance/classification permissions against all of the tabs of the Android version of the

CT2 mobile app (Figure 2.7 of Chapter 2). The four roles can be defined in terms of their

ability to access the UI of CT2 screens and the components (text fields, spinners, date

pickers, drop down boxes, and buttons) on a screen-by-screen basis to establish both the

on/off permissions and the data permissions as discussed in the prior section. This

information represents the privileges or permissions that are authorized to each role and

clearance, which when assigned to a given user, results in CT2 being customized in terms

of the screens that are displayed and the components that are enabled. In terms of

permissions, the entire screen can either be shown or hidden as a first level of control. For

screens that are shown, the different components can be enabled/disabled (button (BN),

radio button (RB), drop down (DD), checkbox (CB), date picker (DP), and/or spinner (SP))

or can be view, edit, or edit once (text field (TF)) via the on/off (values of enable and

disable) and data (values of view, edit, and edit once) permissions. The edit once data

permission means that the user can input data in the text field one time and, after he/she

saves such data, he/she cannot modify it. The edit once option also applies to buttons, drop

downs, and spinners, since there are cases where the user selects an option from one of

these and it can’t be modified later on by him/her. If a screen is hidden from the role, then

all of the components of the screen are hidden by default.

 61

3.4. RBAC and MAC API Permission Definitions

The fourth group of definitions for the unified model of access control for mobile

applications involve the way that the API of the mobile application is viewed from a

security perspective in order to control who can call which service(s) of an API at which

times and the way that each service is viewed from a security perspective. In support of

these definitions, the relevant assertions are in Table 3.6. From a RBAC perspective, we

can partition the services of an API into two broad categories: secure and unsecure services.

Secure services are a subset of the API that require control from a security perspective and

can be assigned to individual roles. Not all of the API services need to be in the secure

category; for example, API services to load drop downs, display web content, etc., may not

need to be secure. The secure API services are the ones that leads to data that is

stored/edited/displayed that must be controlled by role. Unsecure services need not be

assigned and are available to any user. From a MAC perspective, there may be a subset of

the API where the services handle data that has different sensitivity levels (top secret,

secret, confidential, and unclassified) that must be controlled. These are referred to as

labeled services which can be given classifications to enforce the MAC model while

unlabeled services do not need to be classified due to the fact that they do not contain

highly sensitive data. To illustrate the labeling of API services with CLS levels, Table 3.7

lists all of the methods for the CT2 mobile app and their respective CLS levels.

 62

The API of a mobile application can have RBAC permissions defined on the services of the API
in order to control which services can be utilized by which role.

The API of a mobile application can be partitioned into two subsets – those that need to be
securely controlled by role and those that do not.

The API of a mobile application can have MAC permissions (classifications) defined on the
services of the API in order to control which services can be utilized by which user (by
clearance).

The API of a mobile application can be partitioned into two subsets – those that need to be
securely labeled by classifications and those that do not.

 The data sources of a mobile application are accessed by the services of an API in which we can
incorporate access control permissions.

Table 3.6. RBAC and MAC API Permissions Assertions.

Classification Service	Name
Confidential GET	/user/:userId
Confidential GET	/userAccounts/account/:userId
Confidential GET	/useraccounts/:username/:password
Confidential GET	/userRoleSchool/:userid
Top	Secret POST	/userAccounts/add
Confidential GET	/students/school/:schoolId
Confidential GET	/student/:studentId
Confidential GET	/students/:firstName/:lastName
Confidential GET	/student/guardians/:studentId
Confidential POST	/students/add
Top	Secret POST	/students/update/:studentId
Confidential POST	/students/guardian/add
Confidential POST	/students/guardian/update/:guardianId
Confidential GET	/concussion/:concussionId

Secret GET	/concussion/followups/:concussionId
Secret GET	/concussion/followup/symptoms/:recordId

Confidential GET	/concussions/school/:schoolId
Confidential GET	/concussions/student/:studentId
Confidential GET	/concussions/user/:userId
Confidential GET	/concussions/status/:incidentId/:status
Confidential POST	/concussions/add
Top Secret POST	/concussions/update/:incidentId
Secret POST	/concussions/followup/add/:concussionEventId

Top	Secret POST	/concussions/followup/update/:followUpId/:referenceId+
Secret GET	/concussion/symptoms/:referenceId+

Table 3.7. Classifications for Labeled Services of CT2.

Table 3.6 presents the assertions made related to API permissions in support of

RBAC and MAC. The first two assertions are related to the partitioning of the API to allow

different services to be assigned by role. The next two assertions are related to the

partitioning of the API that assigns classifications to services that are accessed by a user

with a clearance. The last assertion is related to the way that the data sources are accessed

in a mobile application.

 63

Definitions 17 to 22 formalize the assertions in Table 3.6 and are utilized to control

policies to the API of a mobile application for the Intercepting API Calls option and the

Server Interceptor option of the configurable access control framework.

Defn. 17: The API βMA of a mobile application MA can be partitioned into two disjoint sets

Secure API σβ and Unsecure API µβ in regards to the services that are to be

assigned by role:

• Secure API σβ ⊆ βMA are the services of MA that need to be controlled.

• Unsecure API µβ ⊆ βMA are the services of MA that do not need to be controlled

where βMA = σβ ∪ µβ and σβ ∩ µβ = ∅ (e.g., µβ = βMA - σβ).

Example: The following services are utilized in the API that provides and stores

data for the CT2 mobile application:

- GET /states – Gets the list of states available

- POST /concussions/followup/add/{concussionEventId} – Inserts follow up

data of a student into the database

The first service stated above does not need to be secured since all of the users of

the mobile application can view the list of states (this is not confidential data), nonetheless,

the second service needs to be secured since only a subset of the roles available are allowed

to add students’ follow up data. Table 3.8 summarizes the secure/unsecure services that are

partitioned from the REST API of CT2.

 64

Secure/Unsecure Service	Name
Secure GET	/user/:userId
Secure GET	/userAccounts/account/:userId
Secure GET	/useraccounts/:username/:password
Secure GET	/userRoleSchool/:userid
Secure POST	/userAccounts/add
Secure GET	/students/school/:schoolId
Secure GET	/student/:studentId
Secure GET	/students/:firstName/:lastName
Secure GET	/student/guardians/:studentId
Secure POST	/students/add
Secure POST	/students/update/:studentId
Secure POST	/students/guardian/add
Secure POST	/students/guardian/update/:guardianId
Secure GET	/concussion/:concussionId
Secure GET	/concussion/followups/:concussionId
Secure GET	/concussion/followup/symptoms/:recordId
Secure GET	/concussions/school/:schoolId
Secure GET	/concussions/student/:studentId
Secure GET	/concussions/user/:userId
Secure GET	/concussions/status/:incidentId/:status
Secure POST	/concussions/add
Secure POST	/concussions/update/:incidentId
Secure POST	/concussions/followup/add/

:concussionEventId
Secure POST	/concussions/followup/update/

:followUpId/:referenceId+
Secure GET	/concussion/symptoms/:referenceId+

Secure/Unsecure Service	Name
Unsecure GET	/states
Unsecure GET	/regions/:stateId
Unsecure GET	/districts/:regionId
Unsecure GET	/schools/all
Unsecure GET	/schools/:districtId
Unsecure GET	/schools/:schoolId
Unsecure GET	/menu/assessmentTools
Unsecure GET	/menu/eventLocations
Unsecure GET	/menu/contactMechanisms
Unsecure GET	/menu/medicalimaging
Unsecure GET	/menu/diagnosingroles
Unsecure GET	/menu/headLocation
Unsecure GET	/menu/sports
Unsecure GET	/menu/symptoms
Unsecure GET	/menu/symptoms/within
Unsecure GET	/menu/symptoms/lingering
Unsecure GET	/menu/roles

Table 3.8. Secure/Unsecure Services of CT2.

Defn. 18: The API βMA of a mobile application MA can be partitioned into two disjoint sets

Labeled API δβ and Unlabeled API θβ in regards to the services that are to be

controlled by classifications:

• Labeled API δβ ⊆ βMA are the services of MA that need to be controlled.

• Unlabeled API θβ ⊆ βMA are the services of MA that do not need to be

controlled.

where βMA = δβ ∪ θβ and δβ ∩ θβ = ∅ (e.g., θβ = βMA - δβ).

Example: The service GET /concussion/followups/:concussionId and the service POST

/concussions/followup/add/:concussionEventId can be placed in both the secure API set

and the labeled API set. Table 3.9 summarizes the labeled/unlabeled services that are

partitioned from the REST API of CT2.

 65

Intercepting calls for unsecure and unlabeled services are automatically passed through

since there are no required security checks. A given mobile application can have a

partitioning of the API into: Secure/Unsecure in support of RBAC, Labeled/Unlabeled in

support of MAC, or both. In the CT2 API, labeled services have classifications as given in

Table 3.7. Note that a labeled service can have a sensitivity level of unclassified. In MAC,

data often moves from level to level, so what is unclassified today, could be confidential

or secret at a later point it time; this could be true of services. Only the labeled services in

Table 3.9 have classifications as was shown in Table 3.7. The unlabeled services in Table

3.9 are all related to the display of menu drop down values, selection values, etc.

Labeled/Unlabeled Service	Name
Labeled GET	/user/:userId
Labeled GET	/userAccounts/account/:userId
Labeled GET	/useraccounts/:username/:password
Labeled GET	/userRoleSchool/:userid
Labeled POST	/userAccounts/add
Labeled GET	/students/school/:schoolId
Labeled GET	/student/:studentId
Labeled GET	/students/:firstName/:lastName
Labeled GET	/student/guardians/:studentId
Labeled POST	/students/add
Labeled POST	/students/update/:studentId
Labeled POST	/students/guardian/add
Labeled POST	/students/guardian/update/:guardianId
Labeled GET	/concussion/:concussionId
Labeled GET	/concussion/followups/:concussionId
Labeled GET	/concussion/followup/symptoms/:recordId
Labeled GET	/concussions/school/:schoolId
Labeled GET	/concussions/student/:studentId
Labeled GET	/concussions/user/:userId
Labeled GET	/concussions/status/:incidentId/:status
Labeled POST	/concussions/add
Labeled POST	/concussions/update/:incidentId
Labeled POST	/concussions/followup/add/

:concussionEventId
Labeled POST	/concussions/followup/update/

:followUpId/:referenceId+
Labeled GET	/concussion/symptoms/:referenceId+

Labeled/Unlabeled Service	Name
Unlabeled GET	/states
Unlabeled GET	/regions/:stateId
Unlabeled GET	/districts/:regionId
Unlabeled GET	/schools/all
Unlabeled GET	/schools/:districtId
Unlabeled GET	/schools/:schoolId
Unlabeled GET	/menu/assessmentTools
Unlabeled GET	/menu/eventLocations
Unlabeled GET	/menu/contactMechanisms
Unlabeled GET	/menu/medicalimaging
Unlabeled GET	/menu/diagnosingroles
Unlabeled GET	/menu/headLocation	
Unlabeled GET	/menu/sports
Unlabeled GET	/menu/symptoms
Unlabeled GET	/menu/symptoms/within
Unlabeled GET	/menu/symptoms/lingering
Unlabeled GET	/menu/roles

Table 3.9. Labeled/Unlabeled Services of CT2.

Defn. 19: Secure API Role Permissions: Each role r can be assigned Secure API role

permissions φ = {ss1, ss2, ... , ssj} where each ssj ∈ σβ represents a subset of the

secure services in the Secure API σβ (Defn. 17) that denote those services that

can be invoked by a user playing role r.

 66

Example: In Table 3.8, φ corresponds to all of the Secure services on the left

side. In the CT2 mobile application a user with the role of Nurse has access to all

of the Secure services as shown in Table 3.8.

Defn. 20: Labeled API Classification Permissions: Each user u with a clearance can be

assigned Labeled API classification permissions ψ = {ls1, ls2, ... , lsj} where each

lsj ∈ δβ represents a subset of labeled services in the Labeled API δβ (Defn. 18)

that denote those services that can be invoked by a user u playing clearance CLRi

under the read and write property conditions for that user.

Example: In Table 3.9, ψ corresponds to all of the Labeled services on the left

side. From the CT2 mobile app, recall the four users: UCT
2 = { u1=<uID1, Karen,

TS, SS-r, L*-w >, u2=< uID2, Carmen, C, S*-r, S*-w >, u3=< uID3, Joe, C, SS-r,

S*-w>, u4=< uID4, Peter, S, SS-r, S*-w > }. Karen with TS CLR has read

property SS-r and write property L*-w (see Defn. 8v2) and as a result can access

all read services as governed by SS-r (TS, S, C, and U) and all write services as

governed by L*-w (TS) (see Defn. 10). Carmen with C CLR has read property,

S*-r and write property S*w (see Defn. 8v2) and as a result can access all read

services as governed by S*-r (only C) and all write services as governed by S*-

w (only C) (see Defn. 10). The other two users (Joe and Peter) at S CLR can

access all read services as governed by SS-r (S, C and U) and all write services

as governed by S*-w (only C) (see Defn. 10).

 67

Given Defns. 19 and 20, a version 2 of Defn. 16 can be defined to include secure API role

permissions for roles and Defn. 21 can be defined for user labeled API classification

permissions for users.

Defn. 16 v2: A role, r ∈ RMA, is assigned a set of role permissions, rp = < γ, χ , λ, φ> for:

a subset m ≤ n screens of SS in MA where γ = <sp1,…, spm> are the m screen

permissions (Defn. 13) assigned to the role r, χ = < cp1, … , cpj > are the j

component permissions (Defn. 14) for all m screens, and λ = < si1, … , siq >

are the screen interactions (Defn. 15) for non-tabbed UIs; and φ = {ss1, ss2, ...

,ssj} where each ssj ∈ σβ are the Secure API role permissions (Defn. 19)

assigned to the role r. Note that if γ is null then χ and λ must also be null. If γ

is not null, then either χ and λ can be null meaning that the MA has only

screen permissions. Note that if φ is null then there are no Secure API role

permissions. Other combinations are possible.

Example: For the role permissions, rp = < γ, χ, λ, φ>, < γ, χ, λ> corresponds to all of the

permissions defined in Table 3.5, while φ corresponds to the secure services in Table 3.8.

Defn. 21: A user, u ∈ UMA, is assigned a set of user permissions, up = <ψ> where ψ =

{ls1, ls2, ... , lsj} and each lsj ∈ δβ are the Labeled API classification permissions

(Defn. 20) assigned to the user u.

Example: For the user permissions, up = <ψ>, ψ corresponds to the labeled

services in Table 3.9.

 68

Figure 3.1 conceptualizes the permissions associated with services. The

secure/unsecure services are assigned by role with the user acquiring these services when

they choose a role for a given session (a user may have multiple roles but is limited to one

role per mobile application session). This allows RBAC to be used to control services

independent of MAC. The labeled/unlabeled services are accessible based on a user’s

clearance that dominates the classification of the services under the properties (simple

security, liberal-*, etc.). This allows MAC to control services independent of RBAC. In

addition, we can control services with both RBAC and MAC. This can be achieved by

classifying the services of an API as secure/unsecure in support of RBAC and then

extending security by classifying secure services even further as labeled/unlabeled services

in support of MAC. Note that secure services can be classified as either labeled/unlabeled

but unsecured services can only be classified as unlabeled services (dashed arrows shown

in Figure 3.1).

Figure 3.1. Permissions for API Services.

3.5. DAC Model Definitions

Discretionary access control and associated delegation (Department of Defense,

1985; Sandhu & Samarati, 1994) involves the ability of a user (the delegator) to delegate

 69

his responsibilities to another user (the delegatee) for a period of time. For the purposes of

this dissertation, in support for discretionary access control, we are limiting our approach

to user-directed delegation where the user decides when and what to delegate to another

user. The initial model capabilities for DAC in our model has a two-fold focus in order to

delegate permissions defined on the user interface by role and on the secure and labeled

services by role and user. Specifically, for RBAC, we control the delegation of permissions

on screen, component, and screen interactions (Defns. 13, 14, and 15, respectively) for a

role assigned to a user that can be delegated to another user. In this case, the user delegates

his/her role to another user and as a result all of the screen, component, and interaction

permissions associated with that role are delegated which is termed Full RBAC UI

Delegation. For RBAC, we also control the delegation of the secure API role permissions

assigned to a user by role where a subset of the secure services has been assigned to each

role. A user can delegate all of his/her assigned secure services to another user by

delegating the role to that user which is called Full RBAC Service Delegation. In addition,

a user has the option to delegate a subset of his/her assigned secure services to another user

which is called Partial RBAC Service Delegation. In an analogous manner, for MAC we

control the delegation of the labeled API classification permissions assigned to a user by

clearance where a subset of the labeled services has been assigned to each role. A user can

delegate all of his/her assigned labeled services to another user by delegating to that user

which also passes along the clearance which is called Full MAC Service Delegation. In

addition, a user could delegate a subset of his assigned labeled services to another user

which is called Partial MAC Service Delegation. In all three delegation possibilities, we

support the concepts of delegation authority and pass on delegation of authority.

 70

Delegation authority states that a security officer can delegate the authority to delegate to

another user. In our case, a user can delegate his/her role or clearance permissions to

another user but cannot delegate the authority to delegate those permissions further to

another user. In order to delegate further, pass-on-delegation authority can be defined that

allows a user to delegate the delegation authority along with the delegation of a role or a

clearance to a user. In turn, that delegated user can delegate those permissions to another

user. In this reminder of the section on the DAC model capabilities for mobile computing

we utilize concepts from (Liebrand et al., 2003) on delegation.

In support of this section, the fifth and final group of definitions for the unified

model of access control for mobile applications involve the way that Discretionary Access

Control (DAC) can be incorporated in a mobile application in order to extend the security

provided with RBAC and/or MAC definitions in Sections 3.2, 3.3, and 3.4. In support of

these definitions, the relevant assertions are in Table 3.10.

A user with an assigned role and/or clearance can delegate his/her role (in support of RBAC)
and/or clearance (in support of MAC) at a given time/situation in support of DAC.
Users with the ability to delegate can pass on their allowed actions to delegable users.
A delegable user can pass his/her delegated permissions further if he/she has authority to do so.

Table 3.10. DAC Assertions.

Defn. 22: An original user, ou, is a user that owns a given role.

Defn. 23: An original role, or, is the role delegated by an original user ou.

Defn. 24: A delegated user, du, is a user to who a role will be delegated.

Defn. 25: A delegated role, dr, is the role delegated to the delegated user du.

Defn. 26: Delegation Authority (DA): A security officer determines which users in an

UMA can delegate their permissions to other users in the UMA.

 71

Defn. 27: Pass On Delegation Authority (PODA) is a Boolean value assigned to a user

which determines if he/she can delegate his/her permissions to another user

(poda = true) or not (poda = false).

Example: Karen in the prior example can be an original user, ou, with the original

role, or nurse. If a school needs a substitute nurse Lois to cover for Karen, Karen

could delegate her original role or to Lois as the delegated user or.

As previously discussed in Section 3.3, there are the permissions associated with

the screens, components, and screen interactions of the UI of a MA. From an RBAC

perspective, a particular user might have access by role to certain screens (screen can be

hidden from user) and components of screens with the ability to view (component is

enabled), edit, edit once, or hide (component is disabled). In this case, view allows a user

to view the component, edit allows a user to modify the contents of the component

(applicable to text fields, text boxes, etc.), edit once allows a user to add data through the

means of a component but after the data is saved the component cannot be edited

(component becomes disabled), and hide conceals the component from the user so that

he/she can’t have access to such. The following example is presented to demonstrate the

way that DAC can be utilized within the UI screens and components. In CT2, nurse Karen

could delegate all of her UI permissions via Table 3.5 to nurse Lois that is the substitute

nurse that day, but decide not to allow Lois to pass on that delegation. In this case, we

delegate the entire role's UI permissions from the original user Karen to the delegated user

Lois, with the exception of PODA. The following definition supports DAC in the UI of a

MA, where the pass-on-delegation authority:

 72

Defn. 28: A Full RBAC UI (FRUI) Delegation dFRUI = < ou, or, du, dr, < γ, χ , λ >, poda,

timePeriod > delegates all UI permissions < γ, χ , λ > ∈ rp (screens, component,

and screen interactions – Defn. 16v2) from an original user, ou, with an original

role, or, to a delegated user du with a dr = or with the potential to pass on (poda

is true or false) and timePeriod = {startTime, endTime} which represents the

period of time in which the du has access to the delegated permissions of dr.

Example: The original user ou Karen < uID1, Karen, TS, SS-r, L*-w > seeks

delegate her original role nurse or to the delegated user du Lois, a substitute

school nurse for one day: del = < uID1, rID3, uID5, rID3, < γ, χ, λ >, false, {2017-

07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00} >. Note that < γ, χ, λ >

is as defined in the Nurse column in Table 3.5.

In the case of API permissions, there are two levels of delegations we define to

support DAC. The first level involves full and partial RBAC service delegation while the

second level involves full and partial MAC service delegation. Note that the services we

focus on delegating to DU are those that are either secure or labeled services since all of

the users of a MA have access to unsecure/unlabeled services. For RBAC, when we

delegate the role from the original user to the delegated user, all or a subset of the

authorized secure services are delegated for the given role to the new user. Specifically:

DAC delegates all secure services authorized to a user/role for RBAC delegation from

original to delegated user in Full RBAC Services delegation and delegates a subset of

secure services in Partial RBAC Services delegation:

 73

Defn. 29: A Full RBAC Services (FRS) Delegation dFRS = < ou, or, du, dr, φ, poda,

timePeriod > delegates all of the assigned secure service permissions φ ∈ rp

(Defn. 16v2) from an original user, ou, with an original role, or, to a delegated

user, du, with a dr = or with the potential to pass on (poda is true or false), and

timePeriod = {startTime, endTime} which represents the period of time in which

the du has access to the delegated permissions.

Example: The original user ou Karen < uID1, Karen, TS, SS-r, L*-w > seeks to

delegate original role nurse or and all of the secure assigned services of her Nurse

role the delegated user du Lois, a substitute school nurse for one day: del = <

uID1, rID3, uID5, rID3, φ, false, {2017-07-31T09:00:00+00:00, 2017-12-

15T07:00:00+00:00} >. Note that φ are the labeled services in Table 3.9.

Defn. 30: A Partial RBAC Services (PRS) Delegation dPRS = < ou, or, du, dr, φ’, poda,

timePeriod > delegates a subset of the assigned secure service permissions φ’ ∈

rp and φ’ ⊆ φ (Defn. 16v2) from an original user, ou, with an original role, or, to

a delegated user, du, with a dr = or with the potential to pass on (poda is true or

false) and timePeriod = {startTime, endTime} which represents the period of time

in which the du has access to the delegated permissions.

Example: The original user ou Karen < uID1, Karen, TS, SS-r, L*-w > seeks to

delegate original role nurse or and only a subset of the secure services assigned

 74

to her Nurse role the delegated user du Lois, a substitute school nurse for one day

to only log on and be able to read (GET services) information on students (first

nine secure services on left portion of Table 3.8): del = < uID1, rID3, uID5, rID3, φ’,

false, {2017-07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00} >, where

φ’= {GET/user/:userid, … , GET /userRoleSchool/:userid, POST

/userAccounts/:add, … , GET /student/guardians/:studentID}.

For MAC, if we choose to delegate, then we are delegating a combination of the the

clearance of the user and the read and write properties for the user; this allows the delegated

user to access the appropriate labeled services by classification. In Full MAC Services

Delegation, a user delegates all of labeled services authorized to a user/CLR/read-write

properties for MAC delegation from original to delegated user in Full MAC Services

Delegation. In Partial MAC Services Delegation, a user delegates his read-write properties

and a CLR that is less secure that his current level, thereby automatically resulting in a

subset of methods that is at most the same of the original clearance level but is more often

less.

Defn. 31: A Full MAC Services (FMS) Delegation dFMS = < ou, oclr, oprops, du, dclr, dprops,

Ω, poda, timePeriod > delegates all of the assigned labeled service permissions Ω

∈ up (Defn. 16v2) from an original user, ou, with an original clearance, oclr, and

original read/write properties, oprops, to a delegated user du with a delegated

clearance dclr = oclr and delegated read/write properties, dprops = oprops with the

potential to pass on (poda is true or false) and timePeriod = {startTime, endTime}

 75

represents the period of time in which the du has access to the delegated

permissions.

Example: The original user ou Karen < uID1, Karen, TS, SS-r, L*-w > seeks to

delegate her MAC privileges (CLR and read/write properties) and all of labeled

services from Table 3.9 to the delegated user du Lois, a substitute school nurse

for one day: del = < uID1, rID3, SS-r, L*-w, uID5, rID3, SS-r, L*-w, Ω, false, {2017-

07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00} >. Note that Ω are the

labeled services in Table 3.9.

Defn. 32: A Partial MAC Services (PMS) Delegation dPMS = < ou, oclr, oprops, du, dclr,

dprops, Ω’, poda, timePeriod > delegates a subset of the assigned labeled service

permissions Ω’ up ⊆ Ω and Ω’ ∈ up (Defn. 16v2) from an original user, ou, with

an original clearance, oclr, and original read/write properties, oprops, to a

delegated user du with a delegated clearance dclr = oclr and delegated read/write

properties, dprops = oprops with the potential to pass on (poda is true or false)

and timePeriod = {startTime, endTime} represents the period of time in which

the du has access to the delegated permissions.

Example: The original user ou Karen < uID1, Karen, TS, SS-r, L*-w > seeks to

delegate her MAC privileges (CLR and read/write properties) and only the GET

services from Table 3.9 to the delegated user du Lois, a substitute school nurse

for one day: del = < uID1, rID3, SS-r, L*-w, uID5, rID3, SS-r, L*-w, Ω’, false, {2017-

 76

07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00} >, where Ω’ = { GET

/user/:userid, GET /userAccounts/account/:userid, … , GET

/concussion/symptoms/:referenceID + }.

Defn. 33: The Delegation Collection, DC= <FRUI, FRS, PRS, FMS, PMS> for a given

mobile application, MA, are five sets (possible null) of active delegations for Full

RBAC UI, Full RBAC Services, Partial RBAC Services, Full MAC Services, and

Partial MAC Services (Defns. 28-32, respectively), where each set contains elements di

where i ∈ {FRUI, FRS, PRS, FMS, PMS}.

Figure 3.2. DAC Permissions.

 Figure 3.2 depicts a summary of Defns. 22-33. Basically, a delegation authority

(top box of Figure 3.2) is in charge of assigning which users are allowed to delegate their

permissions (second box of Figure 3.2), which are the original users (delegators). Note that

for our model, we assume that a delegation authority has already established the delegation

permissions and therefore do not go into detail about this process and other security policy

definition and administration processes. Depending on which permissions the system has

enforced (UI, API), a delegator can either delegate a full set of his/her UI permissions (first

box shown in the middle vertical box of Figure 3.2), a full or partial set of his/her RBAC

API permissions (second and third boxes shown in the middle vertical box of Figure 3.2),

and/or a full or partial set of his/her MAC API permissions (last two boxes shown in the

 77

middle vertical box of Figure 3.2) to a delegated user (last box of Figure 3.2). In addition,

the delegator can choose whether he/she wants to grant their role/clearance to the delegated

user (delegatee) or if they want to grant them a role/clearance with less privileges

(delegated role/clearance) and, he/she can choose the period of time the delegatee has

access to the delegated permissions. Finally, a delegatee can pass their delegated

permissions to another delegatee if he/she has pass on delegation value set as true (fourth

box of Figure 3.2).

3.6. Combining Access Control Models and Options

 In this section, we discuss the different ways in which the access control models

(RBAC, MAC, and DAC), the mobile application (UI, API, and data sources), and the

options (Direct UI Modifications, Intercepting API Calls, and Server Interceptor API) of

the unified model of access control for mobile applications can be combined in meaningful

ways in order to define a specific type of security on a mobile-app-by-mobile-app basis.

This supports contribution C: Dynamic Combination of Access Control Models and

Configuration Options. The different combinations of (RBAC, MAC, and DAC) vs. (UI,

API, and Data Sources) vs. (Direct UI Modifications, Intercepting API Calls, and Server

Interceptor API) that are chosen by a security engineer are based on the type of security

that a subject is seeking to attain and may be dictated by whether the source code of the

mobile app, API, and/or data source is available. Combinations are shown in Table 3.11.

 78

Combination Access Control
Model(s)

Mobile App Options

C1 RBAC UI Direct UI Modifications*
C2 RBAC, DAC
C3 RBAC

API

Intercepting API Calls
C4 MAC
C5 RBAC, MAC
C6 RBAC, DAC
C7 MAC, DAC

C8 RBAC

Data Source

Server Interceptor API
C9 MAC

C10 RBAC, MAC
C11 RBAC, DAC
C12 MAC, DAC
C13 RBAC

UI, API

Direct UI Modifications*,

Intercepting API Calls

C14 RBAC, MAC
C15 RBAC, DAC
C16 RBAC, MAC, DAC
C17 RBAC

API,
Data Source

Intercepting API Calls,
Server Interceptor API

C18 MAC
C19 RBAC, MAC
C20 RBAC, DAC
C21 MAC, DAC
C22 RBAC, MAC, DAC

Table 3.11. Combinations of Access Control Configurations.

Note that the ‘*’ after Direct UI Modifications signifies that code level changes may be

required. This is a preliminary list that is currently under investigation and is expanded and

refined over the course of the remainder of the research. To illustrate, we enumerate some

combinations of access control for different applications:

• Combination C1: A mobile application for the pharmacy as previously described

would utilize a RBAC approach to represent capabilities of licensed pharmacist and

pharmacy technician roles. The mobile application had different screens for different roles

– all screens for the licensed pharmacist and only screens 1, 2, and 4 for the technician.

This would necessitate the use of the Direct UI Modifications option to set permissions on

which screen is available to which role (see Defn. 13). In addition, for screens 1, 2, and 4

 79

of the technician, all of these screens would be further constrained so that all of the text

fields are read only (see Defn. 14.b).

• Combination C22: A mobile application for patient data to be used by medical

professionals would utilize a combination of access control: RBAC to define different roles

for internists, family practitioners, physiatrists, psychologists, etc.; MAC to allow the use

of top-secret sensitivity level for all mental health data, secret for the majority of medical

data, confidential for certain patient info, and unclassified for demographics/contact info;

DAC to allow for the delegation from a physician to the on-call physician for nights and

weekends. There would be no screen permissions in this case, since the control is on data

delivered to the mobile application. In this case, to control access to data for RBAC and

MAC, the API is partitioned into secure and unsecure APIs (see Defn. 17) while all services

for patient data is labeled (see Defn. 18) to control the data returned to users. The

Intercepting API option would support RBAC, MAC, and DAC in terms of API control,

while the Server Interceptor option may be necessary to filter the mental health data from

the data source. These are just two examples – in the course of the remainder of this chapter

the Connecticut Concussion Tracker (CT2) app is utilized as well for additional explanation

and illustration.

3.7. Relational Database Design for the Unified Security Model

This section presents a relational database design to store the content unified

security model as presented in Sections 3.1 to 3.5 realized via an entity-relationship

diagram as shown in Figure 3.3. The diagram in Figure 3.3 contains 44 entities and to assist

the discussion in Chapters 4, 5, and 6, Table 3.12 contains a list of all 44 entities including:

 80

o Entity Name: Name of the entity.

o Table Content: Tuples stored in the entity.

o Primary Related Entities: Other related entities.

o Primary Definition(s): A mapping to the one or two primary definitions of the unified

security model corresponding to the entity.

o Secondary Definition(s): A mapping to the secondary definitions of the unified security

model corresponding to the entity.

In Chapters 4, 5, and 6, when discussing the three different options, Direct UI

Modifications, Intercepting API Calls, and Server Interceptor API, respectively, a subset

of the ER diagram in Figure 3.3 is presented and discussed.

 81

Figure 3.3. Entity-Relationship Diagram for Unified Security Model.

 82

Table 3.12. Entities and Explanations.

3.8. Related Work on Access Control in Mobile Computing

In this section, we compare and contrast the unified model of access control for

mobile applications from Sections 3.1 to 3.6 to other related work that utilizes and extends

access control models to provide secure authorization in mobile computing. To begin, the

work of (Abdunabi, Sun, & Ray, 2014) proposed a spatio-temporal access control

framework to enforce spatio-temporal policies in mobile applications. Basically, the

authors utilized the RBAC model as a basis for their approach and then extended this to

provide the spatio-temporal feature. To apply the proposed approach in a mobile

application, there are three modules that are needed: one that needs to be installed in the

mobile device and the other two are placed server-side. One drawback in this approach is

the fact that users need to install a module on their mobile devices in order to utilize the

 83

proposed approach, which is similar to our drawback from code-level changes in the

mobile app for the Direct UI Modifications option. In our Intercepting API Calls and Server

Interceptor options, users do not need to modify their mobile devices since we are enforcing

access control policies server-side. Another approach, which involves utilizing user

attributes to provide access control for business processes in mobile computing, consists

of utilizing RBAC in combination of context-aware access control mechanisms (Schefer-

Wenzl & Strembeck, 2013). Basically, the approach identifies the tasks that are available

in a system, assigns roles to the users of that system and, establishes which roles have

permissions of which tasks and under what context. Our approach can augment their work

by including additional RBAC, MAC, and DAC capabilities. A third approach (Santos-

Pereira, Augusto, Correia, Ferreira, & Cruz-Correia, 2012) focuses on securing healthcare

data by proposing an architecture that combines the RBAC model with personal/technical

characteristics as well as with capabilities of a smartphone in order to deliver patients a

way to exercise safe discretionary online access permissions on their EHR. This approach

utilizes the mobile device as a token in order to verify a user’s identity and give him/her

access to the EHR data he/she has access to manage. However, this approach is not for

mobile applications but to use with a web-browser. While our approach is targeted at native

mobile applications for the Android and iOS platforms, the intercepting API call option

could be utilized between the web app and the API. A fourth approach (Fadhel et al., 2016)

proposed a model that extends RBAC to generate RBAC conceptual policies. Nevertheless,

the aforementioned effort does not provide details of which specific application domains

the approach could support.

 84

The next two related efforts, address the way that the mobile application itself (UI,

API, Server/Database) is impacted depending on the role that a user assumes for a

particular mobile application session or relevant MAC capabilities. The first effort utilizes

MAC to provide security in mobile computing (Bugiel, Heuser, & Sadeghi, 2013) by

proposing and implementing FlaskDroid, a security architecture that provides mandatory

access control in both middleware and kernel layers of Android OS. The purpose of this

work is to apply fine-grained MAC security policies to Android OS services such as

LocationManager and Audio Services. The end result is that the applications that form part

of the device conforms to these finer-grained security policies rather than utilizing the ones

the device provides. Our approach contrasts to their work since we do not rely on modifying

the default services of a mobile OS and it is mobile application-specific. The second effort

that involves modifying the Android OS consists of applying context-based access control

restrictions in mobile devices (Shebaro, Oluwatimi, & Bertino, 2015). The intent is to allow

a user of a mobile device to create a security policy that establishes which

resources/services of his/her mobile device their installed mobile applications should have

access to. This is occurring at a much higher level of granularity (i.e., entire mobile

application) than our approach which is focusing on specific services of APIs. Both of these

efforts are targeted towards modifying Android OS in order to provide finer-grained

security for the permissions that mobile devices offer. They operate at a much higher

conceptual level than our work which focuses on applying access control security policies

to individual mobile applications; their work is on changing device permissions and this

determines what mobile applications can access as a whole.

 85

In terms of DAC, to our understanding, there are no approaches that directly

implement the access control mechanism in a mobile computing setting. Nevertheless,

there are several works that state that DAC mechanisms can be incorporated in a system

through the means of RBAC (Hansen & Oleshchuk, 2003; Baracaldo & Joshi, 2013) by

referring to (Osborn, Sandhu, & Munawer, 2000). However, these proposed approaches on

extending RBAC and only mention that such access control model can be configured to

enforce mandatory and discretionary access control mechanisms. In other words, they do

not provide details on the way that MAC or DAC can be applied in an RBAC setting. On

another note, Android OS uses the traditional Linux Discretionary Access Control to

manage filesystem access (Morris, 2013). This is different to our approach since it does

not enforce this mechanism on the data that is handled within a mobile application but on

the files that a user creates/handles in the storage of the mobile device itself.

 86

Chapter 4
Direct UI Modifications Option

This chapter reviews the security policy definition and generation process for the screens,

components, and interactions of the user interface in order to explore and explain the Direct

UI Modifications option (see Section 1.4 and Figure 1.3 again) to change the look-and-feel

of the UI according to RBAC and/or DAC permissions. The specific objective is to allow

the capabilities of the mobile application’s UI to be dynamically customized based on a

user’s role and delegation permissions. This both permits a user by role to perform needed

tasks using the mobile application while simultaneously limiting and/or disabling and/or

removing capabilities and features that are not allowed at certain times or in certain

situations to that user/role combination. In our approach, the components of a mobile

application UI will be treated as “objects” to which we can apply access control

mechanisms to. The main focus of this chapter is to present and discuss an approach for

role-based access control (RBAC) with optional delegation (DAC) for the UI of mobile

applications that allows permissions established by the information owner to be defined for

other authorized users by role, thereby allowing the mobile application to be dynamically

customized to deliver only authorized information, and defined view and/or modify

capabilities. To demonstrate the feasibility of our work, we utilize the CT2 mHealth

application (see Section 2.7 of Chapter 2).

The chapter provides a detailed discussion of the Direct UI Modifications option in

5 sections. Section 4.1 briefly reviews a subset of the model and permissions from Chapter

3 for the mobile app UI that define which screens and components can be

viewed/edited/viewed once/enabled/hidden in order to customize the look-and-feel of the

 87

UI by role. Section 4.2 reviews a subset of the ER diagram for the unified security model

in Figure 3.3 of Section 3.7, focusing on the subset of the unified model involving UI,

screens, components, screen interactions, roles, and optional delegation in support of the

Direct UI Modifications option. The section also provides an example on the way that the

CT2 mobile app will be displayed to users depending on their role. Section 4.3 explains the

programmatic changes that must be made to the mobile application itself to allow for the

screens and their components to be customized. Section 4.4 provides a guide that states

which programmatic changes need to be done in a mobile app in order to apply the Direct

UI Modifications option. Finally, Section 4.5 presents related work on the customization

of user interfaces via adaptive UIs and the usage of RBAC.

4.1. Reviewing the Unified Model and Permissions
In this section, we discuss the features and characteristics of the UI of a mobile

application using the unified model from Chapter 3 in order to define what is viewable

and/or modifiable on a role-by-role basis. Recall that, a mobile application’s user interface

will be comprised of a series of inter-connected screens. Each screen will have a set of

different components that could have: information that is displayed (cannot be changed);

information that can be entered by a user (text fields, drop downs where one value is

chosen; checkboxes where multiple values are chosen, etc.); and, buttons that are utilized

to effect the state of the application (save, cancel, next, previous, etc.). Users will be

authorized to access a subset of the screens (that may occur in a particular sequence) with

defined permissions for the various components that comprise each screen defining access

(view/modify) depending on role. For a given mobile application with these capabilities,

the RBAC approach that we present in this chapter can enable/disable the components

 88

based on a user’s role. In the concussion app, a user with a Nurse role has access to the full

capabilities of the CT2 mHealth application, while other users with different roles would

be limited; this was illustrated in the examples for screen, components, and screen

interactions. These different users with different roles receive a dynamically customized

version of the CT2 mHealth application. The advantage of this is that user permissions can

be configured based on role; therefore, the application does not need to be configured for

each individual user, but will operate by role against the user instance (e.g., nurse or athletic

trainer) that has been authorized.

Given this overview, the main focus of this chapter is to explore the way that

permissions on screens, components, and screen interactions (see Defns. 13, 14, and 15,

respectively, in Section 3.3) can be defined and enforced. A mobile application’s UI will

be comprised of a series of inter-connected screens where each screen contains a portion

of the functionality (Defns. 1 and 5). Each screen of the UI will have a set of different

components (Defns. 3 and 4) consisting of information that is displayed (cannot be

changed) and information that can be entered by a user including: text field (TF), button

(BN), drop down (DD), checkboxes (CB), radio buttons (RB), spinner (SP), date picker

(DP), etc. A mobile application can have one or more screens and screens can have one or

more of the aforementioned components.

Utilizing these definitions as a basis, users will be authorized by role to access a

subset of the screens (screen permissions in Defn. 13) with defined permissions for each

screen in order to limit and control the access to each screen’s components, where our

approach can enable/disable the components based on a user’s role (component

permissions in Defn. 14). In addition, the interactions of screens (flow from one screen to

 89

another) can be controlled by a user’s role (screen interaction permissions in Defn. 15). As

result, a user as owner by his/her role could have full access to the application, say Karen

with Nurse role has access to all of the screens, while a user with a parent role is limited to

the ‘List’, ‘Home’, ‘Student’, ‘Cause’, and ‘Symptoms’ screens of the iOS CT2 app in

Figure 2.8. The end result is the ability to control which components of the application’s

UI users can have access to (view/edit) depending on their role. The advantage of this is

that user permissions can be configured based on his/her role; therefore, the application

does not need to be configured for each individual user, but will operate by role against the

user instance that has been authorized.

Permissions, as presented in Section 3.3, can be defined against a generalized

structure of a mobile application’s UI screens and their components to customize which

screens and their respective components are available in the mobile application, depending

on the role a user assumes. The screens and the components are the objects that will be

authorized as screen, component (text fields, dropdown box, date picker, radio buttons,

check boxes, buttons), and screen interaction permissions to a particular role. This

essentially defines what a role can and cannot do in terms of screen, component, and screen

interaction permissions and determines whether the user with such role can access and/or

view a certain component. As an example, the screens shown in Figure 4.1 from CT2 (see

Figure 2.8) has the ‘Student’ screen (left) customized on the right side of Figure 4.1 where

all of the fields are disabled. In this case, the user with the role would be able to view

information but would not be able to make any changes to the aforementioned disabled

components. The permissions that are defined on the components of a screen are placed in

two main categories: on/off permissions that are for components that can be ‘on’ (enabled)

 90

or ‘off’ (disabled); and, data permissions that are for components that can be ‘view’, ‘edit’,

or ‘edit once’. On/Off permissions are defined for the different components: button (BN),

radio buttons (RB), drop down (DD), checkboxes (CB), date picker (DP), spinner (SP),

and text fields (TF), while data permissions are defined for text fields (TF). A text field has

to be On in order for view/edit/edit once to be defined. As a further example, the three

screens shown in Figure 4.2 show full access to all components (first screen) and then the

edit button is restricted by disabling the button (second screen) or by hiding the button

(third screen).

Figure 4.1. A Screen with Components (left) that are Customized (right) in CT2.

 91

Figure 4.2. A Screen with the Edit button enabled (screen 1), disabled (screen 2), and

hidden (screen 3).

 To utilize as an example, the Nurse role permissions as given in Table 3.5 have

been augmented with a new Sub_Nurse role as shown in Table 4.1. The Sub_Nurse role is

also a role that could be held by a nurse user such as Karen, and is intended to be for those

nurses that are substituting at the school for one day. As a result, the role set for CT2 now

contains: RCT
2 = {r1 = <rID1 , AT>, r2 = <rID2 , Coach>, r3 = <rID3 , Nurse>, r4 = <rID4 , Parent>,

r7 = <rID7 , Sub_Nurse>} (see Defn. 7 again) and a new user role authorization can be added

for Karen, ura = <uId1, rID7>, which means that Karen can play either the Nurse or

Sub_Nurse role, and is able to delegate both roles. The permissions for the Sub_Nurse role

are given in Table 4.1; notice that the role is no longer allowed to modify any information

(only View) and has limited buttons enabled. An example of the way that the ‘Student’

screen would look like to a user with a Sub_Nurse role is depicted on the right screen in

Figure 4.1.

 92

Screens/Components Nurse Sub_Nurse
Home Tab
 ‘Enter New Student’ BN
 ‘Retrieve Open Cases’ BN
 ‘Last Name’ TF
 ‘First Name’ TF
 ‘Search’ BN

Show
Enabled
Enabled
View/Edit
View/Edit
Enabled

Show
Enabled
Disabled

View
View

Enabled
List Tab
 ‘Enter New Student’ BN
 ‘View Student Info’ BN
 ‘Edit’ BN
 ‘Add’ BN

Show
Enabled
Enabled
Enabled
Enabled

Show
Enabled
Enabled
Disabled
Disabled

Student Tab
 ‘First Name’ TF
 ‘Middle Initial’ TF
 ‘Last Name’ TF
 ‘Gender’ DD
 ‘Date of Birth’ SP
 ‘Date of Past Concussions’ DD
 ‘State’ DD
 ‘City/Town/Region’ DD
 ‘District’ DD
 ‘School’ DD
 ‘Save’ BN
 ‘Cancel’ BN

Show
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
View/Edit
Enabled
Enabled

Show
View
View
View
View
View
View
View
View
View
View

Disabled
Disabled

Cause Tab
 ‘Location of Incident’ DD
 ‘If Sport’ DD
 ‘Others/Details’ TF
 ‘Contact Mechanism’ DD
 ‘Impact Location of Head’ DD
 ‘Head Gear Usage’ DD
 ‘Save’ BN
 ‘Cancel’ BN

Show
Enabled
Enabled
View/Edit
Enabled
Enabled
Enabled
Enabled
Enabled

Show
View
View
View
View
View
View

Disabled
Disabled

Symptom Tab
 ‘Mild and Severe Symptoms’ BN
 ‘Hour(s)’ TF
 ‘Minute(s)’ TF
 ‘Second(s)’ TF
 ‘Were Parents Notified?’ DD
 ‘Removed From Activity’ DD
 ‘Removed by’ DD
 ‘Concussion Assessment Tool’ DD
 ‘Additional Comments’ TF
 ‘Save’ BN
 ‘Cancel’ BN

Show
Enabled
View/Edit
View/Edit
View/Edit
Enabled
Enabled
Enabled
Enabled
View/Edit
Enabled
Enabled

Show
View
View
View
View
View
View
View
View
View

Disabled
Disabled

Follow Up Tab
 ‘Lingering Symptoms’ BN
 ‘If Other, Please Specify’ TF
 ‘All Symptoms Resolved in’ DD
 ‘Concussion Diagnosed by’ DD
 ‘Post Concussive Syndrome’ DD
 ‘Medical Imaging’ DD
 ‘Additional Comments’ TF
 ‘Save’ BN
 ‘Cancel’ BN

Show
Enabled
View/Edit
Enabled
Enabled
Enabled
Enabled
View/Edit
Enabled
Enabled

Show
View
View
View
View
View
View
View

Disabled
Disabled

Return Tab
 ‘Days Absent From School’ TF
 ‘Schedule/Activity Modification’ DD
 ‘504 Plan Required’ DD
 ‘Date of Return to Learn’ SP
 ‘Date of Return to Full Part.’ SP
 ‘Save’ BN

‘Cancel’ BN

Show
View/Edit
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled

Hide
View
View
View
View
View

Disabled
Disabled

Table 4.1. Screen and Component Permissions for Nurse and Sub_Nurse roles.

4.2. ER Diagram Subset for Unified Model
This section discusses a subset of the entity relationship diagram of Figure 3.3 in

Section 3.7 that realizes the subset of the unified security model from Sections 3.1 to 3.5.

 93

that supports the Direct UI Modifications option. To support the security enforcement

generation process for the Direct UI Modifications option, a subset of Figure 3.3 is shown

in Figure 4.3 and is able to represent screen, component, and screen interaction permissions

(see Defns. 13, 14, 15, and 16 in Section 3.3 of Chapter 3), for each role (see Defns. 6 and

7 in Section 3.2 of Chapter 3). As needed, revisit Table 3.11 for an explanation of each

entity and its relationship to other entities and the unified security model. Figure 3.3

represents the generalized structure of the mobile application (via the entities

mobile_apps, screens, screen_components) and the permissions (via the entities

users, roles, user_roles, delegation_permissions, screen_permissions,

component_permissions, and screen_interactions). In support of RBAC and as

shown in Figure 4.3, the mobile_apps entity contains the name and unique identifier of

the mobile app, and the users, entity contain information the name and identity of all

users. Next, the roles entity contains the name of the roles (role_name field in the

roles entity shown in Figure 4.3) that are available as well as a unique role_id assigned

to each one of these. To keep track of the roles for each user, the user-roles entity is

utilized; remember a user can have multiple roles but be restricted to a single role. This

role_id is utilized to determine if a role has access to a specific screen of a UI, to a

component in that UI screen, and the sequence of screens it is allowed to view. Since

screens, components, and screen interactions could be accessed by more than one role we

define the screen_component_roles entity which maps the subset of role ids that have

access to a screen, component, or screen interaction by assigning an id (represented as the

role_mapping_id field in the screen_component_roles entity shown in Figure 4.3)

to the subset and adding this id as a foreign key in the screen_interactions,

 94

screen_permissions, and screen_components_permissions entities. This

role_mapping_id would leverage the prior pharmacy example, where the pharmacy

technician role would only be allowed to access UI screens 1, 2, and 4. If a role by role_id

has access to a specific screen (the role is within the subset of roles allowed to access the

screen), then the second step of the permission process would be to define components of

the screen that such role can access; otherwise, if role_id is not assigned to a screen (the

role is not within the subset of roles allowed to access the screen), the screen and its

components are hidden.

In this model, users can only have one role, and roles can have one or more

permissions. In order to capture permissions, the entities screen_permissions,

screen_components_permissions, and screen_interactions are utilized,

where: the screen_permissions entity supports the definition of the permission for a

role with respect to the entire screen (Defn. 13 in Section 3.5 of Chapter 3), the

component_permissions entity supports the definition of the permissions for a role

with respect to the components of a screen (Defn. 14 in Section 3.5 of Chapter 3), and the

screen_interactions entity supports the definition of the permissions for a role with

respect of allowable screen sequences (Defn. 15 in Section 3.5 of Chapter 3). To bring the

concepts together, Figure 4.4 illustrates the authorization process that assigns a user one or

more roles (while limiting a user to one identified role per session) and optional delegation

permissions and then defines screens, their components, and their interactions on a role-

by-role basis against all mobile application screens/components. Note that both the on/off

and data permissions are for the components that are captured in the

screen_components_permissions entity.

 95

Figure 4.3. A Subset of the ER Diagram from Figure 3.3. for Supporting the Unified

Security Model for the Direct UI Modifications Option.

In support of DAC and as shown in Figure 4.3, there are three entities that hold the

necessary data required for delegation permissions. First, the original_users_roles

entity holds the original user’s identifier (user_id) and the role (role_id) the user is

allowed to delegate (Defns. 22 and 23 in Section 3.5 of Chapter 3). Second, the

delegated_users_roles entity holds the delegated user’s identifier (user_id) and

the role (role_id) that the delegated user can receive as part of their delegated

permissions (Defns. 24 and 25 in Section 3.5 of Chapter 3). Third, the frui_delegation

entity holds the permission rules for Full RBAC UI (FRUI) Delegation (Defn. 28 in Section

3.5 of Chapter 3). Basically, ou_or_id and du_dr_id act as foreign keys for the data

stored in the original_users_roles entity and the delegated_users_roles

 96

entity, respectively, in order to determine which original user (ou_or_id) is delegating

his/her role, screen permissions, component permissions, and screen interactions to which

delegated user (du_dr_id). The poda field is a Boolean value that determines whether

the delegated user can pass on the delegated permissions to another delegated user (poda

= true) or not (poda = false) (Defn. 27 in Section 3.5 of Chapter 3). The last two fields of

the frui_delegation entity, represent when the delegated user can start to have access

to the delegated permissions (start_time) and when the access to such permissions end

(end_time) the period of time that a delegated user has the access to the delegated

permissions. Moreover, the full_rbac_ui_perm_screen,

full_rbac_ui_perm_screen_components, and

full_rbac_ui_perm_screen_interactions entities hold the delegated screens

permissions, delegated screen components permissions, and delegated screen interactions

permissions, respectively, for delegated users.

Figure 4.4. Authorization Process with respect to Screens and Components.

The authorization policies for a generalized mobile application as defined via the

process in Figure 4.4 are then enforced as shown in Figure 4.5 The enforcement process

begins with the mobile application authenticating the user, verifying the credentials, and

then retrieving the user’s access control attributes to customize the mobile application

 97

(Defns. 11, 12, and 28 in Sections 3.2 and 3.5 of Chapter 3). The right hand side of Figure

4.5 (red box) utilizes the data in the screen permissions, screen components permissions,

screen interactions, and delegation permissions entities (see Figure 4.3 again) to determine

a custom version of the UI of the mobile application by role and optional delegation

permissions (Defns. 16 and 28 in Sections 3.3 and 3.5, respectively). Notice that the screen

access instances are shown for a role and delegation with screens 1, 2, and 4 authorized.

The Accessible Screens part of Figure 4.5 illustrates a basic idea of the screen permissions

(Defn. 13 in Section 3.3 of Chapter 3). Also, the Component Access table on the right side

of Figure 4.5 illustrates the components of the aforementioned screens that have been

authorized to a specific role, thereby realizing the component permissions (Defn. 14 in

Section 3.3 of Chapter 3). There are no screen interaction permissions in Figure 4.5, since

we assume the mobile application consists of a set of tabs.

Figure 4.5. Enforcement Process for a Mobile Application.

For RBAC, the permissions as captured in Figure 4.3 support the four API calls of

the prior section and are executed in the CT2 mobile application’s code to enforce the

permissions of each role to determine the screens and their components for each user by

role. CT2 utilizes a MySQL database to store its data and relies on API commands to

 98

retrieve data for display on the UI and to store new concussion incidents (or changes) into

the database. Figure 4.6 illustrates the result of the screen and component permissions for

the Nurse, Parent, and Coach roles. The Nurse role has all of the tabs active (first screen

of figure 4.6). The Parent role has limited access to the tabs and also, although users with

the Parent role can view the ‘Symptom’ and ‘Follow Up’ tabs, they are not allowed to

update that information (second screen of figure 4.6). Finally, the Coach role has the first

four tabs active and has limited access to the information it can view/modify (third screen

of figure 4.6).

Figure 4.6. Result of RBAC in Connecticut Concussion Tracker (Nurse, Parents, and

Coach view).

 For DAC, delegation is a process that is initiated by a user in order to pass on

credentials to another user for a restricted period of time. From the DAC model definitions

in Section 3.5, in support of DAC for the UI, the relevant definitions are: Defns. 22-27 for

original user, original role, delegated user, delegated role, delegation authority, and pass

on delegation authority, respectively. Only Full RBAC UI Delegation, as given in Defn.

28, is supported, which means that an original user must delegate all of the permissions

 99

associated with his/her original role, to a delegated user with delegated role with possible

pass on delegation authority for a given time period. Assume that the original user ou Karen

< uID1, Karen, TS, SS-r, L*-w > has two user role authorizations ura = {<uID1, rID3>,<uID1,

rID7>} for her Nurse and Sub_Nurse role and is interseted to delegating the nurse or to the

delegated user du Lois, a substitute school nurse for one day: del = < uID1, rID7, uID5, rID7, <

γ, χ, λ >, false, {2017-07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00} >. Note that

< γ, χ, λ > is as defined in the Sub_Nurse column in Table 4.1. Karen is interested in only

giving Lois the ability to review information on current students and not be able to enter

new students that have concussions that day at the school.

4.3. Access Control API and Programmatic Changes to UI
The final part of the direct UI modifications option explains the programmatic

changes that must be made to the mobile application itself to allow for the screens and their

components to be customized. This involves the definition of an API for access control

enforcement using the database of Section 4.2 coupled with programmatic changes that are

made just one time. Since the permissions are taken from the database of Figure 4.3, these

can be changed and the mobile application’s UI will adjust the look-and-feel based on the

defined role/delegation permissions without any additional code-level changes. The entity-

relationship diagram in Figure 4.3 was realized as a relational database using MySQL. To

support interactions from the mobile application to the MySQL database of permissions,

an Access Control Application Programming Interface (API) as given in Table 4.2 was

created which can be utilized to support the application wrapper for the direct UI

modifications option as illustrated in Figure 1.4. Moreover, additional API calls were

 100

created in order to retrieve general information about the available access control policy as

given in Table 4.3. The Access Control API calls are invoked within the mobile

application’s source code and return data from the queries in JSON format.

There are four main API calls that will constitute the wrapper that has been defined

against the entities in Figure 4.3 and realized in the MySQL database, which are briefly

described along with the incorporation of their usage within the code of the mobile app.

The first API call, GET /screenaccesses/:roleID/:screenID, returns a Boolean

value true (JSON format: [{"access":"1"}]) if the role represented by role_id has the

permission to display a particular UI screen screen_id, and false otherwise (JSON

format: [{“access":"0"}]). This first API call in Table 10 queries the screen_access

entity of Figure 4.3 which was illustrated in Figure 18, and would return true for screens

1, 2, and 4, and false for screens 3 and 5. This requires a change to the mobile application

code to include a conditional statement that only displays a particular screen of the UI

based on the screen_id and role_id if there is permission defined in the

screen_access entity.

The second API call in Table 4.2, GET /returnAllowableComponents/:

roleID/:screenID, returns a table of component permissions for the

role_id/screen_id combination that identifies the on/off and data permissions on

buttons, spinners, date spinners, radio buttons, checkboxes, drop downs, and text fields.

The API call begins by querying the component_access entity of Figure 4.3, which was

illustrated in Figure 4.5 by the three permission tables for screens 1, 2, and 4 (Component

Access table in the figure). Then, the API call retrieves the component permissions for a

single screen of the UI that is authorized to that role. As part of the process to display the

 101

components of an allowable screen s, the mobile application’s code is modified with

conditional statements for the various components of each screen. Specifically, for the

on/off permissions, the button (BN), radio button (RB), drop down (DD), checkbox (CB),

date picker (DP), and/or spinner (SP) components are disabled for all non-allowed actions

which are the ‘no’ entries as shown in the Component Access table of screen 1 for Figure

4.5. For the data permissions, each text box is set accordingly based on View, Edit, or Edit

once. Note that the APIs are not called in sequence rather are utilized in multiple locations

throughout the mobile application’s source code.

The third API call in Table 4.2, GET /screensequences/:roleID, utilizes a

role_id to look up all of the allowable screens (via a database query to the

screen_access entity for role_id) and using this information, returns the sequences

of permissible movement/interactions among all allowable screens of the UI. First, the API

call utilizes the screen_interactions entity in Figure 4.3 in order to find all of the

allowed interactions among screens of the UI for role_id and only enable those

interactions that occur among the allowable screens. The API call is then utilized to set

behavior related information to buttons (BN) on a particular screen. For a button that is

enabled, the information in screen_interactions for the given role and its allowable

screens will allow the button to cause the screen to be reached; a button not enabled will

not link to another screen.

The fourth API call in Table 4.2, GET /delegationPermissions/:userID,

takes the user’s id as a parameter in order to determine if the user in session is a delegated

user. If the user has been delegated with permissions, then the API call will return the

delegated role the user can assume; the screen permissions, component permissions, and

 102

screen interaction permissions of the original user (user who delegated his/her permissions

to the delegated user); and, the period of time the delegated user is allowed to access the

delegated permissions.

Access Control Service Name Description

RBAC

GET /screenPermissionsRBAC/:roleID/
:screenID

Returns if a role has permission to access a screen
or not

GET
/allowableComponentsRBAC/:roleID/:scr
eenID

If the specified role has access to the specified
screen then this service returns the components the
role has access to of the screen

GET /screensequences/:roleID Gets the allowed screen sequences for an specific
role in a mobile application

DAC

GET /delegationPermissions/:userID

Checks if user has delegate permissions and, if so,
returns the delegation permissions the user has
(delegated role, screen permissions, component
permissions, and screen interaction permissions).

Table 4.2. API Services for RBAC & DAC Security Enforcement.

Service Name Description
GET /screens Gets all of the screens of a mobile application
GET /screens/:screenId Gets a screen of a mobile application by screen id
GET /screens/:screenname Gets a screen of a mobile application by screen name
GET /screenobjects Gets all the components of all screens in a mobile application
GET /screenobjects/:screenId Gets the components of a screen by screen id
GET /screenobjects/:objectName Gets a component by component name
GET /screenobjects/:objectID Gets a component by component id
GET /screenobjectslabels/:screenID Gets the names of all the components of a screen in a mobile application
GET /screensequences Gets all of the possible screen sequences in a mobile application
GET /screensequences/:objectID Gets the allowed screen sequences for an specific component action in a

mobile application
GET /screensequences/:screenID Gets the allowed screen sequences for an specific screen action in a mobile

application
GET /delegationPermissions/ou Gets the user id and role id of all the original users of a mobile application
GET /delegationPermissions/du Gets the user id and role id of all the delegated users of a mobile application

Table 4.3. Additional API Services for the Direct UI Modifications Option.

To this point, we have shown the different components that our approach contains

and the way that these are incorporated in a mobile application in support of the direct UI

modifications option via an application wrapper. Next, we review the way that a mobile

application maintains its functionality after adding these direct changes. First, we identify

the screens and the objects of a screen of the mobile application to which RBAC is to be

applied. Then, we assign a unique id to each of these components and store them as tables

in a database as shown in Figure 4.3. The role of the user is retrieved and stored in a secured

session variable (passed over https) through the means of an API call (part of the

application wrapper) and, the identity of the user is verified at each API call the user makes.

 103

Using this as a basis, to enforce the policies established in the database with the mobile

application, we create a set of API calls. These calls will return if a component can be

shown/edited or if it needs to be disabled/hidden. Each call will check if the component

that we are trying to apply the policy to exists in the database; if it doesn’t, then the API

call will return that the component is enabled for the role that is in session as no RBAC

permissions were found in the created policy. In support of DAC, if the user is a delegated

user, we assign him/her the role of the original user and grant him/her access to all the

permissions of the original user for the specified period of time by the original user. By

making these changes, the functionality of the mobile application will not be affected since

the API calls that are being added to the source code of the mobile application always

return a value regardless if the component does not have a policy stored in the database

anymore. In addition, storing the role of users in a secured session variable will prevent a

user from tampering its role and it does not require any changes in the source code.

Note that the approach presented in this section supports the Direct UI

Modifications option that was part of the Figure 1.4 configurable framework for RBAC.

The direct UI modifications option focuses on RBAC (with optional DAC) of the UI of a

mobile application’s screens and their components, and then customizes the look-and-feel

by role that is defined with varied screen, component, and screen interaction permissions

stored in a database. When permissions change, only the database needs to be changed, and

the mobile application will adjust appropriately. However, one disadvantage of the direct

UI modifications option is that programmatic changes are required in the mobile

application itself through the addition of condition statements and calls to APIs that return

 104

allowable screens and permissions on components in order to adjust the look-and-feel of

the mobile application (via the application wrapper).

4.4. A Guide for Programmatic Changes in a Mobile App
In this section, we discuss the programmatic changes that need to be performed in

a mobile app that is utilizing our Direct UI Modifications option to include permission

checks at the code level. The programmatic changes require:

1) Identification and storage of security policies in a ER Diagram of Figure 3.3

and subset as given in Figure 4.3: The first step requires the designer(s)/developer(s) of

the mobile app to identify the screen(s) that are to be securely controlled that includes the

respective components on each screen. The second step requires the

designer(s)/developer(s) to define a set of roles/delegation capabilities that are available in

the mobile app and assign one of the defined roles/delegation permissions to each of the

users of the mobile app. The third step is for the designer(s)/developer(s) to define and

generate the permissions by set of roles for each of the screens/screen components/screen

interactions (see Defns. 13-16 in Section 3.3 of Chapter 3) and to store these permissions

in the data source accessible to the mobile app.

2) Implementation of the Access Control API Calls: Developer(s) need to

incorporate the RBAC and DAC API calls server-side as shown in Table 4.2 in order to

allow the source code of the mobile app to access the security policies stored in the data

source via these calls.

3) Retrieval of the security policies utilizing the source code of the mobile app:

These programmatic changes require the developer(s) to obtain the security policies in the

source code of the mobile app and utilize them throughout the code by adding the API

 105

services into the mobile application code-base so that they may be called by sending

requests in JSON format. The response of the JSON request will also be in JSON format.

4) Enforcement of the security policies throughout the source code of the mobile

app: After the developer(s) add the code that allows the communication between the

security policies stored in the data source and the mobile app, the next step is to enforce

the obtained security policies throughout the mobile app. The security policies can contain

delegation permissions, screen permissions, screen component permissions, and screen

interactions permissions. Each one of these permissions must be carefully inserted in

specific locations of the mobile app code:

• Screen permissions: These permissions need to be retrieved after a user

manages to log in successfully into the mobile app and before the screens of the

app are displayed. The screens are obtained using a for loop and, if the user

does not have access to a screen based on his/her role, then that screen is hidden.

If he/she does have access to a screen, then the screen id will be stored in an

array to be utilized at a later point to obtain the screen component permissions

for those allowable screens.

• Screen Component permissions: Once the array of allowable screens is defined,

the developer must create a file that maps the components that are found

throughout the source code with the components stored in the database by

assigning the same id to both. Then, for every component that has a permission,

the developer needs to insert if/else conditions that determine what actions a

user can do with his/her role. The conditions can be performed as follows:

 106

Ø if the user has permission to edit/click the component, then display the

component in the mobile application;

Ø if the user can edit the component once, then display the component

once and afterwards send a flag to the database indicating that the

specified user cannot edit the component anymore;

Ø if the user can only view the contents of a component, then such

components needs to be disabled permitting the user to view but not

modify the component;

Ø otherwise, if the user does not have permission to access the

component, then the developer can either disable the component (and

don’t show the contents) or hide the component.

• Screen Interactions permissions: These type of permissions are utilized when a

user is requesting to access another screen through the means of a button. To

support screen interactions, the developer needs to call the screen interaction

service using the component id of the button and the role of the user as

parameters when the user clicks the button (in the function that determines the

action to be done when the button is clicked). This will return to which screen

the user can move on as a result of clicking a navigation button.

• Delegation permissions (Optional): When a user logs in successfully to the

mobile app, we need to verify if he/she is a delegated user. If the user is in fact

a delegated user, we assign the delegated role to such user and continue

verifying the remaining permissions with this assigned role.

 107

Sample programmatic changes related to screen permissions for the CT2 mobile app are

given in Appendix A.

4.5. Related Research of Customizing UIs
This section reviews related research in the customization of user interfaces in a

number of different areas: adaptive UIs (Eisenstein, Vanderdonckt, & Puerta, 2001; Aikiki,

Bandara, & Yu, 2012) that are characterized by the ability to change based on the needs of

different users, similar to our approach to customize the UI by role; two efforts (Lin &

Speedie, 2003; Aikiki, Bandara, & Yu, 2013) that create roles and modify the UI software

in an automated process via specialized IDE; and, the work of Stormpath (Hazelwood,

2012) for code level modifications to support RBAC. The two efforts in adaptive UI

(Eisenstein, Vanderdonckt, & Puerta, 2001; Aikiki, Bandara, & Yu, 2012) are targeting a

versatile modifiable UI. The first work (Eisenstein, Vanderdonckt, & Puerta, 2001) focuses

on changing the UI and capabilities depending on three components: on the platform model

(computer systems that can run the UI), on the presentation model (visual appearance of

the UI), and on the task model (representation of the tasks a user may want to perform in

the software) of the mobile device. While the aforementioned proposed approach is able to

change the components of a software depending on the three components mentioned, it

does not enforce access control meaning that all users of the software have access to all of

the features different to our work which changes the look-and-feel of a mobile application

depending on a user’s role/delegation permissions. The second work (Aikiki, Bandara, &

Yu, 2012) attempts to modify the UI per user needs of usability; to achieve this, the work

introduces a tool controlled by a developer in which he/she can add code and modify the

UI’s components. In addition, the approach mentions RBAC to secure resources (which in

 108

this case is the UI) but does not go into details about the way that the UI would look like if

access control was applied. Our proposed approach is automatic meaning that the developer

need to place the security checks throughout the source code of the mobile app only once

and after that a security administrator could modify the UI permissions through the means

of a separate UI and, our approach addresses the way that the UI of the mobile app will

look after access control mechanisms have been enforced.

The next two efforts combine and use adaptive UIs in mobile devices in conjunction

with RBAC (Lin & Speedie, 2003; Aikiki, Bandara, & Yu, 2013). The first work (Lin &

Speedie, 2003) has proposed an approach that establishes roles and permissions for those

roles in order to show a user only the features he/she has access to. Nevertheless, the

approach is more concerned about only showing the features that users might use instead

of showing the user all of the features he/she has access to like our proposed approach does.

The second work (Aikiki, Bandara, & Yu, 2013) is an extension of (Aikiki, Bandara, &

Yu, 2012). Basically now, instead of allowing users to see all of the features of the software,

the approach focuses on creating roles and modifying the UI of the software according to

these through the means of an IDE the authors developed. Apart from this, the approach

also focuses on how the components of the software would look like depending on the

user’s role. For example, a software has two roles: the Sales Officer and the Novice. Both

roles can view the same features but they will have access to them in a different way since

one user is more experienced than the other. We consider that while the aforementioned

approach contains adaptive UI capabilities based on role it creates additional overhead

since they need to determine which UI to show a user at runtime in addition to determining

which components the role of the user has access to.

 109

In terms of related work in RBAC in UI on mobile apps, an article presented by

Stormpath (Hazelwood, 2012) consists of modifying code in an application in order to

decide who has access to a specific resource. For example, suppose we have a mobile app

that contains two roles: teacher and student. An implicit way of saying that these roles have

access to a specific resource would be to do an if condition that states that if the user has

the role of teacher or if he/she has the role of student then the resource is available,

otherwise the resource (API) is hidden. Nevertheless, this approach does not handle the

case where the owners of the application decide to add a new role (parent) that also has the

permission to access that specific resource. In that case, the developers would need to go

back to the source code and add to the condition that the role of parent is also allowed to

view the resource. One solution to this problem would be to create an if condition that takes

the username/role of the user as well as the id of the resource. This information gets

processed against a security policy, and, depending on which permissions are defined, that

specific user/role combination will be granted/denied permission to the resource.

Therefore, the article argues that utilizing explicit access control is a better approach than

to utilize implicit access control. In other words, instead of hard coding which roles have

permission to a certain resource, the resource itself will be the one checked. This leads to

a number of benefits: the amount of coding can be reduced, the security model is more

flexible, the security policies can be modified without making changes to the code, and,

the resource is more protected. However, despite of that, the proposed solution intends to

basically enforce RBAC capabilities in the UI of a mobile application it does not consider

DAC which can be utilized to augment security as we do in our approach.

 110

Chapter 5
The Intercepting API Calls Option

Health Information Exchange (HIE) provides a more complete health record with

the aim to improve patient care with relevant data gathered from multiple health

information technology (HIT) systems. In support of the emergence of cloud computing,

in healthcare, the Meaningful Use Stage 3 (Himss, 2016) guidelines require all health

information technology (HIT) systems (e.g., electronic health records (EHR), personal

health records (PHR), etc.) to have API services to access, modify, and exchange health-

related data. If services are the primary means of access, there must be a way to control

who can invoke which service at which time. This necessitates the consideration of the

usage of RBAC, MAC, and DAC to control access to the services that are utilized by a

mobile application. To address the aforementioned, this chapter presents the Intercepting

API Calls option of our configurable framework for controlling access to the API of the

mobile app. Remember, from Section 1.4 of Chapter 1, there were two levels of API

control: a security layer between the UI and mobile application API replicates the mobile

application’s API by creating a mirrored set of services that invoke the original API

services so that each call can be intercepted to add RBAC, MAC, and or/ DAC security

checks as presented in this chapter; and, a second security layer between the two different

APIs (mobile app and server-side) is accomplished through the creation of a server

interceptor API associated with a cloud computing infrastructure to intercept invocations

for RBAC, MAC, and DAC checks, to be presented in Chapter 6. We have evolved RBAC

and MAC to support permissions on services (as opposed to the usual object view) at a

model level applied to a setting where a mobile application is using RESTful APIs and, by

 111

adding delegation permissions to services in support of DAC. The resulting RBAC, MAC,

and DAC service-based model as presented in Sections 3.1 to 3.5 of Chapter 3 for the

unified security model can be incorporated by creating mirrored APIs can intercepting calls

from the mobile app to the mobile app API. The work in this chapter on the interceptor

supports Contribution D: Access Control Security Enforcement Code Generation and

Interceptors.

The remainder of the chapter has seven sections. Section 5.1 motivates the

Intercepting API Calls option by explaining the important role of the API in accessing

information, especially PPI and PHI. Section 5.2 presents the high-level processing of the

Intercepting API Calls option using the classic architecture of the User Layer, Presentation

Layer, Business Layer, and Data Layer. Section 5.3 explores the underlying processing of

the Intercepting API Calls option by examining the way that API services are categorized.

Section 5.4 examines the interactions and infrastructure for the Intercepting API Calls

option. Section 5.5 explores the algorithm generation process for the Intercepting API Calls

option. Section 5.6 illustrates the Intercepting API Calls option via the CT2 mHealth

application. Finally, Section 5.7 discusses related work in security and access control

mechanisms for mobile applications.

5.1. Motivating the Intercepting API Calls Option

The idea behind the Intercepting API Calls option is to secure highly-sensitive

information that is present in mobile applications and is accessible via an API. To support

this focus, we assume that data transactions between a mobile app and a server are

performed via an API. Through this mobile app API, we seek to provide a means for a user

playing a role, and possibly contain a clearance, to be constrained to deliver/store data

 112

when utilizing the mobile app via the interception of the API calls. According to Cobb

(Cobb, 2014), every API call should be verified to ensure that the user accessing the mobile

app has the necessary permissions to manage the requested data. The Intercepting API

Calls option makes use of the ability to define permissions on the services of the API in

three different ways. First, the API can be partitioned into Secure/Unsecure services (see

Defn. 17 in Section 3.4 of Chapter 3) where the Secure services can be assigned on a role-

by-role basis (see Defn. 19 in Section 3.4 of Chapter 3), thereby supporting RBAC. Second,

the API can be partitioned into Labeled/Unlabeled services (see Defn. 18 in Section 3.4 of

Chapter 3) where each Labeled service has a classification and Labeled services can be

assigned based on a user’s clearance (see Defns. 20 and 21 in Section 3.4 of Chapter 3),

thereby supporting MAC. Third, if an API is partitioned by using either RBAC or MAC,

an original user (Defn. 22 in Section 3.5 of Chapter 3) or a delegated user with pass-on

delegation authority (Defns. 24 and 27 in Section 3.5 of Chapter 3) can delegate a full

(Defns. 29 and 31 in Section 3.5 of Chapter 3) or a partial (Defns. 30 and 32 in Section 3.5

of Chapter 3) set of their services to a delegated user, thereby supporting DAC.

The Direct UI Modifications option reviewed in Chapter 4 required custom

programmatic changes that include conditional checks (user/role) and an access control

security API, and as a result may not be possible in cases when the source code of the

mobile app is unavailable. The Intercepting API Calls option requires minimal or no

changes to the UI of the mobile application other than for the need to identify a given role

for a session being initiated by a user. In this case, we incorporate the functionality of API

calls into REST or API services that are utilized to intercept the API calls to disable the

delivery of content to the user. Recalling the pharmacy example, the pharmacy technician

 113

could see all five screens, but information on screens 3 and 5 would be blocked in the

display of data. For the case where the pharmacy technician attempts to utilize screens 3

and 5, if they do attempt to make a positive action to search or insert information, this

would be intercepted at the server side to disallow the attempt. Basically, the access control

checks on defined permissions that have been discussed for the approach in this chapter

would be before the REST/API calls in the case of the Intercepting API Calls option and

after the REST/API calls for the Server Interceptor API option (discussed in Chapter 6).

In addition, we acknowledge one of the most recognized options to display (deliver)

and manage (store) dynamic data in a mobile app is to utilize the concept of API. However,

before attempting to implement an API, one must evaluate their security risks and their

effective management (Collet, 2015). For example, consider the recent security breaches

in Snapchat and Instagram APIs. Snapchat, a mobile app that enables users to view and

send self-destructive pictures and videos (Snapchat, 2011), had a data breach that affected

4.6 million users (Snapchat, 2013). The company quickly posted a statement revealing that

the vulnerability allowed individuals to compile a database that contained usernames and

phone numbers of users of the mobile app and, that this problem came from their private

API. To address this issue, Snapchat is attempting to identify which third-party applications

offered in the iTunes store and Google Play store are accessing their private API and any

application that uses it is accessing Snapchat’s information without their permission

(Zeman, 2015). Instagram, a mobile app that allows users to take pictures and share them

with family and friends (Instagram, 2010), had a password breach in 2015 (Dellinger,

2015). The breach allowed a third-party application to steal more than 500,000 usernames

and passwords, and used the information to post spam on Instagram accounts without

 114

permission. To remedy this, Instagram is now reviewing all of the applications that utilize

their API and adding new usage policies (Larson, 2015). Clearly both public and private

APIs need to be continuously secured and monitored to prevent disclosure of restricted

information from occurring. To address this issue, a number of companies have added

security and associated management mechanisms to APIs.

5.2. High-Level Processing of Intercepting API Calls Option
This section explores the high-level processing of the Intercepting API Calls option

with an emphasis on the way that calls from the mobile application to the mobile app API

are intercepted. The Intercepting API Calls option defines a new API that mirrors the

original mobile app API (in terms of signatures) and serves as a wrapper and includes calls

to the original mobile app API to proceed based on access control checks that control the

data that is displayed (delivered) and managed (stored). In this section, the Intercepting

API Calls option is explored in detail; this option offers the versatility of intercepting

original API calls that have no impact on the source code of the mobile application. We

differentiate between three different APIs in the discussion: the mobile app APIs that are

used by the mobile app (original mobile app APIs); the intercepting mobile app API that

has the same signatures as the mobile app APIs to replace these and provide permission

checks; and the renamed mobile app APIs (former original mobile app APIs) that are

wrapped by the intercepting mobile app API.

For the general architecture of a mobile app, we employ a client mobile app

(Microsoft Corporation, 2008) augmented with the intercepting API-based approach. We

focus on client applications since these are easier to maintain and assume that the app is

always fully connected to the Internet. This assumes that all of the data is processed server-

 115

side and does not contain cache and local data. The architecture consists of four main layers

as shown in the left side of Figure 5.1: the User Layer which symbolizes the users of the

mobile application; the Presentation Layer which consists of the UI components of the

mobile application; the Business Layer which contains the logic of the mobile app (e.g.,

libraries, APIs, source code); and, the Data Layer which contains all of the data the mobile

app manages (e.g., retrieves, inserts). The right side of Figure 5.1 details the architecture

of the intercepting API-based approach across the four layers in three groups. The first

group, Role/Clearance/Delegations Assignment, involves the user layer and contains the

users of the mobile app and their assigned roles/clearance/delegations. The second group,

Define Access Control Permissions on API Services, spans the presentation and business

layers and contains the original mobile app API services to retrieve/insert data from/into

the data source. This group is utilized to define access control permissions on a role-by-

role, clearance, and optional delegation basis on which mobile app API services are

authorized to each role/clearance/delegation, which in turn is assigned to different users.

Once access control permissions are defined on the mobile app API, our approach can

intercept API services utilized by the mobile app in order to perform security and

permissions checks. To transition from the second to third group, our intercepting API

based approach utilizes the data layer as a pass via the renamed API service calls, and as a

result, does not require modifying the source code of the mobile app in order to achieve.

Lastly, the third group, Enforce Access Control Permissions on API Services, contains the

RBAC, MAC, and DAC policies that need to be incorporated in the original data source(s)

so that they can be enforced. This includes a new set of intercepting API services that must

be defined and then utilized to replace the original mobile app API services to enforce the

 116

defined access control policies to control the data that is displayed (delivered) and managed

(stored) on a user/role/clearance combination.

Figure 5.1. Intercepting API-Based Approach Architecture.

To illustrate the third group, Figure 5.2 details the modifications of the original API

services that are needed for interception. Specifically, for a mobile app, there is a set of

original mobile app API services, as shown in the left side of Figure 5.2. To maintain the

functionality of the mobile app and provide an ability to continue to invoke services by

name, the original mobile app API services are renamed (as shown on the right side of

Figure 5.2) in order to reuse the original name of the original service for the new

intercepting API services so that services from the mobile app remain unchanged (would

now be occurring against the intercepting services). For each original mobile app API

service, we define a corresponding intercepting API service, as shown in the bottom

(middle) part of Figure 5.2, that is able to: perform RBAC, MAC, and DAC security checks

for the user/role/clearance/delegation combination; call the corresponding mobile app API

service (if it is allowed); and then return either filtered data (retrievals) or success/failure

(inserts, updates, or deletes) status.

 117

 The mobile app is still able to invoke the same APIs by name and signature, which

are now the intercepting API services (with the same signature) that are able to step in and

interrupt the process. As a result, the intercepting API services act as a wrapper that adds

a security layer to the original API services. The dashed arrows in Figure 5.2 indicate that

the process of renaming the original API services as well as the process of creating the

intercepting file needs to be done only once. Therefore, the developer only needs to create

these files once and after that security administrators can manage the RBAC, MAC, and

DAC policies without modifying the server-side portion of the mobile app through the

means of a separate user interface. The solid arrow indicates the way that the API behaves

when a user makes a request through the mobile app; first, the request is intercepted in

order to be evaluated with the pertinent access control policies and then, depending on the

result, we either proceed to execute the request or send an error message to the user who

sent the request.

Figure 5.2. Conceptual API Process.

5.3. Categorizing Services of APIs
This section discusses the way that the API of a mobile app is viewed from a RBAC

and MAC security perspective in order to control who can invoke which service(s) of an

 118

API at which times, and the way that each service is viewed from a security standpoint. In

support of this process, we categorize the services on and API in different ways. From a

RBAC perspective, we partition the services of an API into two broad categories: secure

and unsecure services (Defn. 17 in Section 3.4 of Chapter 3). Secure services are a subset

of the API that require control from a security perspective and can be assigned to individual

roles (Defn. 19 in Section 3.4 of Chapter 3). Not all of the API services need to be in the

secure category; for example, API services to load drop downs, display web content, etc.,

may not need to be secure. The secure API services are the ones that lead to data that is

stored/edited/displayed that must be controlled by role. Unsecure services need not be

assigned and are available to any user. On the other hand, from a MAC perspective, we

partition the services of an API into two other categories: labeled and unlabeled services

(Defn. 18 in Section 3.4 of Chapter 3). Labeled services are a subset of the API that require

control from a security perspective and can be assigned to clearances. As mentioned in the

RBAC perspective for the secure category, not all of the API services need to be in the

labeled category. The labeled API services are the ones that lead to data that is

stored/edited/displayed that must be controlled by clearance and MAC properties (Defn.

20 in Section 3.4 of Chapter 3). Unlabeled services need not be assigned and are available

to any user. In addition to these categories, the mobile app API services can be delegated

by an original user or a delegated user with pass on delegation authority (Defns. 22, 24, 26

in Section 3.5 of Chapter 3) in four different ways: delegate all of his/her allowed Secure

services to a delegated user (Defn. 29 in Section 3.5 of Chapter 3), delegate a portion of

his/her allowed Secure services to a delegated user (Defn. 30 in Section 3.5 of Chapter 3),

delegate all of his/her allowed Labeled services to a delegated user (Defn. 31 in Section

 119

3.5 of Chapter 3) and, delegate a portion of his/her allowed Labeled services to a delegated

user (Defn. 32 in Section 3.5 of Chapter 3). To illustrate the aforementioned definitions,

Figure 5.3 depicts an extension of Figure 3.1 in Section 3.4 of Chapter 3 by including

delegation capabilities.

Figure 5.3. RBAC, MAC, and DAC Permissions for API Services.

5.4. Interactions and Infrastructure
This section discusses the interactions and infrastructure of the Intercepting API

Calls option. To begin, Figure 5.4 depicts the detailed interactions of the Intercepting API

Calls option within the configurable framework (see Figure 1.3 of Chapter 1 again). The

steps from the user’s perspective from left to right are: login to his/her mobile app account;

for successful login, extract the user’s role/clearance that is part of the login credentials;

store the extracted user role/clearance in a secure access token in order to use it in future

API calls; utilize the mobile app which results in multiple mobile app API calls and are

intercepted (data processing in top of Figure 5.4); and, the intercepted API call interacts

with the access control permissions and policies to enforce the defined security before

invoking the original mobile app API call. There are two possible requests that can occur

as an end result of the interactions: insert/update/delete requests where the data that the

user is trying to insert/update/delete is not allowed if the user/role/clearance combination

 120

does not have permission to do so; and, retrieve requests where the data that the

user/role/clearance combination is trying to retrieve is filtered according to his/her

role/clearance.

In the insert/update/delete request (via an intercepting mobile app API call in the

upper portion of the Access Control API oval in Figure 5.4), the request is intercepted to

perform the access control checks, and depending on the response, the action is either done

(the original mobile app API call is allowed) or not. In the retrieve request the user is trying

to retrieve data (via an intercepting mobile app API call in the lower portion of the Access

Control API oval in Figure 5.4), the data source performs this action but the mobile app

API is intercepted to allow access control checks to be performed. This allows the

intercepted API call to determine if the user has access to all/some/none parts of the data

with the resulting original API call returning data (all/some case) or null/error message

(none case).

 121

Figure 5.4. Interactions for Intercepting API Calls.

To manage which resources a specific role and/or clearance can access, we store

the access control policy in a database, a subset of the main entity relationship

diagram shown on Figure 3.3 of Chapter 3, represented in Figure 5.5 as an entity-

relationship diagram to support our service-based RBAC, MAC, and DAC approach.

Once the user’s role and/or clearance has been verified, we can access the specific

permission we want to evaluate through the means of an API service as stated in the

previous paragraph. The database would hold the roles and/or clearances for each user

of each mobile app along with the permissions for each role and/or clearance to each

HIT system supported with the HAPI FHIR server. Specifically, to track which

services of which FHIR RESTful APIs for each HIT are authorized by role and/or

 122

clearance to a user of a particular mHealth app. Moreover, the

secure_unsecure_services and the labeled_unlabeled_services entities

provides details of whether a user has access to the resource he/she requested or not

by his/her role or clearance, respectively. In addition, the security policy tables store

information about the available CRUD services, resources, roles (RBAC), clearances

(MAC), classifications (MAC), read and write constraints (MAC), and delegations

(DAC). Note that this ER diagram also applies to the Server Interceptor API option

of the configurable framework, which is discussed in Chapter 6.

 123

Figure 5.5. A Subset of the ER Diagram from Figure 3.3 for Supporting the Unified

Security Model for the Server Interceptor API option.

5.5. Algorithm Generation of Intercepting API Calls Option
This section reviews the algorithm, that is able to automatically generate the

intercepting API in support of the Intercepting API Calls option. The primary changes to

support the Intercepting API Calls option are made in the backend of the mobile app

 124

(server-side – bottom portion of Figure 5.1) and include the addition of RBAC, MAC, and

DAC security policies in a permission database to create the mapping from the original

mobile app API calls to the corresponding new intercept API calls as shown in Figure 5.5.

Each new intercepting API call has the same signature (same address and parameter) as its

original mobile counterpart, so that the intercepting API call can substitute for the original

API call of the mobile app to allow the aforementioned security checks for retrieve and

insert/update/delete requests. As a result, the intercepting API calls effectively wrap the

original mobile app calls. The mobile app now seamlessly invokes the intercepting API

calls. These intercepting API calls contain the appropriate RBAC, MAC, and DAC security

checks, adding a layer of security to enforce the policies. The renamed mobile app API

calls is invoked based on the outcomes of the security checks. The end result is that the

mobile app appears differently based on the user/role combination, to limit information

that is delivered (retrieve request) or that impacts the data that is stored

(insert/update/delete requests).

The intercepting API call option utilizes an algorithm to automatically generate the

intercepting code in support of Contribution D: Access Control Security Enforcement Code

Generation and Interceptors. Pseudo-code for the algorithm is shown in Figure 5.6. In order

to automatically generate the code for the Intercepting API Calls option, we need to create

a file that contains the same API calls as the original mobile app API via the generate

function Access_Control_API_Generator which has a parameter that contains an

array of all the API calls available in the mobile application (line 1 of Figure 5.6). For each

of the API calls in the array, we obtain the parameters (if any), which are stored in a

database and store these (line 5 of Figure 5.6). Once we obtain the parameters of the API

 125

call that is being evaluated, we can generate the heading of the intercepting API call

function by using the current API call as well as its parameters (if any) (line 6 of Figure

5.6). After generating the heading for the intercepting API call function, we then generate

the body of the API call, which contains the security policies for that specific call and

invokes the original mobile app API call if the user has access to it (line 9 of Figure 5.6).

The resulting heading and body of the current API call is stored in an array (line 11 of

Figure 5.6). Once all of the intercepting calls have been created, we traverse the array in

which they are stored in order to generate the intercepting file (line 13 of Figure 5.6).

1 Access_Control_API_Generator(API_Calls)
2 {
3 foreach(API_Calls as currentAPICall)
4 {
5 params = getParams(currentAPICall);
6 API_Call_Heading = generateHeading(currentAPICall, params);
7
8 /*API_Call_Body - Contains security policies and a call to the original API
 service. */
9 API_Call_Body = generateBody(currentAPICall);
10
11 API_Calls_Array = insert(generateAPICall(API_Call_Heading, API_Call_Body));
12 }
13 GenerateFile(API_Calls_Array);
14 }

Figure 5.6. Pseudo Code Algorithm for Generating Code of the Intercepting API Calls

Option.

 To demonstrate the algorithm in Figure 5.6, Figure 5.7 contains the actual PHP

code that we implemented in order to generate our approach to the API of the CT2 mobile

app. The function presented in Figure 5.7 is utilized to generate the services in the

intercepting API. In order to create a renamed API call for each of the original mobile app

API calls, we need the name of the service we are going to generate, if the service needs to

be secured by adding permissions and, the name of the file in which we add the generated

service (line 1 of Figure 5.7). Note that the permissions we add in each of the intercepting

services (if needed) are a layer of security that is not part of the original API services (lines

 126

3-13 of Figure 5.7). Basically, there are three different types of security permissions we

can enforce: permissions based on a user’s role, permissions based on a user’s clearance

and MAC properties and, permissions based on delegations. To verify if the user has access

to the requested service, we access the security policy stored in the database which contains

entities (secure_unsecure_services, labeled_unlabeled_services,

frs_delegation, prs_delegation, fms_delegation, pms_delegation entities

shown in Figure 5.5 of Section 5.4) that specify the requested service’s role/classification

(lines 3-7 and lines 11-13 of Figure 5.7). If the role/clearance that is been verified does

have permission to perform the requested action, then the service proceeds to access the

service in the renamed API file (lines 8-10 of Figure 5.7); otherwise, the intercepting API

service returns a null value (line 12 of figure 5.7). Nonetheless, if the renamed service does

not need to verify a user’s role in order to be executed then the intercepting service calls it

directly, in other words, the intercepting API service does not add security permissions in

this case (lines 8-10 of Figure 5.7). Finally, the generated API service gets written in the

file that serves as the intercepting API (line 15 of Figure 5.7). Appendix B contains the

complete code utilized to generate the intercepting API file and for generating a renamed

version of the original API file, which were generated for the CT2 mobile app.

1 function echoInterceptBody($serviceName, $need_permission, $write_file){

2 $wrapper_string = "public function ".$serviceName."{";

3 if($need_permission){

4 $wrapper_string = $wrapper_string."

5 \$permission = \$this->verifyAPIPermissions(__FUNCTION__);

6 if(\$permission == 1){";

7 }

8 $wrapper_string = $wrapper_string."

9 \$renamedConcussionUConn = new renamedConcussionUConn();

10 return \$renamedConcussionUConn->RENAMED".$serviceName.";";

11 if($need_permission){

12 $wrapper_string = $wrapper_string.”} else{ return NULL;}";
13 }
14 $wrapper_string = $wrapper_string."}";

 127

15 fwrite($write_file, $wrapper_string);

16 }

Figure 5.7. Code for Generating the Body of the Services in the CT2 API.

The code given in Figure 5.7 generates, for each original services of the CT2 API,

a REST API for generating an intercepting API file in support of the intercepting API

option. This is shown in Figure 5.8 for the original CT2 API service updateStudent while

Figure 5.9 shows the renamed CT2 API of the aforementioned service.

1 public function updateStudent($studentObject, $studentId){
2 $permission = $this->verifyAPIPermissions(__FUNCTION__);
3 if($permission == 1){
4 $renamedConcussionUConn = new renamedConcussionUConn();
5 return $renamedConcussionUConn->
6 RENAMEDupdateStudent($studentObject, $studentId);
7 }else{return NULL;}}

Figure 5.8. Portion of Generated Code for the Intercepting API.

public function RENAMEDupdateStudent($studentObject,$studentId){

 $sqlGeneralStudent = "UPDATE students SET first_name =

 '" . $studentObject->firstName . "',

 middle_name = '" . $studentObject->middleName . "',

 last_name = '" . $studentObject->lastName . "',

 suffix = '" . $studentObject->suffix . "',

 email = '" . $studentObject->email . "',

 student_number = '" . $studentObject->studentNumber . "',

 school_id = '" . $studentObject->schoolId . "'

 WHERE student_id = " . $studentId;

 $recordId = $this->updateRecord($sqlGeneralStudent);

 if($recordId){

$sqlStudentDemo = "UPDATE student_demographics date_of_birth = '" .

$studentObject->dateOfBirth . "',

 gender = '" . $studentObject->gender . "'

 WHERE student_id = " . $studentId;

 if($this->updateRecord($sqlStudentDemo)) return 1;

 else return 2;

 }

 else{return 0;}

}

Figure 5.9. Portion of Generated Code for the Renamed API.

 128

5.6. Example of the Intercepting API Calls Option
To evaluate the Intercepting API Calls option, the Connecticut Concussion Tracker

(CT2) mobile application, database, and its server are utilized as an example. As currently

designed, the CT2 app supports RBAC, MAC, and DAC that allows for the different

screens and the content of different screens to be available by role, clearance, and

delegations. There are four roles: the Nurse role, which has access to all tabs for a school

nurse to manage a student’s concussion incident from its occurrence to its resolution; the

Athletic Trainer (AT) role which has access to home, list, student, cause, and symptoms

tabs to do a limited preliminary assessment if a concussion incident occurs at the event; the

Coach role, which has access to home, list, student and cause tabs to report a concussion

incident at an athletic event with very limited information on the student; and, the Parent

role, which has access to home, list, student, cause, and symptoms tabs to both report a

concussion incident on his/her child while attending the athletic event or to track the current

status of his/her children that have ongoing concussions. In addition, each of the users of

the mobile app have a clearance assigned and delegation permissions.

Programmatically, we have source code for the Android version of the CT2 app and

a REST API that accesses the concussion MySQL database. The source code of the mobile

app is organized by tabs that are loaded for a given user/role combination, and each tab is

augmented with if/else conditions that either display the data on a tab if it was available in

the database or display an error message stating that the contents couldn’t be retrieved. The

realization of the Intercepting API Calls option is achieved without any modification to the

mobile app UI and is intended to allow fine-grained access control on the information that

is displayable and/or storable of the authorized tabs for each user/role/clearance

combination. There is a very clear mapping from the process described in this section and

 129

the accompanying figures to its realization in CT2. The database is augmented with a table

that contains a list of all the API calls available along with a service_id, and tables that

contain the security policies that determine which calls the available roles/clearances have

access to (secure_unsecure_services and labeled_unlabeled_services

entities in Figure 5.5 of Section 5.4). Given these database changes, we then take the

original CT2 REST API calls and rename as shown in Figure 5.2. Then a set of new CT2

intercepting REST API calls are defined that perform a series of RBAC, MAC, and DAC

checks and if successful, invoke the corresponding renamed original CT2 REST API calls.

From a process perspective, the steps follow the top portion of Figure 5.4. The user

logs on to the CT2 mobile app and his/her the role/clearance is stored in a global variable

in order to support the class that manages the API calls. Figure 5.10 illustrates the impact

of the Intercepting API Calls and associated process for a user with the role of Coach and

a clearance of Confidential which has access to only the home, list, student, and cause tabs.

This role-clearance combination can add basic information on the ‘Student’ tab and can

add information in the ‘Cause’ tab and, after adding the information, can view but not edit.

The original mobile app CT2 API calls support the insert of information in the database and

the intercepting API call in this case allows that first save to occur. At a later point in time,

if the user attempts to edit and perform another save, the intercepting API call in this case,

performs the access control check that does not allow the edit. As a result, when a user with

the role of Coach that is using the ‘Cause’ tab attempts to save, the intercepting API call

alerts that he/she does not have permission to perform that action. The other tabs of CT2,

‘Symptoms’, ‘Follow-Up’ and ‘Return’, are still visible within the app. However, when a

user with the Coach role and Confidential clearance attempts to access one of these tabs,

 130

the application tries to obtain the pertinent data via the former original CT2 API call that

has been replaced by a new CT2 intercepting API call that checks for permissions and

returns that the specified role-clearance combination does not have permission to retrieve

the data for those screens.

Figure 5.10. ‘Cause’ screen for the role of Coach in CT2.

5.7. Related Work
There are many efforts that propose access control mechanisms to secure mobile

applications by limiting the permissions and resources a mobile app can access in different

areas of the mobile device/app. In this section, we discuss several existing proposed

approaches that attempt to apply access control mechanisms on different locations on a

mobile device and, we explain the way our approach compares and contrasts. The first area

of related work involves sensor management on smartphones that is commonly addressed

by applying access control mechanisms to the sensors of a mobile device so that mobile

apps obtain fine-grained permissions. This facilitates the managing of sensor data in mobile

apps (e.g., user’s location, use of Bluetooth) (Cappos et al., 2014; Xu and Zhu, 2015).

BlurSense (Cappos et al., 2014) and SemaDroid (Xu and Zhu, 2015) allow users to define

and add privacy filters to sensor data, through the means of a user interface, that is being

 131

used on their mobile applications. In contrast to these efforts, our work presented in this

chapter focuses on API access control management for the API services that are utilized

within a mobile app to populate data in the app and to add/edit data and store it in a data

source. In other words, instead of focusing on modifying the operating system to filter

sensor data we modify the backend of a specific mobile app and filter the data that a user

can have access to according to his/her role, which can include sensor data as well if there

was an API service included in the intercepted API that managed this. The second area of

related work involves permission control in Android in which access control can be applied

on the mobile device itself. There are many existing approaches (Beresford et al., 2011;

Benats et al., 2011; Wang et al., 2014; Jin et al., 2015; Hao et al., 2013; Backes et al., 2014)

that focus on applying fine-grained access control policies to mobile devices that contain

Android as their operating system. This is due to the fact that Android contains a coarse-

grained access control mechanism when it comes to allowing permissions in mobile

applications. In other words, in order for a user to install a mobile app he/she needs to

accept all of the permissions that the app requires. This may disregard the fact that some

permissions may not be necessary for the app to function and that some of the permissions

may not make sense for app that is being downloaded and could result in using the allowed

component for malicious purposes (e.g., a flashlight app tells user it needs permission to

get the user’s location).

Adding fine-grained access control to the APIs that Android uses for the device and

apps to function properly has been addressed by: mocking the values that an app receives

in order to function (Beresford et al., 2011) (e.g., mocking latitude and longitude

coordinates); extending the security policies of the mobile device (Benats et al., 2011;

 132

Wang et al., 2014; Jin et al., 2015); by rewriting the bytecode of the mobile device (Hao et

al., 2013); and by adding security modules to the mobile device (Backes et al., 2014). In

contrast to this effort, our work presented in this chapter focuses on applying access control

mechanisms to the APIs that are not part of the mobile system itself. In addition, most of

these works are specific for Android OS/API while ours can be implemented for any type

of application (even though we focus on the mobile setting) since our access control

approach is enforced server-side. The third area of related work involves role-based access

control and extensions that expand RBAC with context-aware techniques in order to

provide finer-grained access control security policies to those systems that contain highly

sensitive data. One effort does this by proposing an RBAC model with a spatiotemporal

extension for web applications (Aich et al., 2009) and another effort proposes a similar

approach but for mobile applications (Abdunabi et al., 2013). The proposed access control

system made for web applications (Aich et al., 2009) can be applied to an existing system

as a dll component. Another approach proposes a dynamic RBAC approach for Android

devices (Rohrer et al., 2013). That approach focuses on modifying the Android framework

to provide a uniform security policy to mitigate security risks in mobile devices that are

utilized by users who are part of an enterprise. Finally, an effort (Fadhel et al., 2016)

proposed a model that extends RBAC to generate RBAC conceptual policies. Nevertheless,

the aforementioned effort does not provide details of which specific application domain(s)

the approach could support. Our framework could easily be extended to support other types

of access control, can be applied to mobile web applications and, it is not domain-specific;

this contrasts to the discussed related work.

 133

Chapter 6
Server Interceptor API

Health Information Exchange (HIE) provides a more complete health record with

the aim to improve patient care with relevant data gathered from multiple health

information technology (HIT) systems that provide APIs for interactions. In support of

HIE, the Health Level Seven (HL7) (HL7, 2013) XML standard was developed to manage,

exchange, integrate, and retrieve electronic health information. In 2011, the Fast Healthcare

Interoperable Resources (FHIR) (FHIR DSTU2, 2015) standard, based on HL7, was

proposed to facilitate the development of mobile health (mHealth) apps with HIT data

sharing via a common modeling format. FHIR utilizes RESTful APIs enabled with a FHIR

server for information usage and exchange in the cloud. FHIR has a security specification,

but does not define actual security mechanisms for secure data exchange via service

invocations. In support of the interaction of the mobile app API services with multiple HIT

systems (data sources) operating on the server side, this chapter presents the Server

Interceptor API option of our configurable framework for controlling access. In Chapter 5,

we intercepted the API service invocations to the mobile app. In this section, we intercept

the API service invocations between the mobile app API and services of the APIs of the

HIT data sources. This second security layer between the two different APIs (mobile app

and server-side) is accomplished through the creation of a server interceptor API associated

with a cloud computing infrastructure to intercept invocations for RBAC, MAC, and DAC

checks, to be presented in this chapter. The resulting RBAC, MAC, and DAC service-based

model as presented in Sections 3.1 to 3.5 for the unified security model is incorporated into

the FHIR standard to control access of who can invoke which services of FHIR RESTful

 134

APIs that manage sensitive healthcare data; work is demonstrated via a mHealth

application that interacts with the OpenEMR HIT system via the HAPI FHIR server. The

work in this chapter on the interceptor supports Contribution D: Access Control Security

Enforcement Code Generation and Interceptors.

This chapter provides details about the Server Interceptor API option that controls

the service invocations from the mobile app API services to the server-side APIs of the

data sources in five sections. Section 6.1 motivates the way that the Intercepting API Calls

option as given in Chapter 5 is adapted and evolved to the Server Interceptor API option.

Section 6.2 reviews the HAPI FHIR reference implementation capabilities with a focus on

the intercepting process. Section 6.3 presents a set of modifications that incorporate RBAC,

MAC, and DAC into the FHIR specification and its realization within the HAPI FHIR

reference implementation. To demonstrate the inclusion and realization of RBAC, MAC,

and DAC for a mHealth app within HAPI FHIR, Section 6.4 provides an implementation

of the service-based access control approach by using the Connecticut Concussion Tracker

(CT2) mHealth app and the OpenEMR HIT system (OpenEMR, 2002). Finally, Section 6.5

reviews related works and compares and contrasts these to the work of this chapter.

6.1. Motivating the Server Interceptor API Option

As discussed in Chapter 5, the Intercepting API Calls option performs security

checks to determine whether the API service call can occur based on the role and/or

clearance of a user with optional delegation capabilities and perhaps also limit what is

returned to the user. The approach as described in Sections 5.2 to 5.5 of Chapter 5

essentially creates a replica of the API that the mobile app uses so that the mobile app calls

our intercepting API which can perform security checks and then pass the call through to

 135

the original mobile app API if the security permissions are met. Originally and as discussed

throughout Chapter 5, this was accomplished by renaming the calls to the services of the

original mobile app API. There are two possible issues with this approach. First, we may

not have access to the mobile app API. Second, even if we do, then the renaming would

require changes to the service names of the original mobile app API. As a result, we believe

that it is possible to realize a solution to eliminate these two issues by proposing a Server

Interceptor API option that does not modify the original mobile app API file but contains

the original service calls that the mobile app has access to and then forwards each call from

the intercepting API call of the same name to the original API call; this option operates

between the mobile app API and the APIs of the server-side data sources.

Figure 6.1 illustrates an alternate approach for the Intercepting API Calls option

that establishes an intercepting server that has an API that mimics what the mobile app is

expecting but is our intercepting API (second box from the left in Figure 6.1). The

intercepting API server must also be able to mimic multiple APIs since the mobile app may

interact with multiple APIs (depicted in third box from the left in Figure 6.1). The original

and intercepting servers would need to be run on different ports if on the same host with

the intercepting server being accessible publicly while the original might only be accessible

locally, then the intercepting server(s) could forward any allowed calls to the original

server(s) and filter the results as needed before returning to the client. This is facilitated by

utilizing the login credentials (user/role/clearance combination) in order to determine the

security level in each of the API Calls. Currently, we manage to pass on the user’s id, role,

clearance, and delegation permissions between calls by storing these server-side in a JSON

Web Token (JWT) (JWT, 2015). This is done to secure the user’s data and to verify that

 136

the user has access to the action he/she requested by utilizing his/her role, clearance, and/or

delegation permissions. However, the need to operate multiple servers on different ports in

order to fool the mobile app into calling the mimicked services is not necessarily easy to

accomplish.

Mobile	
Application

Intercepting	
Server(s)	
with	

Intercepting	
API	Calls

Original	
Server(s)	with	
Original	API	

Calls

Point	to	the	same	server(s)	
but	reside	in	different	ports

Data	Source
Request Request Request

Response Response Response

Figure 6.1. Intercepting Server Original Idea.

In support of HIE and multiple HIT systems having their APIs called by the mobile

app API services, we want to provide a way to intercept the calls to the APIs of data sources

without having to modify the original API services as we did for the approach presented in

Chapter 5 nor adding a server that contains the same signatures as the original server that

hold the original mobile app API calls (as shown in Figure 6.1). Instead, we focus on

intercepting services on the server APIs without making modifications to the original

server API services through the means of Java servlets (Java, 2013) and HAPI FHIR (HAPI

FHIR, 2014). Figure 6.2 depicts a general idea of the intended process to be explained in

the remainder of this chapter.

Figure 6.2. Server Interceptor API Option General Idea.

 137

6.2. Access Control in FHIR

This section reviews the HAPI FHIR reference implementation capabilities with a

focus on the intercepting process that can support our service-based access control

approach. The FHIR security specification does not yet include explicit security

capabilities, but does define different exchange protocols and models that could be utilized

with security policies created by an organization (FHIR, 2016). To handle security, FHIR

suggests several points including: securing data exchange with TLS/SSL (e.g., HTTPs);

authenticating users with an authentication method (e.g., OAuth); and utilizing digital

signatures. In addition, FHIR defines security labels to support access control management

based on (HL7 v3, 2013 ; HL7, 2013). The security labels were done with the purpose of

restricting access on resources based on security policies established by security

administrators of the data that is being exchanged. Nevertheless, there is very little

documentation on the way that role-based, mandatory, or discretionary access control

policies could be both defined and enforced through the means of these labels.

In addition to suggesting security labels, the FHIR security specification provides

a notion of where security needs to be placed in the logical layout of a system in order to

handle users, user authentication, and user authorization. The FHIR security specification

also assumes that a security system exists and that is positioned before or after the FHIR

API (FHIR, 2016). Figure 6.3 illustrates three possible scenarios on the locations where a

security system can be deployed on the logical layout of a system, where the layout is

composed of clients, of a client (mHealth) app, of data sources (EHRs and other HIT

systems), and of FHIR layers. The first scenario applies security mechanisms between two

layers of FHIR where the first layer would be a security system. The second scenario places

 138

security on the client application. Lastly, the third scenario places security server-side

(FHIR, 2016). For the purposes of this chapter we focus on applying RBAC, MAC, and

DAC by using a similar idea to the one exposed in the first scenario. In the remainder of

the chapter, we make two assumptions: a mobile app needs to obtain information from one

or more data sources (e.g., EHRs or HITs) which are connected by a cloud server; and, the

cloud server that connects the mobile app with the data sources is a FHIR sharing

infrastructure.

Figure 6.3. Security system placement in deployment architecture (FHIR, 2016).

In addition, HAPI FHIR developers are in the process of implementing

authentication and authorization interceptors (HAPI FHIR Server Security, 2016). The

authorization interceptor attempts to apply security to FHIR by creating a set of rules via

rule-based access control within the function and utilize if/else statements in order to

whitelist/blacklist requests. In our case, instead of utilizing rule-based access control, our

service-based approach involves the use of RBAC, MAC, and DAC. Further, instead of

modifying the code of the intercepting function every time we want to add/modify a

permission to/in the policy (e.g., change a role or a permission on a role), we implement

an interceptor function once that consults RBAC, MAC, and/or DAC permissions and

privilege definitions by role/clearance/classification in a database. When changes to the

 139

security policies stored in a repository are made, the RBAC, MAC, and/or DAC interceptor

functions continue to work to check intercepted RESTful API calls.

6.3. Access Control Server Interceptor

This section introduces the Access Control Server Interceptor that supports the

Server Interceptor API option as a combination of the RBAC, MAC, and DAC interceptor

functions that were introduced in Section 6.2, along with an associated architecture in

Figure 6.4 that is used to evaluate which FHIR resources users are allowed to access by

role, clearance/classification, and/or delegation permissions via the corresponding FHIR

RESTful API. In Figure 6.4, when the user makes a request using the mobile application,

this request is handled by a Mobile App HAPI FHIR Server. The Mobile App HAPI FHIR

Server is implemented with the HAPI FHIR reference implementation library with

programmatic access to the server interceptor class, which is explained in more detail in

the discussion of Appendix C-2. This class intercepts the user’s request and retrieves access

control policies from the Access Control Security Policy through the means of the Server

Interceptor API as shown in Figure 6.4. After retrieving the pertinent access control

policies, the class performs access control checks to ensure that the user has access to the

requested resource, i.e., can invoke the requested service. Currently, we focus on enforcing

RBAC, MAC, and DAC security policies on the requested services; in a future, we plan to

enforce security policies of other access control mechanisms such as ABAC. In order for

the interceptor class to enforce RBAC, MAC, and DAC in the services, the class retrieves

security policies from a data source through the means of API services we implemented

 140

for this purpose. More details on the way that the security policy would operate for the

access control server interceptor are discussed later on and are depicted in Figure 6.5.

Figure 6.4. Server Interceptor API Option Architecture.

The Server Interceptor API shown in Figure 6.4 contains the API services to

retrieve the security policies from the Access Control Security Policy DB and then send

these to the Server Interceptor Class which calls a service of the Mobile App HAPI FHIR

RESTful App. The Server Interceptor Class shown in Figure 6.4 can be explained utilizing

pseudocode of our service-based access control approach as shown in Appendix C-1 as

implemented within the incomingRequestPostProcessed function, which is within

the Server Interceptor class available in HAPI FHIR. Appendix C rewrites HAPI’s

incomingRequestPostProcessed interceptor function to obtain details of the request

(e.g., HTTP method used) and the resource that is being evaluated before an object can be

obtained. Next, we explain and review the processing of the code presenting and

explaining excerpts from Appendix C-1. The Mobile App HAPI FHIR Server interacts

with the Mobile App HAPI FHIR RESTful API via the FHIR Resources with the Data

Source HAPI FHIR Server which is FHIR RESTful API that maps to/from the HIT Server-

side API of the Data Source. The HIT System HAPI FHIR RESTful API of the Data

Source is able to map/to from the HIT System Server-Side API of the Data Source. When

 141

the incomingRequestPostProcessed interceptor function determines that a service

of the Mobile App API is allowed to call a Data Source HAPI FHIR Server service, the

call proceeds via the common FHIR Resource mapping to the HIT System HAPI FHIR

RESTFul API of the Data Source HAPI FHIR Server.

The remainder of this section explores the incomingRequestPostProcessed

interceptor function in detail. Note that we repeat the line numbers in the code from

Appendix C-1 so the reader can easily determine where the excerpt has come from. In

addition, the pseudo code of Appendix C-1 is applicable to other cloud frameworks in

addition to FHIR. The first segment of code from Appendix C-1 retrieves the authorization

header passed with the request which contains an access token that is used to verify the

user’s identity by calling an API service; obtains the HTTP method of the request, the

name of the requested resource the id of the requested service; and, sets the permission to

access the requested resource to false in the following code:

1 //Serves as Access Control Interceptor function
2 public boolean incomingRequestPostProcessed(requestDetails, request, response){
3 authToken = requestDetails.getHeader(“Authorization”);
4 //Retrieves the user’s id, clearance and, read and write MAC properties
5 [userId,userRole,userClearance,readP,writeP] = verifyUser(authToken);
6 httpMethod = request.getMethod();
7 resourceName = requestDetails.getResourceName();
8 serviceId = getServiceId(httpMethod, resourceName);
9 acPermission = false;

If the user passes the verification, the API service returns the user id as proof that

the user was successfully verified as well as the user’s role id, clearance id, and MAC read

and write properties assigned to the user. If the user id is not a valid one, an error message

is returned to the user stating that he/she could not be verified. Otherwise, if the user id is

valid (condition on line 10 is true) and, if the requested resource is secured and/or labeled,

we proceed to enforce security checks. If a resource does not have any RBAC and/or MAC

 142

security involved, true is returned meaning that the service can be called without security

checks. Otherwise, the requested resource is secured or labeled.

10 if(userId > 0){
11 //Check if requested resource is secured/labeled
12 [secured,labeled] = getResourceSecurity(httpMethod,resourceName);
13 if(!(secured || labeled)){
14 return true; //Continue with request processing
15 }
16 //Analyze MAC policies (if any)
17 if(userClearance > 0 && labeled){
18 acPermission = checkAndEnforceMAC(userId, userClearance, serviceId, readP,

readW);
19 }
20 //Analyze RBAC policies (if any)
21 if((roleId > 0 && secured) && (acPermission || !labeled)){
22 acPermission = checkAndEnforceRBAC(userId, userRole, serviceId);
23 }
24 }
25 else{//Error Message: User could not be verified}

If there are MAC policies defined (condition in line 17 is true), we call the

checkAndEnforceMAC function in line 18 invoking function in line 50. In the function,

we first check if DAC delegations are available and if the user has delegated MAC

permissions:

50 private boolean checkAndEnforceMAC(userId, userClearance, serviceId, readP, readW
){

51 acPermission = false;
52 //MAC services delegation
53 if(dacPermission() && checkIfDacMac(userId)) {
54 delClr = delClrDAC(userId, serviceId);
55 if(delClr>0) { userClearance=delClr; } //Delegated clearance_id
56 }

If the user has delegated permissions (condition in line 53 is true), we determine if

he/she has a delegated permission for the requested service through the means of the

delClrDAC function:

33 private int delClrDAC(userId, serviceId) {
34 //Check if delegated user has a delegated clearance for the requested service
35 if(currentTime>getStartTimeMAC() && currentTime<getEndTimeMAC()) {
36 if(serviceId in service_permissions_mac(userId))
37 {return delegatedClearance;}
38 }
39 return 0;
40 }

The delClrDAC function returns 0 if the user does not have any delegated

permissions for the requested service and the user’s clearance remains the same.

Otherwise, if the user have has delegated permissions for the requested service, then the

 143

function returns the delegated clearance and we replace the original user’s clearance with

this one. Afterwards, we proceed to obtain the classification and the http method of the

requested service through the means of an API service that has the service id of the service

the user is trying to access as a parameter (line 36). This is done to verify if the user’s

assigned clearance has access to the requested resource per Definitions 8v2 (clearance

assignment), 18 (Labeled services), and 20 (labeled API permissions). If the requested

service consists of retrieving data from a data source, we evaluate using the MAC read

properties simple security and strict * shown below:

59 //Retrieve MAC read or write property for pertinent user
60 if(httpMethod == “GET”){
61 //Simple security property
62 if(readP == simpleSecurityProperty){
63 if(userClearance >= serviceClassification){
64 acPermission = true;
65 }
66 }
67 //Strict * property
68 elseif(readP == strictStarProperty){
69 if(userClearance == serviceClassification){
70 acPermission = true;
71 }
72 }

In the case where the requested service consists of modifying data (e.g., creating,

updating, or deleting) from a data source, we evaluate utilizing the MAC write properties

simple integrity, strict *, and liberal * given in:

74 else{
75 //Simple integrity property
76 if(writeP == simpleIntegrityProperty){
77 if(userClearance >= serviceClassification){
78 acPermission = true;
79 }
80 }
81 //Strict * property
82 elseif(writeP == strictStarProperty){
83 if(userClearance == serviceClassification){
84 acPermission = true;
85 }
86 }
87 //Liberal * property
88 elseif(writeP == liberalStarProperty){
89 if(userClearance <= serviceClassification){
90 acPermission = true;
91 }
92 }
93 }

 144

Finally, in the case where the role is a valid one and the request contains RBAC

checks and, if the checkAndEnforceMAC function returns that the user has access to the

requested resource (acPermission = true) or MAC policies were not established for the

requested resource, we move on to analyze the requested resource against the available

RBAC policies in the checkAndEnforceRBAC function (invocation on line 22 and

function on line 97). First, the function checks if DAC delegations are available and if the

user has delegated RBAC permissions. If the user has delegated permissions, we determine

if he/she has a delegated permission for the requested service through the means of the

delRoleDAC function given in:

42 private int delRoleDAC(userId, serviceId) {
43 //Check if delegated user has a delegated role for the requested service
44 if(currentTime>getStartTimeRBAC() && currentTime<getEndTimeRBAC() {
45 if(serviceId in service_permissions_rbac(userId))
46 {return delegatedRole;}
47 }
48 return 0;
49 }

 The delRoleDAC function returns 0 if the user does not have any delegated

permissions for the requested service and the user’s role remains the same. Otherwise, if

the user has delegated permissions for the requested service then the function returns the

delegated role and we replace the original user’s role with this one. If this is the case, then

we retrieve the role of the requested service and verify if the user’s role is one of the roles

that has access to the requested service (lines 106-108 of Appendix C) per Definitions 11

(role assignment), 17 (Secured services) and 19 (secure API permissions). The function

returns whether the user passed the RBAC security checks (acPermission = true) or not

(acPermission = false). Once we evaluate the requested resource against the available

permissions, the function returns true if the user does have access to the requested resource

and we move on to perform the request (acPermission = true):

 145

97 private boolean checkAndEnforceRBAC(userId, userRole, serviceId){
98 acPermission = false;
99 //RBAC services delegation
100 if(dacPermission() && checkIfDacRbac(userId)) {
101 delRole = delRoleDAC(userId, serviceId);
102 if(delRole>0) { userRole=delRole; } //Delegated role_id
103 }
104 //Get service set of roles
105 serviceRoles = getRoleSet(serviceId);
106 if(roleId in serviceRoles){
107 acPermission = true;
108 }
109 return acPermission;
110 }

Upon return to incomingRequestPostProcessed, line 2 above, if the user

does not have access to the requested resource (acPermission == false), an error
message to the user states that he/she does have access to the request:

26 if(acPermission == false){
27 //Error message: User does not have permission to access the
28 //requested resource
29 }
30 return acPermission;

 To manage which resources a specific role and/or clearance can access, we store

the access control policy in a database, a subset of the main entity relationship diagram

shown on Figure 3.3 of Chapter 3, represented in Figure 6.5 as an entity-relationship

diagram to support our service-based RBAC and MAC approach, which is a subset of the

main entity relationship diagram shown on Figure 3.3 of Chapter 3. Once the user’s role

and/or clearance has been verified, we can access the specific permission we want to

evaluate through the means of an API service as stated in the previous paragraph. The

database would hold the roles and/or clearances for each user of each mHealth mobile app

along with the permissions for each role and/or clearance to each HIT system supported

with the HAPI FHIR server. Specifically, to track which services of which FHIR RESTful

APIs for each HIT are authorized by role and/or clearance to a user of a particular mHealth

app. Moreover, the secure_unsecure_services and the

labeled_unlabeled_services entities provides details of whether a user has access

to the resource he/she requested or not by his/her role or clearance, respectively. In

 146

addition, the security policy tables store information about the available CRUD services,

resources, roles (RBAC), clearances (MAC), classifications (MAC) and, about read and

write constraints (MAC). Sample access control policies will be provided on Table 6.1 and

Table 6.2 of Section 6.4.

Figure 6.5. A Subset of the ER Diagram from Figure 3.3 for Supporting the Unified

Security Model for the Server Interceptor API option.

6.4. Implementation

To evaluate the incorporation of RBAC, MAC, and DAC into FHIR, which is the

realization of the Server Interceptor API option, the Connecticut Concussion Tracker (CT2)

mHealth app, database, and server are connected to an instance of the OpenEMR

 147

(OpenEMR, 2002) electronic health record via HAPI FHIR as reviewed in Section 2.7 of

Chapter 2. The CT2 app is for Android and iOS devices and uses a FHIR server to manage

its data, which is stored in an instance of OpenEMR (OpenEMR, 2002) (accessed through

a FHIR server as well and located in a cloud server). The CT2 mHealth app utilizes four

FHIR resources in order to Create (POST), Read (GET), and Update (PUT) subsets of the

data (Delete is not allowed in this app): Patient to track demographics and other basic

information of patients (students that suffer concussions); Condition to track a medical

condition, in our case a concussion; Observation to track symptoms of patients (students);

and CarePlan to track the planned treatment for a condition (concussion). The CRU

services defined on these four FHIR resources are the ones that are authorized by role

(Secure and Unsecure services from Defn. 17) and controlled by sensitivity (Labeled and

Unlabeled services from Defn. 18). In our case, the services that need to be controlled are

secured and labeled since all of them manage highly-sensitive data.

To begin, Figure 6.6 shows the mapping of resources and the location of the access

control server interceptor of Section 6.3 and Figure 6.4 within the FHIR instance of the

CT2 mHealth app. Note concepts in Figure 6.4 can be mapped to Figure 6.6 as follows:

Mobile App maps to CT2 mHealth App; Mobile App API maps to CT2 RESTful API;

Mobile App HAPI FHIR Server maps to the CT2 HAPI FHIR Server; Mobile App HAPI

FHIR RESTful API maps to CT2 HAPI FHIR RESTful API; Data Source HAPI FHIR

Server maps to the OpenEMR FHIR Server. HIT System Server-Side API maps to

OpenEMR RESTful API; and, HIT System (Data Source) maps to OpenEMR. Each of the

FHIR Resources (Patient, Condition, etc.) for both CT2 and OpenEMR have a FHIR

RESTful API with CRU services (no delete), CT2 HAPI FHIR RESTful API and

 148

OpenEMR HAPI FHIR RESTful API, respectively. We incorporate the access control

server interceptor as a security layer (Server Interceptor API and Access Control Server

Interceptor class shown in Figure 6.6) before the requested resource attempts to

retrieve/insert/update data from the OpenEMR system, similar to the first option in Figure

6.2, where the first FHIR layer consisted of a security layer. If the requested resource

successfully passes the security checks in the server interceptor function, then the CT2

HAPI FHIR RESTful API receives the request which is then sent to the appropriate service

of OpenEMR HAPI FHIR RESTful API class along with any parameters by using another

instance of FHIR. In this case, both of CT2 HAPI FHIR RESTful API and OpenEMR HAPI

FHIR RESTful instances were implemented using the HAPI FHIR library. Specifically,

FHIR requires that information in the CT2 database is mapped to/from FHIR resources and

information in the OpenEMR repository is mapped to/from FHIR resources and,

exchanged through shared resources via the CRUD FHIR APIs defined for each resource

for both CT2 HAPI FHIR RESTful API and OpenEMR HAPI FHIR RESTful APIs. We

have reported extensively on this mapping process in (Baihan, et al., 2017).

 149

OpenEMR
OpenEMR RESTful API

OpenEMR HAPI FHIR RESTful API

Patient
Resource

Condition
Resource

CarePlan
Resource

Observation
Resource

CT2 mHealth App
CT2 RESTful API

Patient
Resource

Condition
Resource

CarePlan
Resource

Observation
Resource

CT2 HAPI FHIR
RESTful API STORELOAD

Server Interceptor API
CT2 HAPI FHIR Server

OpenEMR FHIR Server

Access Control Server Interceptor class
incomingRequestPostProcessed function

Access
Control
Security

Policy DB

Figure 6.6. CT2-OpenEMR FHIR Mapping.

To determine the type of action a user of CT2 can perform on these FHIR resources,

we defined four roles: Nurse which has access to all of the services of the resources (CRU

for the CT2 HAPI FHIR RESTful API) to manage a student’s concussion incident from its

occurrence to its resolution; Athletic Trainer (AT) which is allowed to do a limited

preliminary assessment if a concussion incident occurs at the event and hence some U

services are not allowed; Coach which can report a concussion incident at an athletic event

with very limited information on the student with no access to U services; and, Parent

which can report a concussion incident on his/her child while attending the athletic event,

update his/her concussed child’s demographics, or track the current status of his/her

children that have ongoing concussions but with no U services for the Condition,

 150

Observation, and CarePlan resources. In addition, we assigned clearances and MAC

properties to users and classifications to services in support of MAC. Table 6.1 defines the

permissions for CRU (POST, GET, PUT) for all of the resources for all four roles in support

of RBAC as well as their assigned classification in support of MAC (see Defns. 8v2 and

10). Note that the services listed in Table 1 are both Secure and Labeled services of CT2.

These policies are stored in a security policy database (as shown in Figure 6.5 and Figure

6.6) and is accessed through the use of the incomingRequestPostProcessed function which

is part of the server interceptor class the HAPI FHIR library offers. Notice that in Table

6.1, a user with a Nurse role and/or a user with clearance TS has access to all CRU services

of all resources; at the other extreme, a Coach role and/or a user with clearance C is limited

to reporting and reading the basic information on the concussion by having only access to

CR for the Patient and Condition resources. The creation of the RBAC and MAC

permissions to FHIR services by role and clearance in Table I allows fine-grained access

control of the FHIR RESTful APIs for the services of the four Resources utilized by the

CT2 mHealth app. Table 6.2 depicts a subset of the users of the CT2 mHealth app as well

as their assigned role, clearance, and read and write MAC properties. Note that CT2

mHealth app has many unsecure and unlabeled services for populating drop downs and

select options of the UI, that have been omitted from the discussion in order to focus on

services that need control.

The access control server interceptor pseudo code as given in of Appendix C-1 is

transitioned to the access control server interceptor given in Appendix C-2. There are, five

functions in the access control server interceptor. The main function

(incomingRequestPostProcessed function), verifies the user’s identity:

 151

1 public boolean incomingRequestPostProcessed(RequestDetails theRequestDetails,
 HttpServletRequest theRequest, HttpServletResponse theResponse) {
2 String jwt = theRequest.getHeader("Authorization");
3 Boolean acPermission = false; //Initially, the user does not have access to the
resource
4 String identifiers = "";
5 JSONObject object = null;
6 HttpClient httpClient = new DefaultHttpClient();
7 HttpContext localContext = new BasicHttpContext();
8 // Verify if the user is a valid one
9 HttpGet httpGet= new HttpGet(serviceLink+"/verifyUser/"+jwt);
10 try {
11 HttpResponse response = httpClient.execute(httpGet, localContext);
12 HttpEntity entity = response.getEntity();
13 identifiers = EntityUtils.toString(entity);
14 //Returns user_id, role_id, clearance_id, write_property, and read property
15 object = new JSONObject(identifiers); //Convert String to JSON Object
16 } catch (Exception e) {/*throw new UnprocessableEntityException();*/}
17 //If the user's identity could be properly validated then it returns the user's
role,
18 //clearance, and an indicator that the request was successful

If the user’s identity is valid, the function proceeds to verify if the requested resource is

secure and/or labeled (lines 28-38), if not, the request continues to be processed (no further

security checks are required):

19 try {
20 int user_id = Integer.parseInt(object.getString("user_id"));
21 int mac_read = Integer.parseInt(object.getString("mac_read"));
22 int mac_write = Integer.parseInt(object.getString("mac_write"));
23 if(user_id>0) {
24 JSONObject securedResource = null;
25 String httpMethod = theRequest.getMethod();
26 String resourceName = theRequestDetails.getResourceName();
27 //Check if requested resource is secured/labeled
28 httpGet = new
HttpGet(serviceLink+"/resourceSecurity/"+httpMethod+"/"+resourceName);
29 try {
30 HttpResponse response = httpClient.execute(httpGet, localContext);
31 HttpEntity entity = response.getEntity();
32 identifiers = getASCIIContentFromEntity(entity);
33 securedResource = new JSONObject(identifiers);
34 } catch (Exception e) {/*throw new UnprocessableEntityException();*/}
35 boolean secured = securedResource.getBoolean("secured");
36 boolean labeled = securedResource.getBoolean("labeled");
37 if(!(secured||labeled)){
38 return true; //Continue with request processing (resource can be accessed by
anyone)
39 }

If the requested resource is labeled, we do checks for enforcement for MAC by calling the

checkAndEnforceMAC function (lines 90-153 in Appendix C-2). In the function, we first

verify if the user has delegated clearance permissions for the requested resource by calling

the delClrDAC function:

 152

187 private int delClrDAC(int user_id, int service_id) {
188 Integer delclr_id = 0;
189 HttpClient httpClient = new DefaultHttpClient();
190 HttpContext localContext = new BasicHttpContext();
191 //MAC Service Delegation
192 //Check if delegated user has a delegated clearance for the requested service
193 JSONObject userDelegation = null;
194 HttpGet httpGet = new
HttpGet(serviceLink+"/userClrDelegation/"+user_id+service_id);
195 try {
196 HttpResponse response = httpClient.execute(httpGet, localContext);
197 HttpEntity entity = response.getEntity();
198 String identifiers = getASCIIContentFromEntity(entity);
199 userDelegation = new JSONObject(identifiers);
200 delclr_id = userDelegation.getInt("du_dclr_id");
201 return delclr_id;
202 } catch (Exception e){/*throw new UnprocessableEntityException();*/}
203 return 0;
204 }

For GET and read operations, we verify the user’s clearance and the classification of the

service against MAC read properties within the checkAndEnforceMAC function:

116 if(httpMethod=="GET") {
117 macProperty = mac_read;
118 //Simple security property
119 if (macProperty == 1) {
120 if (clearance_id > class_id) {
121 acPermission = true;
122 }
123 }
124 //Strict * property
125 else if (macProperty == 2) {
126 if (clearance_id == class_id) {
127 acPermission = true;
128 }
129 }
130 }

For all PUT, POST and write operations, where the request is to modify the data shown in

the app, we evaluate the user’s clearance and the service’s classification against the

corresponding MAC write property within the checkAndEnforceMAC function (lines 90-

153 in Appendix C-2):

131 else{
132 macProperty = mac_write;
133 //Simple integrity property
134 if (macProperty == 3) {
135 if (clearance_id >= class_id) {
136 acPermission = true;
137 }
138 }
139 //Strict * property
140 else if (macProperty == 4) {
141 if (clearance_id == class_id) {
142 acPermission = true;
143 }
144 }
145 //Liberal * property

 153

146 else if (macProperty == 5) {
147 if (clearance_id <= class_id) {
148 acPermission = true;
149 }
150 }
151 }

If the requested resource is secured, we do checks for enforcement for RBAC, by calling

checkAndEnforceRBAC function (lines 155-185 of Appendix C-2). In the function, we

first verify if the user has delegated role permissions for the requested resource by calling

the delRoleDAC function:

206 private int delRoleDAC(int user_id, int service_id) {
207 Integer delrole_id = 0;
208 HttpClient httpClient = new DefaultHttpClient();
209 HttpContext localContext = new BasicHttpContext();
210 //RBAC Service Delegation
211 //Check if delegated user has a delegated role for the requested service
212 JSONObject userDelegation = null;
213 HttpGet httpGet = new
HttpGet(serviceLink+"/userRoleDelegation/"+user_id+service_id);
214 try {
215 HttpResponse response = httpClient.execute(httpGet, localContext);
216 HttpEntity entity = response.getEntity();
217 String identifiers = getASCIIContentFromEntity(entity);
218 userDelegation = new JSONObject(identifiers);
219 delrole_id = userDelegation.getInt("du_drole_id");
220 return delrole_id;
221 } catch (Exception e){/*throw new UnprocessableEntityException();*/}
222 return 0;
223 }

Then, we verify if the user’s role has access to the service request within the

checkAndEnforceRBAC function (lines 155-185 of Appendix C-2):

167 //Get service set of roles
168 HttpGet httpGet = new HttpGet(serviceLink+"/roleSet/"+service_id);
169 try {
170 HttpResponse response = httpClient.execute(httpGet, localContext);
171 HttpEntity entity = response.getEntity();
172 String identifiers = getASCIIContentFromEntity(entity);
173 JSONObject rs = new JSONObject(identifiers);
174 role_set = rs.getJSONArray("");
175 Integer role = 0;
176 for (int i = 0; i < role_set.length(); i++) {
177 role = role_set.getInt(i);
178 if(role_id == role) {
179 acPermission = true;
180 break;
181 }
182 }
183 } catch (Exception e) {//throw new UnprocessableEntityException();}

 154

The main function outputs an error message if the user could either not be verified or, if

the user does not have access to the requested resource (if either the MAC or RBAC

functions return false):

58 if(!acPermission) {
59 try {
60 theResponse.setContentType("application/json+fhir");
61 PrintWriter out = theResponse.getWriter();
62 out.println("{");
63 out.println("\"status\": \"403\",");
64 out.println("\"errorMessage\": \"User does not have permission to access
the
 requested resource.\"");
65 out.println("}");
66 out.close();
67 } catch (IOException e) {e.printStackTrace();}
68 return false;
69 }
70 return true;
71 }
72 else {
73 try {
74 theResponse.setContentType("application/json+fhir");
75 PrintWriter out = theResponse.getWriter();
76 out.println("{");
77 out.println("\"status\": \"400\",");
78 out.println("\"errorMessage\": \"User Verification failed. Please try to do
- the request again...\"");
79 out.println("}");
80 out.close();
81 } catch (IOException e) {
82 e.printStackTrace();
83 }
84 return false;
85 }

The incomingRequestPostProcessed function (lines 1-88 of Appendix C-2)

is included within a class (shown in Appendix C-3) that extends the

InterceptorAdapter class (line 15 of Appendix C-3), which is part of the server

interceptor feature HAPI FHIR offers. In addition, in order for the server to recognize the

existence of the intercepting class, the access control server interceptor is registered in the

RestfulServer instance of the FHIR server, namely, on the CT2 FHIR server, by making

reference to the class by calling registerInterceptor (line 16 of Appendix C-3).

 155

Service Classification Roles
GET /Patient/ C {AT, Coach, Nurse, Parent, Sub_Nurse}
POST /Patient/ C {AT, Coach, Nurse, Parent}
PUT /Patient/:pid TS {Nurse, Parent}
GET /Condition/ C {AT, Coach, Nurse, Parent, Sub_Nurse }
POST /Condition/ C {AT, Coach, Nurse, Parent}
PUT /Condition/:cid TS {Nurse}
GET /Observation/ C {AT, Coach, Nurse, Parent, Sub_Nurse }
POST /Observation/ S {AT, Nurse}
PUT /Observation/:oid TS {Nurse}
GET /CarePlan/ C {AT, Coach, Nurse, Parent, Sub_Nurse }
POST /CarePlan/ TS {Nurse}
PUT /CarePlan/:cpid TS {Nurse}

Table 6.1. Service permissions of CT2 FHIR resources.

User Role Clearance MAC Read MAC Write
Peter AT S SS SI
Joe Coach C SS SI

Karen Nurse TS SS SI
Carmen Parent C SS L*

Lois Sub_Nurse C S*-r S*-w
Table 6.2. Permission assignment of CT2 users.

The CT2 mHealth app was tested with two accounts: user Karen (third row of Table

6.2) and user Joe (second row of Table 6.2). In the test, both Karen and Joe attempt to

utilize the CT2 mHealth app to update general information of a student (the UPDATE/PUT

operation). As we can see in Table 6.1, the classification of the requested service both users

are attempting to access is TS and the only role who has access to this particular service is

the Nurse role (shown in second row and third column of Table 6.1). Taking these details

into consideration, we move on to evaluate each of the users’ assigned clearance and role.

Karen has a clearance of TS and the Nurse role assigned therefore, she has access to

perform the aforementioned request since uCLR ≥ uCLS (satisfies the Simple Integrity MAC

write property, see Defn. 10) and, her role is within the roles that the requested service

combination allows (see Defn. 11). On the other hand, Joe has a clearance of C and C<TS

(does not satisfy the Simple Integrity MAC write property, see Defn. 10), therefore, the

first security check fails meaning that we do not proceed to verify the user’s (Joe’s) role as

both security checks (in the case of there being RBAC and MAC checks) need to return

true. Therefore, he obtains an error message informing him that he does not have

 156

permission to access the requested resource (lines 58-69 of Appendix C-2). In addition,

Nurse Karen has the ability to delegate her RBAC and MAC permissions. Nurse Karen can

delegate a subset of her allowed Secure API services to the substitute Nurse, Lois (see

Defn. 30 on Section 3.5 of Chapter 3) by assigning Lois the Sub_Nurse role. In this case,

we are not considering Labeled API services, so we only evaluate Lois’ request with the

checkAndEnforceRBAC function (lines 155-185 of Appendix C-2). If Lois attempts to

modify the data for a student, she’d be prevented since she only has permission to read data

from the app (see substitute Nurse Lois’ permissions on Tables 6.1 and 6.2). As a result,

the RBAC security check fails and Lois receives an error message that informs her that she

does not have permission to perform such an action (lines 58-69 of Appendix C-2).

Programmatically, in the case of Coach Joe and substitute Nurse Lois, the

incomingRequestPostProcessed function located within the CT2 FHIR server java code

aborts the execution of the request and returns an error message to inform the user that he

does not have permission to the requested resource as shown in the top image of Figure

6.7. In the case of Nurse Karen, the request is performed successfully as shown in the

bottom image of Figure 6.7. Another situation that is also supported in the access control

server interceptor is if the user attempts to tamper with his/her role and/or clearance in

order to obtain more privileges. This action is identified when the access token sent on the

header is verified and blocks any further execution of the request and send an error message

to the user telling him/her that the user verification failed as shown in Figure 6.8. Note that

the access control server interceptor can return error messages as either JSON or XML

format, which are two of the formats that are available in FHIR to return the client a

response. We utilized JSON since this is the format that the CT2 mHealth app has for

 157

handling the user requests and responses. In addition, the requests shown on Figures 6.7

and 6.8 were made with Postman (Postman, 2013) instead of doing these directly with the

CT2 mHealth app in order to present a clear view of the response the requests can have in

different scenarios.

Figure 6.7. JSON Response Messages from Interceptor.

Figure 6.8. JSON Response – Disallowed Request.

6.5. Related Work

There are many efforts that propose access control mechanisms to secure mobile

applications by limiting the permissions and resources a mobile app can access in different

areas of the mobile device/app. In this section, we discuss related work in three areas:

permission control in Android; extending RBAC with context-aware techniques; and,

proposed security mechanisms for FHIR. As part of the discussion, we compare and

contrast these efforts to the work presented herein.

The first area of related work involves permission control in Android where many

approaches (Beresford et al., 2011; Benats, Bandara, Yu, Colin, & Nuseibeh, 2011; Wang

 158

et al., 2014; Jin et al., 2015; Hao et al., 2013) focus on applying fine-grained access control

policies to mobile devices that contain Android as their operating system. This is due to

the fact that Android contains a coarse-grained access control mechanism for allowing

permissions in mobile applications. Specifically, in order for a user to install a mobile app,

he/she needs to accept all of the permissions that the app requires. This may disregard the

fact that some permissions may not be necessary for the app to function and that some of

the permissions may not make sense for the app that is being downloaded and could result

in using the allowed component for malicious purposes (e.g., a flashlight app tells user it

needs permission to get the user’s location). Adding fine-grained access control to the APIs

that Android utilizes for the device and apps to function properly has been addressed by:

mocking the values that an app receives in order to function (Beresford, et al., 2011) (e.g.,

mocking latitude and longitude coordinates); extending the security policies of the mobile

device (Benats, Bandara, Yu, Colin, & Nuseibeh, 2011; Wang, Hariharan, Zhao, Liu, &

Du, 2014; Jin, Wang, Luo, & Du, 2015); rewriting the bytecode of the mobile device (Hao,

et al., 2013); and adding security modules to the mobile device (Backes, et al., 2014). In

contrast to these efforts, our work presented in this chapter focuses on applying access

control mechanisms to the APIs that are not part of the mobile system itself (we enforce

security in FHIR API services), with the intent to control access to the data utilized by the

mobile app via its services. In addition, while most of these works are specific for Android

OS/API, our service-based RBAC and MAC approach can be applied to any type of

application (even though we focus on the mobile setting) by controlling access to the

services. This was demonstrated via FHIR and the HAPI FHIR library that is enforced

within the HAPI FHIR server, but is adaptable to other cloud frameworks.

 159

The second area of related work involves role-based access control and extensions

that expand RBAC with context-aware techniques in order to provide finer-grained access

control security policies to those systems that contain highly sensitive data. One effort

proposes an RBAC model with a spatiotemporal extension for web applications (Aich, et

al., 2009) that can be applied to an existing system as a dll component. Apart from web

applications, our server-based RBAC and MAC approach could work for any type of

system that utilizes a JAVA-based implementation of the server that handles the users’ API

requests and responses. Another approach proposes a dynamic RBAC approach for

Android devices (Rohrer, et al., 2013). That approach focuses on modifying the Android

framework to provide a uniform security policy to mitigate security risks in mobile devices

that are utilized by users who are part of an enterprise. Unlike the aforementioned approach,

our work is not device-specific and is enforced on the server side of a mobile application

(and can be applied to other systems as well). Finally, an effort (Fadhel et al., 2016)

proposed a model that extends RBAC to generate RBAC conceptual policies, but does not

provide details of which specific application domain(s) the approach could support. This

is contrary to our approach which is intended to work for any type of application that can

be connected with a JAVA-based server. In addition, our access control server interceptor

as discussed in Section 4.3 operates on the server-side and can be easily extended to support

other types of access control as given in (Aich et al., 2009; Rohrer et al., 2013; Fadhel et

al. , 2016), expanding the interceptor logic (Appendix C-2). Moreover, even though we are

focusing on utilizing the HAPI FHIR server to enforce our access control model, we intend

to generalize this approach so that it works with a wider variety of cloud frameworks that

use RESTful, cloud, or web APIs.

 160

The third area of related work involves security mechanisms which can be applied

to the FHIR specification. The FHIR standard is an evolving standard (FHIR Release 3),

for which there are a number of efforts that address the way that security in FHIR could be

realized. The first effort (Lamprinakos, et al., 2014) applied FHIR to the AidIT mHealth

app for patients, doctors, and pharmacists in order to demonstrate the way that a mHealth

app can be integrated with the FHIR server side. The AidIT app can be utilized by users

who have different privileges, uses QR codes to secure the data, and includes an RBAC

mechanism to apply security policies to CRUD actions. The access control model is

enforced within the user interface of the mobile app by only showing the components

(buttons and tabs) that can be accessed according to a user’s role. Unlike our work, this

approach does not enforce access control via FHIR and the RESTful API services, but

focuses on programmatic changes to the AidIT mHealth app making reuse of the approach

problematic for other mobile apps. Our approach to control services by role and by

clearance/classification is applicable to any mHealth app accessing RESTful API FHIR

services to be controlled by RBAC and MAC, and is reusable without needing to modify

app code. The second effort (Franz, et al., 2015) applies FHIR to a health monitoring

system of vital signs (e.g., blood pressure, blood sugar, etc.) for patients in cardiac rehab

and for elderly with chronic diseases. The effort collected information using the

Observation FHIR resource for 68 patients and nearly 2000 data points. Such an effort

would need services used by patients to store their individual data and for researchers to be

able to access data from multiple participants. Clearly, there is a need to have the ability to

control who can enter/view data for different stakeholders (roles), making our approach

suitable. However, despite the work acknowledging the need to support security, this was

 161

a subject for future work. The third approach, SecFHIR (Altamimi, 2016), presented a

security specification model on FHIR resources represented using XML or JSON schemas.

The work on SecFHIR defined permissions on schemas, which implicitly specify the

permissions on the corresponding XML instances. As previously mentioned, ONC (Health

and Human Services Department, 2015) is promoting a national effort to have RESTful

APIs for healthcare data availability and security at the data level using XML in SecFHIR

while relevant, is not targeting the way that mHealth applications access healthcare data

via services. Our focus on applying RBAC and MAC at the role/clearance-

classification/RESTful API level means that our policies are applicable regardless of the

actual data format. Our work also does not need to add permission tags that would impact

the FHIR resource standard schemas for XML and JSON.

 162

Chapter 7
Conclusion

This dissertation presented and explained a comprehensive configurable framework

for RBAC (Ferraiolo & Kuhn, 1992), MAC (Sandhu & Samarati, 1994) and DAC

(Department of Defense, 1985) for mobile applications that is capable of supporting access

control in different security layers. Security was controlled: for the user interface in terms

of which screens and/or their components are accessible to a user under RBAC with

optional delegation via DAC; for interactions from the mobile app to the mobile

application’s API services in order to define the API services that can be invoked by a

particular user based on RBAC and/or MAC permissions with optional delegation via

DAC; and, for interactions between the mobile app API services that seek to invoke the

API of server-side data sources also based on RBAC and/or MAC permissions with

optional delegation via DAC. The main objectives have been four-fold: define a Software

Architecture for a Configurable Access Control Framework for Mobile Applications;

create a Unified Mobile Computing and Security Model with Access Control to capture

characteristics of mobile applications and RBAC, MAC, and DAC that are defined on both

the user interface and various levels of API services; describe the ability to support the

Dynamic Combination of Access Control Models and Configuration Options; and, define

and implement Access Control Security Enforcement Code Generation and Interceptors

that operates for both the look-and-feel by RBAC of the mobile app as well as the services

that can be intercepted for RBAC, MAC, and DAC delegation checks on services. These

objectives were illustrated using a mHealth application linked to OpenEMR via the HAPI

FHIR server.

 163

The remainder of this conclusion is organized as follows. Section 7.1 summarizes

the dissertation, highlighting the attainment of the four aforementioned main objectives in

detail. Using this as a basis, Section 7.2 discusses the research contributions of this

dissertation, primarily in the areas of: Software Architecture for a Configurable Access

Control Framework for Mobile Applications; Unified Mobile Computing and Security

Model with Access Control to capture characteristics of mobile applications and RBAC,

MAC, and DAC; Dynamic Combination of Access Control Models and Configuration

Options; and, Access Control Security Enforcement Code Generation and Interceptors.

Then, on Section 7.3, we detail the ongoing and future research directions that include, but

are not limited to: supporting other access control models, supporting another cloud

framework for the interceptor, finer-grained DAC for UI, controlling services by instances,

adding time-based permissions, and testing the configurable framework with other mobile

apps and data sources.

7.1. Summary
The work presented in this dissertation attempts to incorporate RBAC, MAC, and

DAC access control mechanisms in different parts of the architecture of mobile

applications in order to protect highly-sensitive data managed by mobile applications. The

main focus of the dissertation was to create a software architecture for our configurable

framework approach in which we could define different permissions on the UI, API, and

data sources of the mobile application that could be combined and enforced either on the

source code of a mobile application, on the mobile application’s APIs, or on the server-

side APIs of a mobile application. In support of our focus, the discussion was presented

throughout six chapters.

 164

Chapter 1 introduced the main areas for our research and a high-level view of the

proposed configurable access control framework. Section 1.1 discussed the motivation of

adding access control to mobile applications as our main area of interest. Section 1.2

explore the motivation of the work in the healthcare domain as an appropriate context to

present the work of the dissertation due to its need for strict control of PHI and the

emergence and usage of mobile health (mHealth) applications for patients and medical

providers. As noted in Section 3.1, mHealth applications have critical requirements

regarding information usage and exchange with different stakeholders needing different

types of access. With the motivation in hand, Section 1.4 presented and explained the

configurable framework for RBAC, MAC and DAC for mobile applications of this

dissertation. Section 1.5 provided a list of the research objectives and expected

contributions for the dissertation. Section 1.6 discussed the work that has been published

by us in order to support the work presented in the dissertation. Finally, Section 1.7

presented an outline of the dissertation.

Chapter 2 provided background information on the main concepts and topics that

support the discussion and explanation of the dissertation. Section 2.1 presented the logical

architecture of a mobile application on different layers and their interaction. Section 2.2,

2.3, and 2.4 reviewed, respectively, Role-Based Access Control (RBAC) (Ferraiolo &

Kuhn, 1992), Mandatory Access Control (MAC) (Bell & La Padula, 1976), and

Discretionary Access Control (DAC) (Department of Defense, 1985). Section 2.5 reviewed

the application programming interface (API) concept which is instrumental in support of

permissions based on which user is authorized to which API service. Section 2.6 explained

the Fast Healthcare Interoperable Resources (FHIR) specification (FHIR DSTU2, 2015)

 165

and the HAPI FHIR reference implementation (HAPI FHIR, 2014), which support the

proof-of-concept discussion in Chapter 6. Section 2.7 introduced and reviewed the

Connecticut Concussion Tracker (CT2) mobile application, a collaboration between the

Departments of Physiology and Neurobiology, and Computer Science & Engineering at

the University of Connecticut and Schools of Nursing and Medicine in support of a new

law passed to track concussions of children from kindergarten through high school in

public schools (CT Law HB6722) (Connecticut General Assembly, 2015).

Chapter 3 contained a detailed discussion of a unified model of access control for

mobile applications. Section 3.1 introduced definitions for the generalized structure of a

mobile application. Section 3.2 reviewed definitions for RBAC and MAC including: roles,

sets of roles, users, sets of users’ clearances and classification for MAC. Section 3.3

presented definitions for RBAC permissions on the user interface. Section 3.4 presented

definitions for RBAC and MAC permissions on the mobile application API that is

partitioned into secure/unsecure services (RBAC) and labeled/unlabeled services (MAC);

and discussed service permission assignment to roles and users. Section 3.5 detailed

definitions for DAC that included the delegation of permissions from one user/group to

another user/group for RBAC permissions on the UI of a mobile application and RBAC

and/or MAC permissions on the services of the mobile application API. Collectively, the

model presented in Sections 3.1 to 3.5, allowed for the ability to model RBAC, MAC,

and/or DAC on the mobile application and its API and supports contribution B: Unified

Mobile Computing and Security Model with Access Control from Section 1.5 of Chapter

1. Section 3.6 discussed the ability to take the model concepts as given in Sections 3.1 to

3.5 and pick-and-choose in order to define and design a unique set of security capabilities

 166

for each mobile application; this supports contribution C: Dynamic Combination of Access

Control Models and Configuration Options. Section 3.7 contained an entity relationship

diagram to store information programmatically from the Unified Security Model in

Sections 3.1 to 3.5. Finally, Section 3.8 presented related work on access control in mobile

computing.

Chapter 4 presented the security policy definition and generation process for the

screens, components, and interactions of the user interface for the Direct UI Modifications

option (see Section 1.4 and Figure 1.3 again) that changes the look-and-feel of the UI

according to RBAC and/or DAC permissions. Section 4.1 reviewed a subset of the model

and permissions from Chapter 3 for the mobile app UI that define which screens and

components can be viewed/edited/viewed once/enabled/hidden in order to customize the

look-and-feel of the UI by role. Section 4.2 reviewed a subset of the ER diagram for the

unified security model in Figure 3.3 of Section 3.7, focusing on UI, screens, components,

screen interactions, users, roles, permissions, and optional delegation with examples using

the CT2 mobile app. Section 4.3 explained the programmatic changes that must be made to

the mobile application itself to allow for the screens and their components to be

customized. Section 4.4 provided a guide that stated which programmatic changes need to

be done in a mobile app in order to apply the Direct UI Modifications option. Finally,

Section 4.5 presented related work on the customization of user interfaces via adaptive UIs

and the usage of RBAC.

Chapter 5 presented the Intercepting API calls option on the interactions between

the UI and the mobile applications’ API services to control by RBAC, MAC, and/or DAC

permissions which services are allowed to be invoked for on a user-by-user basis through

 167

the generation of an intercepting API that mirrors the original mobile applications API.

Section 5.1 motivated the Intercepting API Calls option by explaining the important role

of the API in accessing information, especially PPI and PHI. Section 5.2 presented the

high-level processing of the Intercepting API Calls option using the classic architecture of

the User Layer, Presentation Layer, Business Layer, and, Data Layer. Section 5.3 explored

the underlying processing of the Intercepting API Calls option by examining the way that

API services are categorized. Section 5.4 examined the Interactions and Infrastructure for

the Intercepting API Calls option. Section 5.5 explored the algorithm generation process

for the Intercepting API Calls option. Section 5.6 illustrated the Intercepting API Calls

option via the CT2 mHealth application. Finally, Section 5.7 discussed related work in

security and access control mechanisms for mobile applications.

Chapter 6 presented the Server Interceptor API option on the interactions between

the mobile application’s API services and their invocations to server-side APIs of data

sources, with a server interceptor API defined using the HAPI FHIR reference

implementation. Section 6.1 motivated the way that the Intercepting API Calls option as

given in Chapter 5 is adapted and evolved to the Server Interceptor API option. Section 6.2

reviewed the HAPI FHIR reference implementation capabilities with a focus on the

intercepting process. Section 6.3 presented a set of modifications that incorporate RBAC,

MAC, and DAC into the FHIR specification and its realization within the HAPI FHIR

reference implementation. To demonstrate the inclusion and realization of RBAC, MAC,

and DAC for a mHealth app within HAPI FHIR, Section 6.4 provided an implementation

of the service-based access control approach by using the Connecticut Concussion Tracker

 168

(CT2) mHealth app and the OpenEMR HIT system (OpenEMR, 2002). Finally, Section 6.5

reviewed related works and compares and contrasts these to the work of this chapter.

7.2. Research Contributions
This section revisits the expected research contributions given in Section 1.5 of

Chapter 1 and provides insight of their attainment across the chapters of the dissertation.

The Configurable Framework for RBAC, MAC, and DAC for Mobile Applications has the

following contributions:

A. Software Architecture for a Configurable Access Control Framework for

Mobile Applications: The contribution involved the specification, design, and

description of a software architecture for the configurable access control framework

as given in Figure 1.4 of Chapter 1. This facilitates the ability to insert role-based,

mandatory, and discretionary access controls at alternate and multiple locations

throughout the architecture. In support of this contribution, Chapter 4, 5, and 6

provided details of the architecture of the different options that are part of the

configurable framework (shown in Figure 1.3 of Chapter 1): Direct UI

Modifications option (Figure 4.4 of Chapter 4), Intercepting API Calls option

(Figure 5.1 of Chapter 5), and Server Interceptor API option (Figure 6.4 of Chapter

6).

B. Unified Mobile Computing and Security Model with Access Control: The first

four components in Figure 1.4 of Chapter 1 (i.e., Mobile Application, Mobile

Application Clients, Access Control Models, and Permissions and Impact on

Mobile App) all influenced the creation of a unified mobile computing and security

model which contains: a generalized structure of a mobile application as a user

 169

interface of screens, components (text fields, drop down, buttons, etc.), and

interactions among screens (Defns. 1-5 in Section 3.1 of Chapter 3); roles, sets of

roles, users, and sets of users (Defns. 6-12 in Section 3.2 of Chapter 3); permission

assignments of users and roles on screens, components, and interactions (Defns.

13-16 in Section 3.3 of Chapter 3); mobile application API that is partitioned into

secure/unsecure services (RBAC) (Defn. 17 in Section 3.4 of Chapter 3) and

labeled/unlabeled services (MAC) (Defns. 18 in Section 3.4 of Chapter 3); service

permission assignment to roles and users (Defns. 19-21 in Section 3.4 of Chapter

3); and, delegation permissions assignment (Defns. 22-33 in Section 3.5 of Chapter

3). This allowed the ability to model role-based, mandatory, and discretionary

access controls on the mobile application and the mobile app’s API and server-side

APIs of data sources.

C. Dynamic Combination of Access Control Models and Configuration Options:

The third and fourth components in Figure 1.4 of Chapter 1 (i.e., Access Control

Models, Permissions and Impact on Mobile App) are combinable on different ways.

The contribution provides the ability to combine different aspects of access control

models (RBAC, MAC, and DAC), of the mobile application (UI, API, and APIs of

Data Source), and of the configuration options (Direct UI Modifications,

Intercepting API Calls, and Server Interceptor API) into custom access control

solutions for a mobile application as given in Table 3.11 in Section 3.6 of Chapter

3. Each allowable combinations in Table 3.11 when selected results in the

Generation of Security Policies (fifth component in Figure 1.4) which in turn

 170

supports the specific Enforcement of Security Policies (sixth component in Figure

1.4).

D. Access Control Security Enforcement Code Generation and Interceptors: The

fifth and sixth components in Figure 1.4 of Chapter 1 (i.e., Generation of Security

Policies and Enforcement of Security Policies) are the programmatic changes or

generation of interceptor code for the configuration framework (research

contribution A) and the chosen combination (Contribution C) under the unified

model (Contribution B). For the Direct UI Modifications option, a process for

modifying mobile app code was described in Sections 4.3 and 4.4 of Chapter 4 with

associated source code given in Appendix A. Processes for the Direct UI

Modifications are often human assisted and involve the need to actually modify

limited portions of the mobile application code, API, and/or server database. For

the Intercepting API Calls and Server Interceptor API options, algorithms were

generated for the different configuration options for the framework that support the

interceptors for the Intercepting API Calls (pseudocode and source code explained

on Section 5.5 of Chapter 5 and fully shown on Appendix B), and Server Interceptor

API options (pseudocode and source code explained on Section 6.3 and 6.4, and

fully shown on Appendix C). Algorithms for the Intercepting API Calls, and Server

Interceptor API options were defined for those cases where actual code is

generated.

7.3. Ongoing and Future Work
The work presented in this dissertation can serve as a foundation for further

enhancements and extensions. A list of ongoing and future topics includes: incorporating

 171

additional access control models in support of Direct UI Modifications, Intercepting API

Calls, and Server Interceptor API options; supporting alternate cloud frameworks for the

interceptor; Partial RBAC UI Delegation to have fine-grained control on delegating a

subset of screens and/or component permissions; controlling access to services by instances

to limit which data can be modified; time-based permissions for the UI and API which have

the ability to expire; and, inclusion of additional mobile apps and data sources to

demonstrate feasibility of the work.

Incorporating Additional Access Control Models: Currently, our configurable

framework utilizes RBAC, MAC, and DAC to enforce security mechanisms on different

parts of the mobile application architecture in support of Direct UI Modifications,

Intercepting API Calls, and Server Interceptor API options. As part of future work, we are

considering additional access control models. For example, attribute-based access control

(ABAC) and identity-based access control (IBAC) can be useful to generate finer-grained

access control and to contemplate other healthcare scenarios that could benefit from these

models (e.g., granting access to a user if he/she is on an specific location for perhaps a

physician that moves among locations). This future work will require additions to both the

unified security model and interceptors.

Supporting Alternate Cloud Frameworks for the Interceptor: Presently, our

Server Interceptor API option of the configurable framework relies on the HAPI FHIR

library in order to implement the server interceptors that enforce security on the server-side

APIs. As part of ongoing and future work, we are contemplating to support other cloud

frameworks such as openstack (openstack, 2012) and cloud stack (Apache Cloud Stack,

2016). In addition, we are exploring the generalization of our service-based RBAC, MAC,

 172

and DAC approach with HAPI FHIR in order to obtain a solution that can be utilized in

other apps that implement FHIR, and more generally, to other cloud computing

frameworks.

Partial RBAC UI Delegation: Recall that the Direct UI Modifications option of

the configurable framework can enforce RBAC and DAC permissions on the screens,

screen components, and screen interactions of a mobile application. Specifically, DAC

permissions allow an original user (see Defn. 22 on Section 3.5 of Chapter 3 again) or a

delegated user (see Defn. 24 on Section 3.5 of Chapter 3 again) with pass-on-delegation

authority (see Defn. 27 on Section 3.5 of Chapter 3 again) to delegate his/her full UI

permissions (see Defn. 28 on Section 3.5 of Chapter 3 again) to a delegated user. The future

work consider DAC delegations that could be more fine-grained by allowing users to

delegate a subset of their UI permissions meaning that they would have the choice to

delegate a subset of the screens, screen components, and screen interactions they have

access to instead of all of these permissions as it currently does.

Controlling Access to Services by Instances: As previously mentioned, our

configurable framework supports the assignment of a role and/or clearance to users of a

mobile application to control access to the mobile app services and server-side services.

However, we want to control which values the user can send/retrieve from the data source

instead of allowing them to send/retrieve all of the values that the service contains. In other

words, we want to be able to control which parts of the data a user can add/update/delete

from the mobile application and, which data a user can retrieve when he/she requests it

through the means of an API service. For example, in the CT2 mHealth app, we would want

to limit parents to only have access to the data of their own children, or in a school district

 173

that has multiple schools, limit a nurse to only seeing students within his/her school. This

work might also be achieved by constraining the parameters and/or return types values on

a service by service basis.

Time-Based Permissions for UI and APIs: Currently, a user has access to the UI

screens and screen components of a mobile app, and to the API services depending on their

role/clearance/MAC properties/delegations. This future work would augment these

permissions with time constraints that are definable on users, roles, UI permissions, service

permissions, etc., so a particular user/role or user/clearance only has access to a specific

UI component/API service at certain periods of time. For instance, suppose a user contains

a role that should only be available from 9am to 5pm on weekdays. With time-based

permissions we can restrict the user to the specified role between that period of time and

could assign another role that has less privileges on the weekends, for instance.

Inclusion of Additional Mobile Apps and Data Sources: In examples throughout

the dissertation, we relied on the the CT2 mHealth app and OpenEMR data source to test

the Direct UI Modifications, Intercepting API Calls and Server Interceptor API options;

nonetheless, the app only connects to one data source. Therefore, we plan to continue to

test our approach with other mHealth apps that obtain data from multiple data sources and

determine if this affects our configurable framework. For example, ShareMyHealth is an

mHealth app developed over the last year, by a team of undergraduate students at the

University of Connecticut, for Android and iOS devices. ShareMyHealth provides patients

with a means to manage and share their fitness data across multiple systems. Patients can

gather data from multiple sources (e.g., MyGoogle, OpenEMR, etc.) that can then be made

available to medical providers. Applying our configurable framework to ShareMyHealth

 174

can led us to consider if we need to make modifications to the framework in terms of

contemplating other locations to enforce access control mechanisms and also determine

how we could add such mechanisms to the APIs if they have existing access control

permissions.

 175

References

Abdunabi, R., Sun, W., & Ray, I. (2014). Enforcing spatio-temporal access control in mobile
applications. Computing, 96(4), 313-353.

Aich, S. Mondal, S., Sural, S., & Majumdar, A. K. (2009). "Role Based Access Control with
Spatiotemporal Context for Mobile Applications," Transactions on Computational Science IV:
Special Issue on Security in Computing.

Aitken, M. (2013, October). Patient Apps for Improved Healthcare: From Novelty to
Mainstream. Retrieved from
http://obroncology.com/imshealth/content/IIHI%20Apps%20report%20231013F_interactive.pdf.

Alhaqbani, B., & Fidge, C. (2008). Access Control Requirements for Processing Electronic
Health Records, Business Process Management Workshops. (A. ter Hofstede, B. Benatallah, &
H. Paik, Eds.) LNCS, 4928, 371-382.

Altamimi, A. (2016). "SecFHIR: A security specification model for Fast Healthcare
Interoperability Resources". International Journal of Advanced Computer Science and
Applications (ijacsa), 7(6).

Apache CloudStack. (2016, June 15). Apache CloudStack: Open Source Cloud Computing.
Retrieved from https://cloudstack.apache.org/.

Apigee. (2015). Apigee: API Management. Retrieved from http://apigee.com/about/.

Apigee Docs. (2015). Managing organization users. Retrieved from http://docs.apigee.com/api-
services/content/managing- organization-users.

Apple. (2015). ResearchKit and CareKit. Retrieved from http://www.apple.com/researchkit/.

Backes, M., Bugiel, S., Gerling, S., & von Styp-Rekowsky, P. (2014). "Android Security
Framework: Extensible multi-layered access control on Android," in 30th Annual Computer
Security Applications Conference.

Baihan, M., Rivera Sánchez, Y. K., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. "A
Blueprint for Designing and Developing an mHealth Application for Diverse Stakeholders
Utilizing Fast Healthcare Interoperability Resources," in Contemporary Applications of Mobile
Computing in Healthcare Settings, R. Rajkumar, Ed., IGI Global.

Baracaldo, N. & Joshi, J. (2013). An Adaptive Risk Management and Access Control Framework
to Mitigate Insider Threats. Computers & Security (39), 237-254.

Bell, D. E., & La Padula, L. J. (1976). Secure Computer System: Unified Exposition and
Multics Interpretation. MITRE Corp.

 176

Benats, G., Bandara, A., Yu, Y., Colin, J., & Nuseibeh, B. (2011). "PrimAndroid: privacy policy
modelling and analysis for android applications," in Symposium on Policies for Distributed
Systems and Networks (POLICY ‘11).

Beresford, A., Rice, A., Skehin, N., & Sohan, R. (2011). "MockDroid: trading privacy for
application functionality on smartphones". In 12th Workshop on Mobile Computing Systems and
Applications, Phoenix, Arizona.

Biba, K. J. (1977, April). Integrity considerations for secure computer systems. Technical report,
MITRE Corp. Bedford, MA, USA.

Bleigh, M. (2010, April 29). REST isn’t what you think it is, and that’s OK. Retrieved from
https://www.mobomo.com/2010/04/rest-isnt-what-you-think-it-is/.

Bugiel, S., Heuser, S., & Sadeghi, A. (2013). Flexible and Fine-grained Mandatory Access Control
on Android for Diverse Security and Privacy Policies. 22nd USENIX Security Symposium, 131-
146.

Caine, K., & Hanania, R. (2013). Patients want granular privacy control over health information
in electronic medical records. Journal of the American Medical Informatics Association, 20(1),
7-15.

Capzule. (2012). Capzule PHR. Retrieved from http://www.capzule.com/.

Care360. (2014). MyQuest. Retrieved from https://myquest.questdiagnostics.com/web/home.

Cisco. (2014). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2014-2019. Retrieved from http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white_paper_c11-520862.pdf.

Cobb, M. (2014, March 11). API security: How to ensure secure API use in the enterprise.
Retrieved from http://searchsecurity.techtarget.com/tip/API- security-How- to-ensure-secure-
API-use-in-the-enterprise.

Cohen, J. (2015, January 7). 11 Health and Fitness Apps That Achieve Top Results. Retrieved
from http://www.forbes.com/sites/jennifercohen/2015/01/07/the-11-top-health-fitness-apps-that-
achieve-the-best-results/#11f5c21a1aca.

Collet, S., 2015. API security leaves apps vulnerable: 5 ways to plug the leaks. Retrieved from
http://www.csoonline.com/article/2956367/mobilesecurity/api-security-leaves-apps-vulnerable-
5-waysto-plug-the-leaks.html.

Connecticut General Assembly. (2015). Substitute for Raised H.B. No. 6722. Retrieved from
https://www.cga.ct.gov/asp/CGABillStatus/CGAbillstatus.asp?which_year=2015&selBillType=
Bill&bill_num=HB6722.

 177

CVS Pharmacy. (2015). myCVS On the Go. Retrieved from http://www.cvs.com/mobile-cvs.

Dellinger, A.J. (2015, November 11). This Instagram app may have stolen over 500,000
usernames and passwords. Retrieved from http://www.dailydot.com/debug/instaagent-
instagram-app-malware-ios-android/.

Department of Defense. (1985, December 26). Department of Defense Trusted Computer System
Evaluation Criteria. Retrieved from http://csrc.nist.gov/publications/history/dod85.pdf.

DICOM. (2012). Digital imaging and communications in medicine. Retrieved from
http://dicom.nema.org/.

Drugs.com. (2008). Drugs.com App. Retrieved from http://www.drugs.com/apps/.

Duffy, J. (2016, December 28). The 25 Best Fitness Apps of 2017. Retrieved from
http://www.pcmag.com/article2/0,2817,2485287,00.asp.

eMarketer. (2015, January 8). Tablet Users to Surpass 1 Billion Worldwide in 2015. Retrieved
from https://www.emarketer.com/Article/Tablet-Users-Surpass-1-Billion-Worldwide-
2015/1011806.

Fadhel, A., Bianculli, D., Briand, L., & Hourte, B. (2016). A Model-driven Approach to
Representing and Checking RBAC Contextual Policies. CODASPY 2016, 243–253. ACM.

Fernández-Alemán, J. L., Señor, I., Lozoya, P., & Toval, A. (2013). Security and privacy in
electronic health records: A systematic literature review. J Biomed. Inform, 46(3), 541–562.

Ferraiolo, D., & Kuhn, R. (1992). Role-Based Access Control. In
Proceedings of the NIST-NSA National (USA) Computer Security Conference, 554-563.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., & Chandramouli, R. (2001). Proposed NIST
standard for role-based access control. ACM Transactions on Information and System Security
(TISSEC), 4, 224-274.

FHIR. (2016, September). FHIR security. Retrieved from https://www.hl7.org/fhir/security.html.

FHIR DSTU2. (2015). Guide to resources. Retrieved from

https://www.hl7.org/fhir/resourceguide.html.

FHIR Resources. (2015). Resource Index. Retrieved from

https://www.hl7.org/fhir/resourcelist.html.

Franz, B., Schuler, A., & Krauss, O. (2015, January). "Applying FHIR in an integrated health
monitoring system". EJBI 2015, 11(2), 51-56.

 178

Gajanayake, R., Iannella, R., & Sahama, T. (2014). Privacy Oriented Access Control for
Electronic Health Records. (e15, Ed.) Special Issue on e-Health Informatics and Security,
electronic Journal for Health Informatics, 8(2).

Gartner Newsroom. (2015). Gartner Says Global Devices Shipments to Grow 2.8 Percent in
2015. Retrieved from http://www.gartner.com/newsroom/id/3010017.

Google Play. (2013). Fitness Tracker.
Retrieved from https://play.google.com/store/apps/details?id=com.realitinc.fitnesstracker.

Hafner, M., Memon, M., & Alam, M. (2007). Modeling and Enforcing Advanced Access Control
Policies in Healthcare Systems with Sectet. MoDELS Workshops, (pp. 132-144).

Hansen, F. & Oleshchuk, V. (2003). SRBAC: A Spatial Role-Based Access Control Model for
Mobile Systems. In Proceedings of the 7th Nordic Workshop on Secure IT Systems
(NORDSEC’03). Gj`vik, Norway, 129-141.

Hao, H., Singh, V., & Du, W. (2013). "On the effectiveness of API-level access control using
bytecode rewriting in Android", in 8th ACM SIGSAC symposium on Information, computer and
communications security, Hangzhou, China.

HAPI FHIR. (2014). HAPI. Retrieved from http://hapifhir.io/.

HAPI FHIR Server Interceptors. (2016). Server Interceptors. Retrieved from
http://hapifhir.io/doc_rest_server_interceptor.html.

HAPI FHIR Server Security. (2016). Server Security. Retrieved from
http://hapifhir.io/doc_rest_server_security.html.

Hazelwood, L. (2012, January). The New RBAC: Resource-Based Access Control. Retrieved
from https://stormpath.com/blog/new-rbac- resource-based-access-control/.

Health and Human Services Department. (2015, March). 2015 Edition Health Information
Technology Certification Criteria, 2015 Edition Base Electronic Health Record Definition, and
ONC Health IT Certification Program Modifications. Retrieved from
https://www.gpo.gov/fdsys/pkg/FR-2015-03-30/pdf/2015-06612.pdf.

Health Level Seven International. (2011). Retrieved from
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185.

Heisey-Grove, D., & Patel, V. (2015, September). Any, certified, and basic: Quantifying
Physician EHR adoption through 2014. Retrieved from
https://www.healthit.gov/sites/default/files/briefs/oncdatabrief28_certified_vs_basic.pdf

HIT Consultant. (2014, June 23). The Evolving Landscape of Medical Apps in Healthcare.
Retrieved from http://hitconsultant.net/2014/06/23/the-evolving-landscape-of-medical-apps-in-
healthcare/.

 179

HHS.gov. (2013). Health Information Privacy. Retrieved from
http://www.hhs.gov/hipaa/index.html.
Himss. (2016). Meaningful use stage 3 final rule. Retrieved from:
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987.

HL7. (2013). HL7 Confidentiality Definitions. Retrieved from
http://www.hl7.org/documentcenter/public_temp_F7525D5D-1C23-BA17-
0C9A9B2F4EEFA395/standards/vocabulary/vocabulary_tables/infrastructure/vocabulary/Confid
entiality.html

HL7 v3. (2013). HL7 Version 3 - Value sets using code system: Confidentiality. Retrieved from
http://www.hl7.org/documentcenter/public_temp_5969D197-1C23-BA17-
0C1ADD88E2E4CEBD/standards/vocabulary/vocabulary_tables/infrastructure/vocabulary/vs_C
onfidentiality.html

iOS 9 Health. (2014). Health An innovative new way to use your health and fitness information.
Retrieved from https://www.apple.com/ios/health/.

Instagram. (2010). Instagram. Retrieved from https://www.instagram.com/.

Java. (2013). Java Servlet Technology. Retrieved from
http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html.

Jin, X., Wang, L., Luo, T., & Du, W. (2015). "Fine-Grained Access Control for HTML5-Based
Mobile Applications in Android," in 16th Information Security Conference (ISC).

JWT. (2015, April 23). JSON Web Tokens. Retrieved from https://jwt.io/.

Kelly, S. M. (2014, June 27). In Google Fit vs. Apple HealthKit, Fitness Apps Stay Neutral.
Retrieved from http://mashable.com/2014/06/27/healthkit-google-fit-apps/#nf_r0U7flmqC.

Khan, M. F., & Sakamura, K. (2012). Toward a synergy among discretionary, role-based and
context-aware access control models in healthcare information technology. 2012 World
Congress on Internet Security (WorldCIS), (pp. 66-70).

Lamprinakos, G. C, Mousas, A. S., Kapsalis, A. P., Kaklamani, D. I., Venieris, I. S., Boufis, A.
D., & et al. (2014). "Using FHIR to develop a healthcare mobile application", 132-135.

Larson, S. (2015, November 18). Instagram restricts API following password breach, will review
all apps going forward. Retrieved from http://www.dailydot.com/debug/instagram-api-
restrictions/.

Lella, A., Lipsman, A., & Martin, B. (2015, September 22). The 2015 Mobile App Report.
Retrieved from https://www.comscore.com/Insights/Presentations-and-Whitepapers/2015/The-
2015-US-Mobile-App-Report.

 180

Liebrand, M., Ellis, H., Phillips, C., Demurjian, S., Ting, T.C., and Ellis, J. (2003, July). Role
Delegation for a Resource-Based Security Model. In Research Directions in Data and
Applications Security. E. Gudes and S. Shenoi (eds.), Vol. IFIP 128, Springer, pp. 37-48.

Mashery. (2015). API Security. Retrieved from http://www.mashery.com/api/security.

MedWatcher. (2012). MedWatcher. Retrieved from https://medwatcher.org/.

Microsoft Corporation. (2008). Mobile Application Architecture Guide. Retrieved from
http://robtiffany.com/wp- content/uploads/2012/08/Mobile_Architecture_Guide_v1.1.pdf.

Morris, J. (2013, July 11). Overview of Linux Kernel Security Features. Retrieved from
https://www.linux.com/learn/overview-linux-kernel-security-features.

My Imaging Records App. (2013). My Imaging Records App. Retrieved from
http://myimagingrecords.com/index.html.

MTBC PHR. (2011). MTBC PHR. Retrieved from https://phr.mtbc.com/.

NIST Computer Security Resource Center. (2015). Role Based Access Control - Frequently
Asked Questions.
Retrieved from http://csrc.nist.gov/groups/SNS/rbac/ faq.html.

openstack. (2012, July 21). openstack Software. Retrieved from
https://www.openstack.org/software/.

Osborn, S., Sandhu, R., & Munawer, Q. (2000). Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Transactions on Information and
System Security, 3(2).

Peleg, M., Beimel, D., Dori, D., & Denekamp, Y. (2008). Situation-Based Access Control:
Privacy management via modeling of patient data access scenarios. Journal of Biomedical
Informatics, 41(6), 1028-1040.

PEW Research Center. (2015). Mobile Technology Fact Sheet. Retrieved from
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/.

Pollock, J. (2013, May 6). New Feature: Access Control on APIs. Retrieved from
http://support.mashery.com/blog/read/New_Feature_Access_Control_on_APIs.

Ponemon Institute. (2009, April 6). Ponemon Institute. Retrieved from
http://www.ponemon.org/.

 181

Ponemon Institute. (2015, May). 2015 Cost of Data Breach Study: Global Analysis. Retrieved
from
http://public.dhe.ibm.com/common/ssi/ecm/se/en/sew03053wwen/SEW03053WWEN.PDF?.

Postman. (2013). Postman. Retrieved from http://www.getpostman.com/.

Radicati, S. (2014). Mobile Statistics Report 2014-2018. Retrieved from
http://www.radicati.com/wp/wp-content/uploads/2014/01/Mobile-Statistics-Report-2014-2018-
Executive-Summary.pdf.

Rindfleisch, T.C. Privacy, Information Technology, and Health Care. (1997). Communications of
the ACM, 40(8), 93-100.

Rivera Sánchez, Y.K., Demurjian, S.A. (2016). Chapter 6: User Authentication Requirements for
Mobile Computing. Handbook of Research on Innovations in Access Control and Management.
IGI Global.
	
Rivera Sánchez, Y. K., Demurjian, S. A., Conover, J., Agresta, T., Shao, X., and Diamond, M.
(2016). Chapter 6: An Approach for Role-Based Access Control in Mobile Applications.
Handbook of Mobile Application Development, Usability, and Security. S. Mukherja (ed.). IGI
Global.

Rivera Sánchez, Y. K., Demurjian, S.A., and Gnirke, L. (2017). An Intercepting API-based Access
Control Approach for Mobile Applications. In proceedings of The 13th International Conference
on Web Information Systems and Technologies (WEBIST 2017).

Rivera Sánchez, Y. K., Demurjian, S.A., and Baihan, M. (2017a). Achieving RBAC on RESTful
APIs for Mobile Apps using FHIR. In proceedings of The 5th IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering (IEEE Mobile Cloud 2017).

Rivera Sánchez, Y.K., Demurjian, S. A., and Baihan, M. S. (2017b). A Service-Based RBAC &
MAC Approach Incorporated into the Fast Healthcare Interoperable Resources (FHIR) standard,
submitted to special issue on 2017IEEE Mobile Cloud Conference submissions, Elsevier journal
of Digital Communications and Networks, https://www.journals.elsevier.com/digital-
communications-and-networks/call-for-papers/special-issue-on-the-security-privacy-and-digital-
forensics

Rohrer, F., Zhang, Y., Chitkushev, L., & Zlateva, T. (2013). "DR BACA: dynamic role based
access control for Android," in 29th Annual Computer Security Applications Conference, New
Orleans, Louisiana, USA.

Rouse, M. (2014, December 2). REST (representational state transfer). Retrieved from
http://searchsoa.techtarget.com/definition/REST
	
Rouse, M. (2012, April 15). Role-Based Access Control (RBAC). Retrieved from
http://searchsecurity.techtarget.com/definition/role-based- access-control-RBAC.

 182

Sandhu, R., Ferraiolo, D. F., & Kuhn, R. (2000). The NIST Model for Role Based Access
Control: Toward a Unified Standard. In Proceedings of the Fifth ACM Workshop on Role-based
Access Control (RBAC ’00), 47-63. Berlin, Germany.

Sandhu, R.S., & Samarati, P. (1994). Access Control: Principles and Practice. Communications
Magazine, IEEE, 32(9), 40–48.  

Santos-Pereira, C., Augusto, A.B., Correia, M.E., Ferreira, A., & Cruz-Correia, R. (2012). A
Mobile Based Authorization Mechanism for Patient Managed Role Based Access Control,
ITBAM 2012, LNCS, 7451, 54-68. Springer, Heidelberg.

Schefer-Wenzl, S., & Strembeck, M. (2013). Modelling Context-Aware RBAC Models for
Mobile Business Processes. International Journal of Wireless and Mobile Computing (IJWMC),
6(5), 448.

Shebaro, B., Oluwatimi, O., & Bertino, E. (2015). Context-Based Access Control Systems for
Mobile Devices. Fellow, IEEE.

SlideShare. (2012, December 5). Constrained RBAC diagram. Retrieved from
http://image.slidesharecdn.com/rbac6576-121205031439-phpapp01/95/rbac-18-
638.jpg?cb=1354677352

Smith, A. (2015). U.S. Smartphone Use in 2015. Retrieved from
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.

Snapchat. (2013, December 27). Finding Friends with Phone Numbers.
Retrieved from http://blog.snapchat.com/post/71353347590/finding- friends-with-phone-
numbers

Snapchat. (2011). Snapchat. Retrieved from https://www.snapchat.com/

Stormpath. (2015). Stormpath User Identity API. Retrieved from https://stormpath.com/

Sujansky, W. V., Faus, S. A., Stone, E., Brennan, P. F. (2010). A method to implement fine-
grained access control for personal health records through standard relational database queries.
Journal of Biomedical Informatics, 43(5), 46-50.

Symantec. (2014, October 7). Securing Mobile App Data - Comparing Containers and App
Wrappers. Retrieved from https://www.symantec.com/content/en/us/enterprise/white_papers/b-
securing-mobile-app-data-comparing-containers-wp-21333969.pdf

Ventola C. L. (2014). Mobile Devices and Apps for Health Care Professionals: Uses and
Benefits. P&T, 39, 356-364.

W3C. (2007). Latest SOAP versions. Retrieved from https://www.w3.org/TR/soap/.

 183

Walker, J., Pan, E., Johnston, D., Adler-Milstein, J., Bates, D. W., & Middleton, B. (2005). The
Value of Health Care Information Exchange and Interoperability. 24(2), 10-18. Health Affairs,
24(2), pp. 10-18.

Wang, Y., Hariharan, S., Zhao, C., Liu, J., & Du, W. (2014). "Compac: enforce component-level
access control in android," in 4th ACM conference on Data and application security and privacy,
San Antonio, Texas, USA.

WebMD. (2016). WebMD App. Retrieved from http://www.webmd.com/mobile.

West, D. & Miller, E.A. (2009). Digital Medicine: Health Care in the Internet Era. Brooking
Institution Press, 4.

WhatIsREST.com. (2012, October 26). REST Constraints. Retrieved from
http://whatisrest.com/rest_constraints/index

Wiech, D. (2013, April 17). Role-Based Access Control for Healthcare Data Security. Retrieved
from http://healthcare-executive-insight.advanceweb.com/Features/Articles/Role-based-Access-
Control-for-Healthcare-Data-Security.aspx

Zeman, E. (2015, April 7). Snapchat Lays Down The Law On Third-Party Apps. Retrieved from
http://www.programmableweb.com/news/snapchat-lays- down-law-third-party-apps/2015/04/07

 184

Appendix

Appendix A – Sample Programmatic Changes for CT2 (Android version)

RBAC API – getScreenAccessJSON method:
public static int getScreenAccessJSON(int roleId, int screenId) {
 String action = "/screenaccesses";
 String params = "/" + roleId + "/" + screenId;

 try {
 JSONArray json = ServerConnectionHelper.toJSONArray
 (ServerConnectionHelper.serverAsyncRequestGet
 (action + params, LOCALSERVER_URL_API4430));

 //Get screen permission based on the user’s role
 screenAccess = new Screens(json.getJSONObject(0));
 }

 catch (Throwable t) {
 t.printStackTrace();
 }

 return screenAccess.getAccess();
}

Screen Permissions:
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.tabs_activity);
 setTitle(R.string.app_head_name);

 // resource object to get drawables
 Resources res = getResources();
 // the activity TabHost
 TabHost tabHost = getTabHost();
 // reusable TabSpec for each tab
 TabHost.TabSpec spec;
 // reusable intent for each tab
 Intent intent;

 Bundle bundle = getIntent().getExtras();
 int value = bundle.getInt("RoleID");
 userID=bundle.getInt("UserID");
 language=bundle.getInt("language");

 // retrieve extras from intent
 Bundle extras = getIntent().getExtras();
 stateID = extras.getString("StateID");
 cityID=extras.getString("CityID");
 districtID=extras.getString("DistrictID");
 schoolID=extras.getString("SchoolID");

 this.school_id=schoolID;

 // Search Tab
 intent = new Intent().setClass(this, SearchStudentsActivity.class);
 intent.putExtra("StateID", stateID);

 185

 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);
 intent.putExtra("language", language);
 spec = tabHost.newTabSpec("home").setIndicator
 (getString(R.string.home),res.getDrawable
 (R.drawable.ic_tab_home)).setContent(intent);
 tabHost.addTab(spec);

 // List of Students Tab
 intent = new Intent().setClass(this, ListOfStudentsActivity.class);
 intent.putExtra("StateID", stateID);
 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);
 intent.putExtra("language", language);

 spec = tabHost.newTabSpec("list").setIndicator
 (getString(R.string.list),res.getDrawable
 (R.drawable.ic_tab_list)).setContent(intent);
 tabHost.addTab(spec);

 // New Student Tab move
 intent = new Intent().setClass(this, HomeAddNewStudentActivity.class);
 intent.putExtra("StateID", stateID);
 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);
 intent.putExtra("language", language);
 spec = tabHost.newTabSpec("addNewStudent").setIndicator
 (getString(R.string.student),res.getDrawable
 (R.drawable.ic_tab_student)).setContent(intent);
 tabHost.addTab(spec);

 // Cause of Injury Tab
 intent = new Intent().setClass(this, CauseOfInjuryActivity.class);
 intent.putExtra("StateID", stateID);
 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);
 intent.putExtra("language", language);
 spec = tabHost.newTabSpec("cause").setIndicator
 (getString(R.string.cause), res.getDrawable
 (R.drawable.ic_tab_cause)).setContent(intent);
 tabHost.addTab(spec);

 // Immediate Symptoms Tab
 intent = new Intent().setClass(this, ImmediateSymptomsActivity.class);
 intent.putExtra("StateID", stateID);
 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);

 186

 intent.putExtra("language", language);
 spec = tabHost.newTabSpec("symptoms").setIndicator
 (getString(R.string.symptoms),res.getDrawable
 (R.drawable.ic_tab_symptoms)).setContent(intent);
 tabHost.addTab(spec);

 // Injury Follow-up Tab
 intent = new Intent().setClass(this, InjuryFollowUpActivity.class);
 intent.putExtra("StateID", stateID);
 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);
 intent.putExtra("language", language);

 spec = tabHost.newTabSpec("follow_up").setIndicator

 (getString(R.string.injury_follow_up), res.getDrawable
 (R.drawable.ic_tab_follow_up)).setContent(intent);
tabHost.addTab(spec);

 // Return to Learn Tab
 intent = new Intent().setClass(this,ReturnToLearnActivity.class);
 intent.putExtra("StateID", stateID);
 intent.putExtra("CityID", cityID);
 intent.putExtra("DistrictID", districtID);
 intent.putExtra("SchoolID", schoolID);
 intent.putExtra("UserID", userID);
 intent.putExtra("RoleID", value);
 intent.putExtra("language", language);
 spec = tabHost.newTabSpec("return").setIndicator
 (getString(R.string.return_to_learn), res.getDrawable
 (R.drawable.ic_tab_return)).setContent(intent);
 tabHost.addTab(spec);

 // set the current tab (default Home)
 tabHost.setCurrentTab(0);

 for(int i = 1; i <= 7; i++) {
 if (ServerConnection.getScreenAccessJSON(value, i) == 0)
 {
 tabHost.getTabWidget().getChildAt(i).setVisibility(View.GONE);
 }
 }
}

 187

Appendix B – Intercepting API

Generate Code for the Intercepting API
<?php
function echoInterceptingClassStart($write_file){
$start_string = "<?php
require_once \"renamedConcussionUConn.php\";
require_once \"JWT/APIJWT.php\";\n\n\n

class ConcussionUConn {
 public function __construct(){
 session_start();

 \$this->dbServerName = \"localhost\";
 \$this->dbUser = \"root\";
 \$this->dbPassword = \"--------\";
 \$this->dbName = \"concussion_uconn\";
 }";

fwrite($write_file, $start_string);
}

function echoAPIPermissionCheckFunctions($write_file){
 $permission_check_string = "
 private function verifyAPIPermissions(\$function_name) {
 \$jwt = \$_SESSION['jwt'];
 \$JWT = new API_JWT();

 \$user_role = \$JWT->getRole(\$jwt);
 if(\$user_role == NULL){
 return 0;
 }

 \$action_id = \$this->getActionID(\$function_name);

\$role_permissions_query = 'SELECT * FROM json_calls_map_access WHERE
action_id='.\$action_id;

 \$role_permissions = \$this->performQuery
(\$role_permissions_query);

 foreach(\$role_permissions as \$array){
 if(\$array['role_id'] == \$user_role){
 return \$array['enable_disable'];
 }
 }
 }

 private function getParamNames(\$functionName){
 \$paramString = \"\";
 \$numCommas = 0;

\$reflectionMeth = new ReflectionMethod('ConcussionUConn',
\$functionName);

 \$numParam = \$reflectionMeth->getNumberOfParameters();

 foreach(\$reflectionMeth->getParameters() as \$parameter){
 \$paramString = \$paramString.'\$'.\$parameter->getName();
 if(\$parameter->isOptional()){
 \$defaultValue = \$parameter->getDefaultValue();
 if(\$defaultValue == ''){
 \$defaultValue = \"''\";
 }
 \$paramString = \$paramString.\" = \".\$defaultValue;

 188

 }
 if(\$numCommas < (\$numParam - 1)){
 \$paramString = \$paramString.\", \";
 \$numCommas++;
 }
 }

 return \$paramString;
 }

 private function getActionID(\$function_name){
 \$action_id = NULL;
 \$function_name = \$function_name.\"(\".\$this->

getParamNames(\$function_name).\")\";

\$query = \"SELECT * FROM json_calls WHERE action='\".\$function_name.\"'
ORDER BY action_id\";

 \$result = \$this->performQuery(\$query);
 foreach(\$result as \$array){
 if(\$array['action'] == \$function_name){
 \$action_id = \$array['action_id'];
 }
 }
 return \$action_id;
 }";
 fwrite($write_file, $permission_check_string);
}

function echoPrivateHelperFunctions($write_file){
 $helper_string = "
 private function performQuery(\$query){
 \$result = NULL;
 \$mysqlConnection = \$this->createMySqlConnection();
 \$result = \$mysqlConnection->query(\$query);

 if (!\$result) {
 throw new Exception(\"Database Error [{\$this->database->

 errno}] {\$this->database->error}\");
 } else {
 \$array = array();
 while(\$row = \$result->fetch_assoc()) \$array[] = \$row;
 }

 \$mysqlConnection->close();
 return \$array;
 }

 private function createMySqlConnection(){

\$conn = new mysqli(\$this->dbServerName, \$this->dbUser,
\$this->dbPassword, \$this->dbName);

 if (\$conn->connect_error) {
 die(\"Connection failed: \" . \$conn->connect_error);
 }
 else{
 return \$conn;
 }
 }

 private function setJWT(\$username, \$hashed_password){

\$query = \"SELECT * FROM user_accounts WHERE username = \" . \$username
. \" AND hashed_password = \" . \$hashed_password;

 \$result = \$this->performQuery(\$query);

 189

 foreach(\$result as \$array){
 \$role_id = \$array['role_id'];
 \$user_id = \$array['user_id'];
 }

 \$header = array('typ' => 'JWT', 'alg' => 'HS256');

\$payload = array('user_id' => \$user_id, 'role_id' => \$role_id);

 \$JWT = new API_JWT();
 \$jwt = \$JWT->create(\$header, \$payload);

 return \$jwt;
 }";
 fwrite($write_file, $helper_string);
}

function echoInterceptingClassEnd($write_file){

$end_string = "}?>";
fwrite($write_file, $end_string);

}

function echoInterceptBody($functionName, $need_permission, $setJWT, $write_file){
 $wrapper_string = "public function ".$functionName."{";
 if($setJWT){

$wrapper_string = $wrapper_string."\n\t\t\$_SESSION['jwt'] = \$this-
>setJWT(\$username, \$hashed_password);";

 }
 if($need_permission){
 $wrapper_string = $wrapper_string."
 \$permission = \$this->verifyAPIPermissions(__FUNCTION__);
 if(\$permission == 1){";
 }

 $wrapper_string = $wrapper_string."
 \$renamedConcussionUConn = new renamedConcussionUConn();
 return \$renamedConcussionUConn->

RENAMED".$functionName.";";
 if($need_permission){
 $wrapper_string = $wrapper_string."
 }else{
 return NULL;
 }";
 }
 $wrapper_string = $wrapper_string."
 }
 ";
 fwrite($write_file, $wrapper_string);
}

function getFunctions(){
 $functionList = array();
 $query = "SELECT * FROM json_calls";
 $mysqlConnection = initMySqlConnection();
 $result = getResultsFromQuery($query);

 foreach($result as $array){
 $functionName = $array['action'];
 $need_permission = $array['need_permission'];
 $setJWT = $array['setJWT'];
 $functionList[] = $need_permission.$setJWT.$functionName;
 }

 $mysqlConnection->close();

 190

 return $functionList;
}

function getResultsFromQuery($query){
 $result = NULL;
 $mysqlConnection = initMySqlConnection();
 $result = $mysqlConnection->query($query);

 if (!$result) {

throw new Exception("Database Error [{$this->database->errno}] {$this-
>database->error}");

 } else {
 $array = array();
 while($row = $result->fetch_assoc()) $array[] = $row;
 }

 $mysqlConnection->close();
 return $array;
}

function initMySqlConnection(){
 $dbServerName = "localhost";
 $dbUser = "root";
 $dbPassword = "--------";
 $dbName = "concussion_uconn";

 $conn = new mysqli($dbServerName, $dbUser, $dbPassword, $dbName);

 if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
 }
 else
 {return $conn;}
}

function createInterceptingAPI(){
 $write_file = fopen("../vTest/concussionUConn.php", "w");

 $functionList = getFunctions();
 $numFunctions = count($functionList);

 echoInterceptingClassStart($write_file);
 echoAPIPermissionCheckFunctions($write_file);

 for($i = 0; $i < $numFunctions; $i++){
 $functionName = substr($functionList[$i], 2);
 $need_permission = $functionList[$i][0];
 $setJWT = $functionList[$i][1];

echoInterceptBody($functionName, $need_permission, $setJWT, $write_file);
 }

 echoPrivateHelperFunctions($write_file);
 echoInterceptingClassEnd($write_file);

 fclose($write_file);
}
createInterceptingAPI();?>

Generate Code for the Intercepting API – Output
<?php
require_once "renamedConcussionUConn.php";
require_once "JWT/APIJWT.php";

 191

class ConcussionUConn {
 public function __construct(){
 session_start();
 $this->dbServerName = "localhost";
 $this->dbUser = "root";
 $this->dbPassword = "--------";
 $this->dbName = "concussion_uconn";
 }
 private function verifyAPIPermissions($function_name) {
 $jwt = $_SESSION['jwt'];
 $JWT = new API_JWT();
 $user_role = $JWT->getRole($jwt);
 if($user_role == NULL){
 return 0;
 }

$action_id = $this->getActionID($function_name);
$role_permissions_query = 'SELECT * FROM json_calls_map_access WHERE
action_id='.$action_id;
$role_permissions = $this->performQuery($role_permissions_query);

 foreach($role_permissions as $array){
 if($array['role_id'] == $user_role {
 return $array['enable_disable'];
 }
 }
 }
 private function getParamNames($functionName){
 $paramString = "";
 $numCommas = 0;

$reflectionMeth = new ReflectionMethod('ConcussionUConn', $functionName);
 $numParam = $reflectionMeth->getNumberOfParameters();

 foreach($reflectionMeth->getParameters() as $parameter){
 $paramString = $paramString.'$'.$parameter->getName();
 if($parameter->isOptional()){
 $defaultValue = $parameter->getDefaultValue();
 if($defaultValue == ''){
 $defaultValue = "''";
 }
 $paramString = $paramString." = ".$defaultValue;
 }
 if($numCommas < ($numParam - 1)){
 $paramString = $paramString.", ";
 $numCommas++;
 }
 }
 return $paramString;
 }
 private function getActionID($function_name){
 $action_id = NULL;
 $function_name = $function_name."(".$this->getParamNames

($function_name).")";
 $query = "SELECT * FROM json_calls WHERE action=

'".$function_name."' ORDER BY action_id";
 $result = $this->performQuery($query);
 foreach($result as $array){
 if($array['action'] == $function_name){
 $action_id = $array['action_id'];
 }
 }
 return $action_id;
 }

 public function getListOfScreenObjects(){

 192

 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetListOfScreenObjects();
 }else{
 return NULL;
 }
 }

 public function getListOfScreens(){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetListOfScreens();
 }else{
 return NULL;
 }
 }

 public function getListofScreenSequences(){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetListofScreenSequences();
 }else{
 return NULL;
 }
 }

 public function getScreenObjectByScreenID($screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenObjectByScreenID($screen_id);
 }else{
 return NULL;
 }
 }

 public function getScreenObjectByName($object_name){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenObjectByName($object_name);
 }else{
 return NULL;
 }
 }

 public function getScreenObjectByObjectID($object_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenObjectByObjectID($object_id);
 }else{
 return NULL;
 }
 }

 193

 public function getObjectsLabelsByScreenID($screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetObjectsLabelsByScreenID($screen_id);
 }else{
 return NULL;
 }
 }

 public function getScreenByID($screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenByID($screen_id);
 }else{
 return NULL;
 }
 }

 public function getScreenByName($screen_name){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenByName($screen_name);
 }else{
 return NULL;
 }
 }

 public function getScreenSequenceByRoleID($role_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenSequenceByRoleID($role_id);
 }else{
 return NULL;
 }
 }

 public function getScreenSequenceByObjectID($object_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenSequenceByObjectID($object_id);
 }else{
 return NULL;
 }
 }

 public function getScreenSequenceByScreenID($screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenSequenceByScreenID($screen_id);
 }else{

 194

 return NULL;
 }
 }

 public function getScreenAccessByRole($role_id, $screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetScreenAccessByRole($role_id, $screen_id);
 }else{
 return NULL;
 }
 }

 public function returnAllowableComponents($role_id,$screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDreturnAllowableComponents($role_id,$screen_id);
 }else{
 return NULL;
 }
 }

 public function getNamesOfScreen($screen_id){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetNamesOfScreen($screen_id);
 }else{
 return NULL;
 }
 }

 public function getLabelsOfScreen($screen_id,$lang){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetLabelsOfScreen($screen_id,$lang);
 }else{
 return NULL;
 }
 }

 public function getUserAccountByLogin($username, $hashed_password){
 $_SESSION['jwt'] = $this->setJWT($username, $hashed_password);
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetUserAccountByLogin($username, $hashed_password);
 }else{
 return NULL;
 }
 }

 public function getListOfStates(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetListOfStates();

 195

 }

 public function getListOfRegions($stateId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetListOfRegions($stateId);
 }else{
 return NULL;
 }
 }

 public function getListOfDistricts($regionId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetListOfDistricts($regionId);
 }else{
 return NULL;
 }
 }

 public function getListOfSchools($districtId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetListOfSchools($districtId);
 }else{
 return NULL;
 }
 }

 public function getSchoolDetails($schoolId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetSchoolDetails($schoolId);
 }else{
 return NULL;
 }
 }

 public function getDistrictAndRegionBySchool($schoolId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetDistrictAndRegionBySchool($schoolId);
 }else{
 return NULL;
 }
 }

 public function getStateByRegion($regionId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetStateByRegion($regionId);

 196

 }else{
 return NULL;
 }
 }

 public function addEmployee($employeeObject){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDaddEmployee($employeeObject);
 }else{
 return NULL;
 }
 }

 public function getEmployee($userId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetEmployee($userId);
 }else{
 return NULL;
 }
 }

 public function getEmployees(){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetEmployees();
 }else{
 return NULL;
 }
 }

 public function getUserRoleSchoolId($userId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetUserRoleSchoolId($userId);
 }else{
 return NULL;
 }
 }

 public function getUsersRoleSchoolSport(){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetUsersRoleSchoolSport();
 }else{
 return NULL;
 }
 }

 public function addUserRoleSchool($userRoleSchool){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();

 197

 return $renamedConcussionUConn->
RENAMEDaddUserRoleSchool($userRoleSchool);

 }else{
 return NULL;
 }
 }

 public function addUserAccount($userAccountObject){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDaddUserAccount($userAccountObject);
 }else{
 return NULL;
 }
 }

 public function getUserAccount($userId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetUserAccount($userId);
 }else{
 return NULL;
 }
 }

 public function getUserAccounts(){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetUserAccounts();
 }else{
 return NULL;
 }
 }

 public function getUsers(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetUsers();
 }

 public function getUserById($userId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetUserById($userId);
 }else{
 return NULL;
 }
 }

 public function getSchoolStudents($schoolId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetSchoolStudents($schoolId);
 }else{
 return NULL;

 198

 }
 }

 public function getStudentByID($studentId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetStudentByID($studentId);
 }else{
 return NULL;
 }
 }

 public function searchForStudents($firstName = '', $lastName = ''){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDsearchForStudents($firstName = '', $lastName = '');
 }else{
 return NULL;
 }
 }

 public function getStudentGuardians($studentId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetStudentGuardians($studentId);
 }else{
 return NULL;
 }
 }

 public function addStudent($studentObject){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDaddStudent($studentObject);
 }else{
 return NULL;
 }
 }

 public function updateStudent($studentObject, $studentId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDupdateStudent($studentObject, $studentId);
 }else{
 return NULL;
 }
 }

 public function addStudentGuardian($studentGuardian){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

 199

RENAMEDaddStudentGuardian($studentGuardian);
 }else{
 return NULL;
 }
 }

 public function updateStudentGuardian($studentGuardian, $guardianId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDupdateStudentGuardian($studentGuardian, $guardianId);
 }else{
 return NULL;
 }
 }

 public function getConcussion($concussionId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetConcussion($concussionId);
 }else{
 return NULL;
 }
 }

 public function getConcussionsByUserID($concussionId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetConcussionsByUserID($concussionId);
 }else{
 return NULL;
 }
 }

 public function getConcussionFollowups($concussionId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetConcussionFollowups($concussionId);
 }else{
 return NULL;
 }
 }

 public function getSymptomsWithRecord($recordId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetSymptomsWithRecord($recordId);
 }else{
 return NULL;
 }
 }

 public function getSchoolConcussions($schoolId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);

 200

 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetSchoolConcussions($schoolId);
 }else{
 return NULL;
 }
 }

 public function getStudentConcussions($studentId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetStudentConcussions($studentId);
 }else{
 return NULL;
 }
 }

 public function getUserConcussionsByID($userId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetUserConcussionsByID($userId);
 }else{
 return NULL;
 }
 }

 public function getIncidentOperationHistory($incidentId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetIncidentOperationHistory($incidentId);
 }else{
 return NULL;
 }
 }

 public function getFollowUpOperationHistory($followupId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetFollowUpOperationHistory($followupId);
 }else{
 return NULL;
 }
 }

 public function changeIncidentStatus($incidentId, $status){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDchangeIncidentStatus($incidentId, $status);
 }else{
 return NULL;
 }
 }

 201

 public function addConcussionEvent($concussionEvent){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDaddConcussionEvent($concussionEvent);
 }else{
 return NULL;
 }
 }

 public function updateConcussionEvent($concussionEvent, $incidentId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDupdateConcussionEvent($concussionEvent, $incidentId);
 }else{
 return NULL;
 }
 }

public function addConcussionEventFollowup($concussionEventUpdate,
$incidentId){

 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDaddConcussionEventFollowup($concussionEventUpdate,
$incidentId);

 }else{
 return NULL;
 }
 }

public function updateConcussionEventFollowup($concussionEventUpdate,
$followUpId, $lingeringSymptomsRecordId){

 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDupdateConcussionEventFollowup($concussionEventUpdate,
$followUpId, $lingeringSymptomsRecordId);

 }else{
 return NULL;
 }
 }

 public function getEventSymptoms($referenceId){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetEventSymptoms($referenceId);
 }else{
 return NULL;
 }
 }

 public function getAssessmentTools(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

 202

RENAMEDgetAssessmentTools();
 }

 public function getEventLocations(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetEventLocations();
 }

 public function getContactMechanisms(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetContactMechanisms();
 }

 public function getImpactHeadLocations(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetImpactHeadLocations();
 }

 public function getSports(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetSports();
 }

 public function getSymptoms($type = 2){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetSymptoms($type = 2);
 }

 public function getRoles(){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetRoles();
 }else{
 return NULL;
 }
 }

 public function getMedicalImaging(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->RENAMEDgetMedicalImaging();
 }

 public function getDiagnosingRoles(){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDgetDiagnosingRoles();
 }

 public function importSchoolDistrict($districtName, $ctrName){
 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDimportSchoolDistrict($districtName, $ctrName);
 }else{
 return NULL;
 }
 }

 public function importSchool($districtName, $schoolName){

 203

 $permission = $this->verifyAPIPermissions(__FUNCTION__);
 if($permission == 1){
 $renamedConcussionUConn = new renamedConcussionUConn();
 return $renamedConcussionUConn->

RENAMEDimportSchool($districtName, $schoolName);
 }else{
 return NULL;
 }
 }

 private function performQuery($query){
 $result = NULL;
 $mysqlConnection = $this->createMySqlConnection();
 $result = $mysqlConnection->query($query);

 if (!$result) {
 throw new Exception("Database Error [{$this->database->

 errno}] {$this->database->error}");
 } else {
 $array = array();
 while($row = $result->fetch_assoc()) $array[] = $row;
 }

 $mysqlConnection->close();
 return $array;
 }

 private function createMySqlConnection(){

$conn = new mysqli($this->dbServerName, $this->dbUser, $this-
>dbPassword, $this->dbName);

 if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
 }
 else{
 return $conn;
 }
 }

 private function setJWT($username, $hashed_password){

$query = "SELECT * FROM user_accounts WHERE username = " . $username . "
AND hashed_password = " . $hashed_password;

 $result = $this->performQuery($query);

 foreach($result as $array){
 $role_id = $array['role_id'];
 $user_id = $array['user_id'];
 }

 $header = array('typ' => 'JWT', 'alg' => 'HS256');
 $payload = array('user_id' => $user_id, 'role_id' => $role_id);
 $JWT = new API_JWT();
 $jwt = $JWT->create($header, $payload);

 return $jwt;
 }
}
?>

Renaming API Code
<?php
function renameAPI(){
 $concussionUConnFile = fopen("../concussionUConn.php", "r");

 204

 $write_file = fopen("../vTest/RENAMEDConcussionUConn.php", "w");
 $functionList = array();
 $renameFunction = 0;
 $renameClass = 0;

 while(!feof($concussionUConnFile)){
 $line = fgets($concussionUConnFile);
 $lineArray = explode(' ', $line);
 $write_string = "";

 for($i = 0; $i < count($lineArray); $i++){
 if($renameClass == 1){
 $write_string = $write_string."RENAMED".$lineArray[$i];
 $renameClass = -1;
 }else if($renameFunction == 1){
 $write_string = $write_string."RENAMED".$lineArray[$i];
 $renameFunction = 0;
 }else{
 $write_string = $write_string.$lineArray[$i]." ";
 }
 if($lineArray[$i] == "function" && $i < count($lineArray)-1 && $i
> 0){
 if(substr($lineArray[$i+1], 0, 2)!="__" &&

$lineArray[$i-1] == "public"){
 $renameFunction = 1;
 }
 }
 if($lineArray[$i] == "class" && $renameClass == 0){
 $renameClass = 1;
 }
 }
 fwrite($write_file, $write_string);
 }
 fclose($concussionUConnFile);
 fclose($write_file);
}
renameAPI();?>

Renaming API Code - Output
<?php
class RENAMEDConcussionUConn
{
 public function __construct(){
 $this->dbServerName = "localhost";
 $this->dbUser = "root";
 $this->dbPassword = "--------";
 $this->dbName = "concussion_uconn";
 }

 public function RENAMEDgetListOfScreenObjects(){
 $sql = "SELECT * FROM screen_objects ORDER BY object_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetListOfScreens(){
 $sql = "SELECT * FROM screens ORDER BY screen_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetListofScreenSequences(){
 $sql = "SELECT * FROM screen_objects ORDER BY screen_id";
 return $this->getResultsFromQuery($sql);

 205

 }

 public function RENAMEDgetScreenObjectByScreenID($screen_id){

$sql = "SELECT * FROM screen_objects WHERE screen_id = " . $screen_id . " ORDER
BY object_id";

 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenObjectByName($object_name){
 $sql = "SELECT * FROM screen_objects WHERE object_name = " . $object_name . "
 ORDER BY object_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenObjectByObjectID($object_id){
 $sql = "SELECT * FROM screen_objects WHERE object_id = " . $object_id . "
 ORDER BY object_name";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetObjectsLabelsByScreenID($screen_id){
 $sql = "SELECT * FROM screen_objects_labels WHERE screen_id = " . $screen_id .
 " ORDER BY object_screen_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenByID($screen_id){
 $sql = "SELECT * FROM screens WHERE screen_id = " . $screen_id . " ORDER BY
 screen_name";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenByName($screen_name){
 $sql = "SELECT * FROM screens WHERE screen_name = " . $screen_name . " ORDER
 BY screen_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenSequenceByRoleID($role_id){
 $sql = "SELECT * FROM screen_sequence WHERE role_id = " . $role_id . " ORDER
 BY screen_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenSequenceByObjectID($object_id){
 $sql = "SELECT * FROM screen_sequence WHERE object_id = " . $object_id . "
 ORDER BY screen_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenSequenceByScreenID($screen_id){
 $sql = "SELECT * FROM screen_sequence WHERE screen_id = " . $screen_id . "
 ORDER BY role_id";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetScreenAccessByRole($role_id,$screen_id){
 $sql = "SELECT role_id,screen_id,access FROM screen_access WHERE screen_id = "
 . $screen_id . " AND role_id = " . $role_id;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDreturnAllowableComponents($role_id,$screen_id){

 206

 $sql = "SELECT role_id,screen_id,access,visibility FROM object_access WHERE
 role_id=".$role_id." AND screen_id=".$screen_id;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetNamesOfScreen($screen_id){
 $sql = "SELECT * FROM screens WHERE screen_id = ".$screen_id;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetLabelsOfScreen($screen_id,$lang){
 if($lang == 1){
 $sql = "SELECT objects_screen_id, object_name_e from
 screen_objects_labels WHERE screen_id = ".$screen_id;
 }
 else{
 $sql = "SELECT objects_screen_id, object_name_s from
 screen_objects_labels WHERE screen_id = ".$screen_id;
 }
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetUserAccountByLogin($username,$hashed_password){
 $sql = "SELECT * FROM user_accounts WHERE username = " . $username . " AND
 hashed_password = " . $hashed_password;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetListOfStates(){
 $sql = "SELECT * FROM state_territory ORDER BY state_name";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetListOfRegions($stateId){

$sql = "SELECT * FROM city_town_region WHERE state_id = " . $stateId . " ORDER
BY ctr_Name";

 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetListOfDistricts($regionId){
 $sql = "SELECT * FROM districts WHERE ctr_id = " . $regionId . " ORDER BY
 district_name";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetListOfSchools($districtId){
 if($districtId != "all"){
 $sql = "SELECT * FROM schools WHERE district_id = " . $districtId . "
 ORDER BY school_name";
 } else {
 $sql = "SELECT * FROM schools ORDER BY school_name";
 }
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetSchoolDetails($schoolId){
 $sql = "SELECT * FROM schools, school_details WHERE schools.school_id =
 school_details.school_id AND schools.school_id = " . $schoolId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetDistrictAndRegionBySchool($schoolId){
 $sql = "SELECT district_id, ctr_id FROM schools WHERE school_id=" . $schoolId;

 207

 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetStateByRegion($regionId){
 $sql = "SELECT state_id FROM city_town_region WHERE ctr_id = ".$regionId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDaddEmployee($employeeObject){
 $sqlEmployee = "INSERT INTO employees (user_id, first_name, middle_name,
 last_name, suffix, email, title, employee_id, phone)
 VALUES (" . $employeeObject->userId . ",
 '" . $employeeObject->firstName . "','" . $employeeObject->middleName . "',
 '" . $employeeObject->lastName . "','" . $employeeObject->suffix . "',
 '" . $employeeObject->email . "','" . $employeeObject->title . "',
 " . $employeeObject->employeeId . ",'" . $employeeObject->phone . "')";

 $recordId = $this->addRecord($sqlEmployee);

 if($recordId){return 1;}
 else
 {return 0;}
 }

 public function RENAMEDgetEmployee($userId){
 $sql = "SELECT * FROM employees WHERE user_id = ". $userId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetEmployees(){
 $sql = "SELECT * FROM employees";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetUserRoleSchoolId($userId){
 $sql = "SELECT * FROM school_users_roles WHERE user_id = ". $userId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetUsersRoleSchoolSport(){
 $sql = "SELECT * FROM school_users_roles";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDaddUserRoleSchool($userRoleSchool){

$sqlUser = "INSERT INTO school_users_roles (user_id,
role_id,school_id,student_id) VALUES (" . $userRoleSchool->userId . ",

 " . $userRoleSchool->roleId . ",
 " . $userRoleSchool->schoolId .",". $userRoleSchool->studentId.")";
 $recordId = $this->addRecord($sqlUser);
 if($recordId)
 {return $recordId;}
 else
 {return 0;}
 }

 public function RENAMEDaddUserAccount($userAccountObject){
 $sqlUserAccount = "INSERT INTO user_accounts (
 email,username,hashed_password,enabled,role_id)
 VALUES ('" . $userAccountObject->email . "',
 '" . $userAccountObject->username . "',
 '" . $userAccountObject->hashedPassword . "',
 " . $userAccountObject->enabled . ",

 208

 " . $userAccountObject->roleId . ")";

 $userId = $this->addNewRecord($sqlUserAccount);

 if($userId)
 {return $userId;}
 else
 {return 0;}
 }

 public function RENAMEDgetUserAccount($userId){
 $sql = "SELECT user_id, email, username, hashed_password, enabled, role_id
 FROM user_accounts
 WHERE user_id = ". $userId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetUserAccounts(){
 $sql = "SELECT user_id, email, username, hashed_password, enabled, role_id
 FROM user_accounts";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetUsers(){
 $sql = "SELECT * FROM users";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetUserById($userId){
 $sql = "SELECT * FROM users WHERE user_id = ".$userId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetSchoolStudents($schoolId){

$sql = "SELECT students.student_id, first_name, middle_name, last_name, suffix,
email, student_number, school_id, date_of_birth, gender FROM students,
student_demographics

 WHERE students.student_id = student_demographics.student_id
 AND school_id = " . $schoolId . "
 ORDER BY last_name";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetStudentByID($studentId){
 $sql = "SELECT * FROM students, student_demographics

WHERE students.student_id = " . $studentId . "AND
student_demographics.student_id = " . $studentId;

 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDsearchForStudents($firstName= '', $lastName = ''){

$sql = "SELECT * FROM (SELECT students.student_id, first_name, middle_name,
last_name, suffix, email, student_number, school_id, date_of_birth, gender FROM
students, student_demographics WHERE students.student_id =
student_demographics.student_id) AS A
WHERE A.first_name LIKE '%" . $firstName . "%' OR A.last_name LIKE '%" .
$lastName . "%' ORDER BY A.last_name";

 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetStudentGuardians($studentId){
 $sql = "SELECT * FROM parents_or_guardians WHERE student_id = " . $studentId;
 return $this->getResultsFromQuery($sql);

 209

 }

 public function RENAMEDaddStudent($studentObject){
 $sqlGeneralStudent = "INSERT INTO students (first_name,middle_name,last_name,
 suffix,email,student_number,school_id)
 VALUES ('" . $studentObject->firstName . "',
 '" . $studentObject->middleName . "','" . $studentObject->lastName . "',
 '" . $studentObject->suffix . "','" . $studentObject->email . "',
 '" . $studentObject->studentNumber . "'," . $studentObject->schoolId . ")";

 $recordId = $this->addNewRecord($sqlGeneralStudent);

 if($recordId){
 $sqlStudentDemo = "INSERT INTO student_demographics (student_id,
 date_of_birth,
 gender)
 VALUES ('" . $recordId . "',
 '" . $studentObject->dateOfBirth . "',
 '" . $studentObject->gender . "')";

 if($this->addRecord($sqlStudentDemo)) return $recordId;
 else return $recordId;
 }
 else{return 0;}
 }

 public function RENAMEDupdateStudent($studentObject,$studentId){
 $sqlGeneralStudent = "UPDATE students SET first_name =
 '" . $studentObject->firstName . "',
 middle_name = '" . $studentObject->middleName . "',
 last_name = '" . $studentObject->lastName . "',
 suffix = '" . $studentObject->suffix . "',
 email = '" . $studentObject->email . "',
 student_number = '" . $studentObject->studentNumber . "',
 school_id = '" . $studentObject->schoolId . "'
 WHERE student_id = " . $studentId;
 $recordId = $this->updateRecord($sqlGeneralStudent);

 if($recordId){

$sqlStudentDemo = "UPDATE student_demographics date_of_birth = '" .
$studentObject->dateOfBirth . "',

 gender = '" . $studentObject->gender . "'
 WHERE student_id = " . $studentId;

 if($this->updateRecord($sqlStudentDemo)) return 1;
 else return 2;
 }
 else{return 0;}
 }

 public function RENAMEDaddStudentGuardian($studentGuardian){
 $sqlGeneralStudent = "INSERT INTO parents_or_guardians (student_id,
 parent_name,parent_email,parent_phone,parent_address,`primary`)
 VALUES (" . $studentGuardian->studentId . ",
 '" . $studentGuardian->name . "','" . $studentGuardian->email . "',
 '" . $studentGuardian->phone . "','" . $studentGuardian->address . "',
 " . $studentGuardian->isPrimary . ")";
 return $this->addNewRecord($sqlGeneralStudent);
 }

 public function RENAMEDupdateStudentGuardian($studentGuardian,$guardianId){

$sqlGeneralStudent = "UPDATE parents_or_guardians SET student_id = " .
$studentGuardian->studentId . ",parent_name = '" . $studentGuardian->name . "',

 210

 parent_email = '" . $studentGuardian->email . "',
parent_phone = '" . $studentGuardian->phone . "',

 parent_address = '" . $studentGuardian->address . "',
 primary` = " . $studentGuardian->isPrimary . "
 WHERE guardian_id = " . $guardianId;
 return $this->updateRecord($sqlGeneralStudent);
 }

 public function RENAMEDgetConcussion($concussionId){
 $sql = "SELECT * FROM incidents WHERE incident_id = " . $concussionId;
 return $this->getResultsFromQuery($sql);
 }

 public function getConcussionsByUserID($concussionId){

$sql = "SELECT * FROM incidents WHERE reporting_user_id = ". $concussionId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetConcussionFollowups($concussionId){
 $sql = "SELECT * FROM incident_updates WHERE incident_id = " .
 $concussionId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetSymptomsWithRecord($recordId){
 $sql = "SELECT * FROM incident_lingering_symptoms WHERE record_id = " .
 $recordId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetSchoolConcussions($schoolId){
 $sql = "SELECT incidents.incident_id, incident_reference_id, student_id,

school_id, reporting_user_id, incident_location_id,
 incident_location_details, school_location_id, sport_id,

contact_mechanism_id,impact_location_id,protection_present,
loss_conciousness, parents_notified, protocol, removed, removed_by_user_id,
tool_id, symptom_comments, date, closed, updated AS status_updated
FROM incidents, incident_status

 WHERE incidents.incident_id = incident_status.incident_id
 AND incidents.school_id = " . $schoolId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetStudentConcussions($studentId){
 $sql = "SELECT incidents.incident_id, incident_reference_id, student_id,

school_id, reporting_user_id, incident_location_id,
incident_location_details, school_location_id, sport_id,
contact_mechanism_id, impact_location_id, protection_present,
head_gear_usage, loss_conciousness, parents_notified, protocol, removed,
removed_by_user_id, tool_id, symptom_comments, date, closed, updated AS
status_updated FROM incidents, incident_status

 WHERE incidents.incident_id = incident_status.incident_id
 AND incidents.student_id = " . $studentId. " ORDER BY incidents.date DESC";

return $this->getResultsFromQuery($sql);
 }

 public function getUserConcussionsByID($userId){

$sql = "SELECT * FROM school_users_roles WHERE user_id = ". $userId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetIncidentOperationHistory($incidentId){

 211

 $sql = "SELECT * FROM incident_records
 WHERE incident_id = " . $incidentId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetFollowUpOperationHistory($followupId){
 $sql = "SELECT * FROM incident_records WHERE follow_up_id = ". $followupId;
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDchangeIncidentStatus($incidentId,$status){
 $sql = "UPDATE incident_status SET status = " . $status . "

WHERE incident_id = " . $incidentId;
 return $this->updateRecord($sql);
 }

 public function RENAMEDaddConcussionEvent($concussionEvent){
 $referenceId = crypt($concussionEvent->studentId .
 $concussionEvent->schoolId . date('Y-m-d H:i:s'));

 $sqlConcussionEvent = "INSERT INTO incidents (incident_reference_id,
 student_id, school_id, reporting_user_id, incident_location_id,
 incident_location_details, school_location_id, sport_id,
 contact_mechanism_id, impact_location_id, protection_present,
 head_gear_usage, loss_conciousness, parents_notified, protocol,
 removed, removed_by_user_id, tool_id, symptom_comments, date)
 VALUES ('" . $referenceId . "'," . $concussionEvent->studentId . ",
 " . $concussionEvent->schoolId . "," . $concussionEvent->reportingUserId . ",
 " . $concussionEvent->incidentLocationId . ",
 '" . $concussionEvent->incidentLocationDetails . "',
 " . $concussionEvent->schoolLocationId . ",
 " . $concussionEvent->sportId . "," . $concussionEvent->contactMechanismId . ",
 " . $concussionEvent->impactLocationId . ",
 " . $concussionEvent->wasProtectionPresent . ",
 " . $concussionEvent->headGearUsage . ",
 " . $concussionEvent->wasLossOfConciousness . ",
 " . $concussionEvent->parentsNotified . "," . $concussionEvent->protocol . ",
 " . $concussionEvent->isRemoved . "," . $concussionEvent->removedByUserId . ",
 " . $concussionEvent->assessmentToolId . ",
 '" . $concussionEvent->symptomComments . "'," . $concussionEvent->date . ")";

 $incidentId = $this->addNewRecord($sqlConcussionEvent);
 $arrayOfSymptomsIds = $concussionEvent->symptomsArray;

$sqlConcussionEventSymptoms = "INSERT INTO incident_lingering_symptoms
(record_id, symptom_id) VALUES ";

 $symptomValues = "";

 foreach ($arrayOfSymptomsIds as $key => $value){
 $symptomValues .= "('" .$referenceId. "', ". $value->symptomId . "), ";
 }

 $sqlConcussionEventSymptoms = substr($sqlConcussionEventSymptoms .

$symptomValues, 0, -2);
 $this->addRecordNoReturn($sqlConcussionEventSymptoms);
 $sqlIncidentStatus = "INSERT INTO incident_status (incident_id) VALUES (" .

$incidentId . ")";
 $this->addRecordNoReturn($sqlIncidentStatus);

$sqlIncidentRecordWrite = "INSERT INTO incident_records (incident_id,
operation_type_id) VALUES (" . $incidentId . ", 2)";

 $this->addRecordNoReturn($sqlIncidentRecordWrite);
 return $incidentId;

 212

 }

 public function RENAMEDupdateConcussionEvent($concussionEvent,$incidentId){

$sqlConcussionEvent = "UPDATE incidents SET student_id = " .
$concussionEvent->studentId . ",school_id = " . $concussionEvent->schoolId . ",

 reporting_user_id = " . $concussionEvent->reportingUserId . ",
 incident_location_id = " . $concussionEvent->incidentLocationId . ",
 incident_location_details='".$concussionEvent->incidentLocationDetails. "',
 school_location_id = " . $concussionEvent->schoolLocationId . ",
 sport_id = " . $concussionEvent->sportId . ",
 contact_mechanism_id = " . $concussionEvent->contactMechanismId . ",
 impact_location_id = " . $concussionEvent->impactLocationId . ",
 protection_present = " . $concussionEvent->wasProtectionPresent . ",
 head_gear_usage = " . $concussionEvent->headGearUsage . ",
 loss_conciousness = " . $concussionEvent->wasLossOfConciousness . ",
 parents_notified = " . $concussionEvent->parentsNotified . ",
 protocol = " . $concussionEvent->protocol . ",
 removed = " . $concussionEvent->isRemoved . ",
 removed_by_user_id = " . $concussionEvent->removedByUserId . ",
 tool_id = " . $concussionEvent->assessmentToolId . ",
 symptom_comments = '" . $concussionEvent->symptomComments . "'
 WHERE incident_id = " . $incidentId;

 if ($this->updateRecord($sqlConcussionEvent)) {
 $sql = "SELECT * FROM incidents WHERE incident_id = " . $incidentId;
 $result = $this->getResultsFromQuery($sql);

 if (sizeof($result) > 1) {return 0;}

else {
 $sql = "DELETE FROM incident_lingering_symptoms WHERE record_id =
 '" . $result[0]["incident_reference_id"] ."'";
 $this->addRecordNoReturn($sql);

 $arrayOfSymptomsIds = $concussionEvent->symptomsArray;
 $sqlConcussionEventSymptoms = "INSERT INTO

 incident_lingering_symptoms (record_id, symptom_id) VALUES ";
 $symptomValues = "";

 foreach ($arrayOfSymptomsIds as $key => $value){
 $symptomValues .= "('" . $result[0]["incident_reference_id"] . "',
 " . $value->symptomId . "), ";
 }

 $sqlConcussionEventSymptoms = substr($sqlConcussionEventSymptoms .
 $symptomValues, 0, -2);
 $this->addRecordNoReturn($sqlConcussionEventSymptoms);

 $sqlIncidentRecordWrite = "INSERT INTO incident_records
 (incident_id, operation_type_id) VALUES (" . $incidentId . ", 1)";
 $this->addRecordNoReturn($sqlIncidentRecordWrite);
 return 1;
 }
 }
 return 0;
 }

 public function RENAMEDaddConcussionEventFollowup($concussionEventUpdate,
 $incidentId)
 {
 $lingeringSymptomsRecordId = crypt($concussionEventUpdate->incidentId .
 $incidentId . date('Y-m-d H:i:s'));
 $arrayOfSymptomsIds = $concussionEventUpdate->lingeringSymptomsArray;
 $sqlConcussionEventFollowupSymptoms = "INSERT INTO incident_lingering_symptoms

 213

 (record_id, symptom_id) VALUES ";
 $symptomValues = "";

 foreach ($arrayOfSymptomsIds as $key => $value){
 $symptomValues .= "('" . $lingeringSymptomsRecordId . "', " .
 $value->symptomId . "), ";
 }

$sqlConcussionEventFollowupSymptoms =
substr($sqlConcussionEventFollowupSymptoms .

 $symptomValues, 0, -2);
 $this->addRecordNoReturn($sqlConcussionEventFollowupSymptoms);
 $sqlConcussionEventFollowup = "INSERT INTO incident_updates (incident_id,
 reporting_user_id, lingering_symptoms_record_id, lingering_description,
 time_resolved, diagnosed_by, pcs_diagnosis, imaging, follow_up_comments,
 days_absent, scheduled_modified, plan_504, rtl_date, rtp_date, date)
 VALUES (" . $concussionEventUpdate->incidentId . ",
 " . $concussionEventUpdate->reportingUserId . ",
 '" . $lingeringSymptomsRecordId . "',
 '" . $concussionEventUpdate->lingeringDescription . "',
 " . $concussionEventUpdate->timeResolved . ",
 '" . $concussionEventUpdate->diagnosedBy . "',
 " . $concussionEventUpdate->pcsDiagnosis . ",
 " . $concussionEventUpdate->imaging . ",
 '" . $concussionEventUpdate->followUpComments . "',
 " . $concussionEventUpdate->daysAbsent . ",
 " . $concussionEventUpdate->scheduledModified . ",
 " . $concussionEventUpdate->plan504 . ",
 '" . $concussionEventUpdate->rtlDate . "',
 '" . $concussionEventUpdate->rtpDate . "',
 " . $concussionEventUpdate->date . ")";
 $followUpId = $this->addNewRecord($sqlConcussionEventFollowup);
 $sqlIncidentRecordWrite = "INSERT INTO incident_records (follow_up_id,
 operation_type_id) VALUES (" . $followUpId . ", 2)";
 $this->addRecordNoReturn($sqlIncidentRecordWrite);
 return $followUpId;
 }

 public function RENAMEDupdateConcussionEventFollowup($concussionEventUpdate,
 $followUpId, $lingeringSymptomsRecordId){
 $sqlConcussionEvent = "UPDATE incident_updates SET reporting_user_id = " .
 $concussionEventUpdate->reportingUserId . ",
 lingering_description = '" . $concussionEventUpdate->lingeringDescription . "',
 time_resolved = " . $concussionEventUpdate->timeResolved . ",
 diagnosed_by = '" . $concussionEventUpdate->diagnosedBy . "',
 pcs_diagnosis = " . $concussionEventUpdate->pcsDiagnosis . ",
 imaging = " . $concussionEventUpdate->imaging . ",
 follow_up_comments = '" . $concussionEventUpdate->followUpComments . "',
 days_absent = " . $concussionEventUpdate->daysAbsent . ",
 scheduled_modified = " . $concussionEventUpdate->scheduledModified . ",
 plan_504 = " . $concussionEventUpdate->plan504 . ",
 rtl_date = '" . $concussionEventUpdate->rtlDate . "',
 rtp_date = '" . $concussionEventUpdate->rtpDate . "'
 WHERE follow_up_id = " . $followUpId;

 if($this->updateRecord($sqlConcussionEvent)) {

 $sql = "SELECT * FROM incident_updates WHERE follow_up_id = " . $followUpId;
 $result = $this->getResultsFromQuery($sql);

 if(sizeof($result) > 1) {return 0;}
 else {
 $sql = "DELETE FROM incident_lingering_symptoms WHERE record_id = '" .
 $lingeringSymptomsRecordId ."'";

 214

 $this->addRecordNoReturn($sql);
 $arrayOfSymptomsIds = $concussionEventUpdate->lingeringSymptomsArray;

$sqlConcussionEventFollowupSymptoms = "INSERT INTO
incident_lingering_symptoms

 (record_id, symptom_id) VALUES ";
 $symptomValues = "";
 foreach ($arrayOfSymptomsIds as $key => $value)
 {

$symptomValues .= "('" . $lingeringSymptomsRecordId . "', " .
$value->symptomId . "), ";

 }
$sqlConcussionEventFollowupSymptoms =
substr($sqlConcussionEventFollowupSymptoms . $symptomValues, 0, -2);
$this->addRecordNoReturn($sqlConcussionEventFollowupSymptoms);
$sqlIncidentRecordWrite = "INSERT INTO incident_records (follow_up_id,
operation_type_id) VALUES (" . $followUpId . ", 1)";
$this->addRecordNoReturn($sqlIncidentRecordWrite);
return 1;

 }
 }
 }

 public function RENAMEDgetEventSymptoms($referenceId){

$sql = "SELECT * FROM incident_lingering_symptoms WHERE record_id = '" .
$referenceId ."'";

 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetAssessmentTools(){
 $sql = "SELECT * FROM concussion_assessment_tools";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetEventLocations(){
 $sql = "SELECT * FROM incident_locations";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetContactMechanisms(){
 $sql = "SELECT * FROM contact_mechanisms";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetImpactHeadLocations(){
 $sql = "SELECT * FROM impact_head_location";
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetSports(){
 $sql = "SELECT * FROM sports";
 return $this->getResultsFromQuery($sql);
 }
 public function RENAMEDgetSymptoms($type= 2){
 $sql = "SELECT * FROM symptoms";
 if($type == 0){
 $sql = "SELECT * FROM symptoms WHERE isFollowUpType = 0";
 } else if($type == 1){
 $sql = "SELECT * FROM symptoms WHERE isFollowUpType = 1";
 }
 return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetRoles(){

 215

 $sql = "SELECT * FROM roles";
return $this->getResultsFromQuery($sql);

 }

 public function RENAMEDgetMedicalImaging(){
 $sql = "SELECT * FROM medical_imaging";

return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDgetDiagnosingRoles(){

$sql = "SELECT * FROM diagnosing_roles";

return $this->getResultsFromQuery($sql);
 }

 public function RENAMEDimportSchoolDistrict($districtName,$ctrName){
 $sql = "SELECT * FROM city_town_region WHERE ctr_Name = '" . $ctrName . "'";
 $result = $this->getResultsFromQuery($sql);

 if (sizeof($result) > 0) {
 $sqlInsert = "INSERT INTO districts (district_name,ctr_id)

VALUES ('" . $districtName . "', " . $result[0]["ctr_id"] . ")";
$this->addRecordNoReturn($sqlInsert);

 }
 }

 public function RENAMEDimportSchool($districtName,$schoolName){

$sql = "SELECT * FROM districts WHERE district_name = '" . $districtName . "'";
 $district = $this->getResultsFromQuery($sql);

 if (count($district) > 0) {

$sql = "SELECT * FROM city_town_region WHERE ctr_id = " .
$district[0]["ctr_id"];
$ctr = $this->getResultsFromQuery($sql);

if(count($ctr) > 0) {

$sqlSchoolInsert = "INSERT INTO schools (school_name, district_id,
ctr_id) VALUES ('" . preg_replace('/[^a-zA-Z0-9\s]/', '',
strip_tags(html_entity_decode($schoolName))) . "',

 " . $district[0]["district_id"] . ",”. $ctr[0]["ctr_id"] . ")";
$schoolId = $this->addNewRecord($sqlSchoolInsert);

 $sqlSchoolDetailsInsert = "INSERT INTO school_details (school_id,
 address,phone_number) VALUES (" . $schoolId . ", '--', '--')";

$this->addRecordNoReturn($sqlSchoolDetailsInsert);
 }
 }
 }

 private function getResultsFromQuery($query){
 $result = NULL;
 $mysqlConnection = $this->initMySqlConnection();
 $result = $mysqlConnection->query($query);
 if (!$result) {
 throw new Exception("Database Error [{$this->database->errno}] {$this

->database->error}");
} else {

$array = array();
 while($row = $result->fetch_assoc()) $array[] = $row;
 }
 $mysqlConnection->close();
 return $array;
 }

 216

 private function addNewRecord($query){
 $result = NULL;
 $mysqlConnection = $this->initMySqlConnection();
 $result = $mysqlConnection->query($query);
 $recordId = $mysqlConnection->insert_id;
 $mysqlConnection->close();
 return $recordId;
 }

 private function addRecord($query){
 $result = NULL;
 $mysqlConnection = $this->initMySqlConnection();
 $result = $mysqlConnection->query($query);
 $mysqlConnection->close();
 return $result;
 }

 private function addRecordNoReturn($query){
 $mysqlConnection = $this->initMySqlConnection();
 $mysqlConnection->query($query);
 $mysqlConnection->close();
 }

 private function updateRecord($query){
 $result = NULL;
 $mysqlConnection = $this->initMySqlConnection();
 $result = $mysqlConnection->query($query);
 $mysqlConnection->close();
 return $result;
 }

 private function initMySqlConnection(){
 $conn = new mysqli($this->dbServerName, $this->dbUser, $this->dbPassword,
 $this->dbName);
 if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
 }
 else{
 return $conn;
 }
 }
}

class Employee{
 public $userId;
 public $firstName;
 public $middleName;
 public $lastName;
 public $suffix;
 public $email;
 public $title;
 public $employeeId;
 public $phone;
 public function __construct($userId = 0, $firstName = 'Y',$middleName =
 'K',$lastName = 'R',$suffix = '',$email = '',$title = '',$employeeId = 1,
 $phone = ''){
 $this->userId = $userId;
 $this->firstName = $firstName;
 $this->middleName = $middleName;
 $this->lastName = $lastName;
 $this->suffix = $suffix;
 $this->email = $email;

 217

 $this->title = $title;
 $this->employeeId = $employeeId;
 $this->phone = $phone;
 }
}

class UserAccount{
 public $email;
 public $username;
 public $hashedPassword;
 public $enabled;
 public $roleId;
 public function __construct($email = '',$username = 'Jane Doe',
 $hashedPassword = '',$enabled = 0, $roleId = 1){
 $this->email = $email;
 $this->username = $username;
 $this->hashedPassword = $hashedPassword;
 $this->enabled = $enabled;
 $this->roleId = $roleId;
 }
}

class UserRoleSchool{
 public $userId;
 public $roleId;
 public $schoolId;
 public $studentId;
 public function __construct($userId = 0, $roleId = 0,$schoolId =0,
 $studentId = 0){
 $this->userId = $userId;
 $this->roleId = $roleId;
 $this->schoolId = $schoolId;
 $this->studentId = $studentId;
 }
}

class Screen {
 public $screenId;
 public $screenName;
 public function __construct($screenId = 0, $screenName = '') {
 $this->screenId = $screenId;
 $this->screenName = $screenName;
 }
}

class ScreenObject {
 public $objectId;
 public $objectName;
 public $screenId;
 public function __construct($objectId = 0, $objectName = '', $screenId = 0) {
 $this->objectId = $objectId;
 $this->objectName = $objectName;
 $this->screenId = $screenId;
 }
}

class ScreenAccess {
 public $roleId;
 public $screenId;
 public $access;
 public function __construct($roleId = 0, $screenId = 0, $access = 1) {
 $this->roleId = $roleId;
 $this->screenId = $screenId;

 218

 $this->access = $access;
 }
}

class ObjectAccess {

public $screenId;
public $objectId;
public $roleId;
public $readWriteClickable;
public $isButton;
public $showHide;

 public function __construct($screenId = 0, $objectId = 0, $roleId = 0,
$readWriteClickable = 1,$isButton = 1,$showHide = 1) {

$this->screenId = $screenId;
 $this->objectId = $objectId;
 $this->roleId = $roleId;
 $this->readWriteClickable = $readWriteClickable;
 $this->isButton = $isButton;
 $this->showHide = $showHide;

}
}

class ScreenSequence {

public $roleId;
public $objectId;
public $screenId;
public function __construct($roleId = 0, $objectId = 0, $screenId = 0) {

$this->roleId = $roleId;
$this->objectId = $objectId;
$this->screenId = $screenId;

}
}

class Student {

public $firstName;
public $middleName;
public $lastName;
public $suffix;
public $email;
public $studentNumber;
public $schoolId;
public $dateOfBirth;
public $gender;

public function __construct($firstName = 'John', $middleName = '', $lastName =
'Doe', $suffix = '', $email = '', $studentNumber = '', $schoolId = 0,
$dateOfBirth = '01/01/2000', $gender = ''){

$this->firstName = $firstName;
$this->middleName = $middleName;
$this->lastName = $lastName;
$this->suffix = $suffix;
$this->email = $email;
$this->studentNumber = $studentNumber;
$this->schoolId = $schoolId;
$this->dateOfBirth = $dateOfBirth;
$this->gender = $gender;

}
}

class StudentGuardian {

public $studentId;
public $name;
public $email;

 219

public $phone;
public $address;
public $isPrimary;
public function __construct($studentId = 0, $name = 'Jane Doe', $email = '',
$phone = '', $address = '', $isPrimary = 0){

$this->studentId = $studentId;
$this->name = $name;
$this->email = $email;
$this->phone = $phone;
$this->address = $address;
$this->isPrimary = $isPrimary;

}
}

class ConcussionEvent {

public $studentId;
public $schoolId;
public $reportingUserId;
public $incidentLocationId;
public $incidentLocationDetails;
public $schoolLocationId;
public $sportId;
public $contactMechanismId;
public $impactLocationId;
public $wasProtectionPresent;
public $headGearUsage;
public $wasLossOfConciousness;
public $parentsNotified;
public $protocol;
public $isRemoved;
public $removedByUserId;
public $assessmentToolId;
public $symptomComments;
public $date;
public $symptomsArray;

public function __construct($studentId = 0,$schoolId = 0,$reportingUserId = 0,

 $incidentLocationId = 0,$incidentLocationDetails = '',$schoolLocationId = 0,
 $sportId = 0,$contactMechanismId = 0,$impactLocationId = 0,

$wasProtectionPresent = 0,$headGearUsage = 0,$wasLossOfConciousness = 0,
$parentsNotified = 0,$protocol = 0,$isRemoved = 0,$removedByUserId = 0,
$assessmentToolId = 0,$symptomComments = '',$date = 0,$symptomsArray =
array()){

 $this->studentId = $studentId;
$this->schoolId = $schoolId;
$this->reportingUserId = $reportingUserId;
$this->incidentLocationId = $incidentLocationId;
$this->incidentLocationDetails = $incidentLocationDetails;
$this->schoolLocationId = $schoolLocationId;
$this->sportId = $sportId;
$this->contactMechanismId = $contactMechanismId;
$this->impactLocationId = $impactLocationId;
$this->wasProtectionPresent = $wasProtectionPresent;
$this->headGearUsage = $headGearUsage;
$this->wasLossOfConciousness = $wasLossOfConciousness;
$this->parentsNotified = $parentsNotified;
$this->protocol = $protocol;
$this->isRemoved = $isRemoved;
$this->removedByUserId = $removedByUserId;
$this->assessmentToolId = $assessmentToolId;
$this->symptomComments = $symptomComments;
$this->date = $date;
$this->symptomsArray = $symptomsArray;

 220

}
}

class ConcussionFollowup{

public $incidentId;
public $reportingUserId;
public $lingeringSymptomsArray;
public $lingeringDescription;
public $timeResolved;
public $diagnosedBy;
public $pcsDiagnosis;
public $imaging;
public $followUpComments;
public $daysAbsent;
public $scheduledModified;
public $plan504;
public $rtlDate;
public $rtpDate;
public $date;

 public function __construct($incidentId = 0,$reportingUserId = 0,
$lingeringSymptomsArray = array(),$lingeringDescription = '',$timeResolved = 0,
$diagnosedBy = 0,$pcsDiagnosis = 0,$imaging = 0,$followUpComments = '',
$daysAbsent = 0,$scheduledModified = 0,$plan504 = 0,$rtlDate = '',
$rtpDate = '',$date = 0){

$this->incidentId = $incidentId;
$this->reportingUserId = $reportingUserId;
$this->lingeringSymptomsArray = $lingeringSymptomsArray;
$this->lingeringDescription = $lingeringDescription;
$this->timeResolved = $timeResolved;
$this->diagnosedBy = $diagnosedBy;
$this->pcsDiagnosis = $pcsDiagnosis;
$this->imaging = $imaging;

 $this->followUpComments = $followUpComments;
$this->daysAbsent = $daysAbsent;
$this->scheduledModified = $scheduledModified;
$this->plan504 = $plan504;
$this->rtlDate = $rtlDate;
$this->rtpDate = $rtpDate;
$this->date = $date;

}
}

 221

Appendix C – Server Interceptor API

1) Pseudocode for Access Control Interceptor function

1 //Serves as Access Control Interceptor function
2 public boolean incomingRequestPostProcessed(requestDetails, request, response){
3 authToken = requestDetails.getHeader(“Authorization”);
4 //Retrieves the user’s id, clearance and, read and write MAC properties
5 [userId,userRole,userClearance,readP,writeP] = verifyUser(authToken);
6 httpMethod = request.getMethod();
7 resourceName = requestDetails.getResourceName();
8 serviceId = getServiceId(httpMethod, resourceName);
9 acPermission = false;
10 if(userId > 0){
11 //Check if requested resource is secured/labeled
12 [secured,labeled] = getResourceSecurity(httpMethod,resourceName);
13 if(!(secured || labeled)){
14 return true; //Continue with request processing
15 }
16 //Analyze MAC policies (if any)
17 if(userClearance > 0 && labeled){
18 acPermission = checkAndEnforceMAC(userClearance, serviceId, readP, readW);
19 }
20 //Analyze RBAC policies (if any)
21 if((roleId > 0 && secured) && (acPermission || !labeled)){
22 acPermission = checkAndEnforceRBAC(userRole, serviceId);
23 }
24 }
25 else{//Error Message: User could not be verified}
26 if(acPermission == false){
27 //Error message: User does not have permission to access the
28 //requested resource
29 }
30 return acPermission;
31 }
32
33 private int delClrDAC(userId, serviceId) {
34 //Check if delegated user has a delegated clearance for the requested service
35 if(currentTime>getStartTimeMAC() && currentTime<getEndTimeMAC()) {
36 if(serviceId in service_permissions_mac(userId))
37 {return delegatedClearance;}
38 }
39 return 0;
40 }
41
42 private int delRoleDAC(userId, serviceId) {
43 //Check if delegated user has a delegated role for the requested service
44 if(currentTime>getStartTimeRBAC() && currentTime<getEndTimeRBAC() {
45 if(serviceId in service_permissions_rbac(userId))
46 {return delegatedRole;}
47 }
48 return 0;
49 }
50 private boolean checkAndEnforceMAC(userId, serviceId){
51 acPermission = false;
52 //MAC services delegation
53 if(dacPermission() && checkIfDacMac(userId)) {
54 delClr = delClrDAC(userId, serviceId);
55 if(delClr>0) { userClearance=delClr; } //Delegated clearance_id
56 }

 222

57 //Get service classification and http method
58 serviceClassification = getServiceClass(serviceId);
59 //Retrieve MAC read or write property for pertinent user
60 if(httpMethod == “GET”){
61 //Simple security property
62 if(readP == simpleSecurityProperty){
63 if(userClearance >= serviceClassification){
64 acPermission = true;
65 }
66 }
67 //Strict * property
68 elseif(readP == strictStarProperty){
69 if(userClearance == serviceClassification){
70 acPermission = true;
71 }
72 }
73 }
74 else{
75 //Simple integrity property
76 if(writeP == simpleIntegrityProperty){
77 if(userClearance >= serviceClassification){
78 acPermission = true;
79 }
80 }
81 //Strict * property
82 elseif(writeP == strictStarProperty){
83 if(userClearance == serviceClassification){
84 acPermission = true;
85 }
86 }
87 //Liberal * property
88 elseif(writeP == liberalStarProperty){
89 if(userClearance <= serviceClassification){
90 acPermission = true;
91 }
92 }
93 }
94 return acPermission;
95 }
96
97 private boolean checkAndEnforceRBAC(userRole, serviceId){
98 acPermission = false;
99 //RBAC services delegation
100 if(dacPermission() && checkIfDacRbac(userId)) {
101 delRole = delRoleDAC(userId, serviceId);
102 if(delRole>0) { userRole=delRole; } //Delegated role_id
103 }
104 //Get service set of roles
105 serviceRoles = getRoleSet(serviceId);
106 if(roleId in serviceRoles){
107 acPermission = true;
108 }
109 return acPermission;
110 }

 223

2) Source Code for incomingRequestPostProcessed function

1 public boolean incomingRequestPostProcessed(RequestDetails theRequestDetails,
 HttpServletRequest theRequest, HttpServletResponse theResponse) {
2 String jwt = theRequest.getHeader("Authorization");
3 Boolean acPermission = false; //Initially, the user does not have permission to
 access the resource
4 String identifiers = "";
5 JSONObject object = null;
6 HttpClient httpClient = new DefaultHttpClient();
7 HttpContext localContext = new BasicHttpContext();
8 // Verify if the user is a valid one
9 HttpGet httpGet= new HttpGet(serviceLink+"/verifyUser/"+jwt);
10 try {
11 HttpResponse response = httpClient.execute(httpGet, localContext);
12 HttpEntity entity = response.getEntity();
13 identifiers = EntityUtils.toString(entity);
14 //Returns user_id, role_id, clearance_id, write_property, and read property
15 object = new JSONObject(identifiers); //Convert String to JSON Object
16 } catch (Exception e) {/*throw new UnprocessableEntityException();*/}
17 //If the user's identity could be properly validated then it returns the user's
 role, clearance,
18 //and an indicator that the request was successful
19 try {
20 int user_id = Integer.parseInt(object.getString("user_id"));
21 int mac_read = Integer.parseInt(object.getString("mac_read"));
22 int mac_write = Integer.parseInt(object.getString("mac_write"));
23 if(user_id>0) {
24 JSONObject securedResource = null;
25 String httpMethod = theRequest.getMethod();
26 String resourceName = theRequestDetails.getResourceName();
27 //Check if requested resource is secured/labeled
28 httpGet = new
 HttpGet(serviceLink+"/resourceSecurity/"+httpMethod+"/"+resourceName);
29 try {
30 HttpResponse response = httpClient.execute(httpGet, localContext);
31 HttpEntity entity = response.getEntity();
32 identifiers = getASCIIContentFromEntity(entity);
33 securedResource = new JSONObject(identifiers);
34 } catch (Exception e) {/*throw new UnprocessableEntityException();*/}
35 boolean secured = securedResource.getBoolean("secured");
36 boolean labeled = securedResource.getBoolean("labeled");
37 if(!(secured||labeled)){
38 return true; //Continue with request processing (resource can be
 accessed by anyone)
39 }
40 //Obtain the id of the requested service
41 JSONObject sid = null;
42 httpGet = new
 HttpGet(serviceLink+"/serviceId/"+httpMethod+"/"+resourceName);
43 try {
44 HttpResponse response = httpClient.execute(httpGet, localContext);
45 HttpEntity entity = response.getEntity();
46 identifiers = getASCIIContentFromEntity(entity);
47 sid = new JSONObject(identifiers);
48 int service_id = sid.getInt("service_id");
49 Integer clearance_id =
 Integer.parseInt(object.getString("clearance_id"));
50 if(clearance_id>0 && labeled) {//Analyze MAC policies (if any)
51 acPermission = checkAndEnforceMAC(user_id, clearance_id,
 service_id, mac_read, mac_write);
52 }

 224

53 Integer role_id = Integer.parseInt(object.getString("role_id"));
54 if((role_id>0 && secured) && (acPermission || !labeled)) {//Analyze \
 RBAC policies (if any)
55 acPermission = checkAndEnforceRBAC(user_id, role_id, service_id);
56 }
57 } catch (Exception e) {/*throw new UnprocessableEntityException();*/}
58 if(!acPermission) {
59 try {
60 theResponse.setContentType("application/json+fhir");
61 PrintWriter out = theResponse.getWriter();
62 out.println("{");
63 out.println("\"status\": \"403\",");
64 out.println("\"errorMessage\": \"User does not have permission to
 access the requested resource.\"");
65 out.println("}");
66 out.close();
67 } catch (IOException e) {e.printStackTrace();}
68 return false;
69 }
70 return true;
71 }
72 else {
73 try {
74 theResponse.setContentType("application/json+fhir");
75 PrintWriter out = theResponse.getWriter();
76 out.println("{");
77 out.println("\"status\": \"400\",");
78 out.println("\"errorMessage\": \"User Verification failed. Please try
 to do the request again...\"");
79 out.println("}");
80 out.close();
81 } catch (IOException e) {
82 e.printStackTrace();
83 }
84 return false;
85 }
86 } catch (JSONException e) {e.printStackTrace();}
87 return true;
88 }
89
90 private boolean checkAndEnforceMAC(int user_id, int clearance_id, int service_id,
 int mac_read, int mac_write) {
91 boolean acPermission = false;
92 JSONObject serviceClassification = null;
93 Integer delclr_id = 0;
94 Integer class_id = 0;
95 Integer macProperty = 0;
96 String httpMethod = "";
97 HttpClient httpClient = new DefaultHttpClient();
98 HttpContext localContext = new BasicHttpContext();
99
100 //MAC Service Delegation
101 delclr_id = delClrDAC(user_id, service_id);
102 if(delclr_id>0)
103 {clearance_id = delclr_id;}
104
105 //Get service classification and http method
106 HttpGet httpGet = new HttpGet(serviceLink+"/serviceClass/"+service_id);
107 try {
108 HttpResponse response = httpClient.execute(httpGet, localContext);
109 HttpEntity entity = response.getEntity();
110 String identifiers = getASCIIContentFromEntity(entity);
111 serviceClassification = new JSONObject(identifiers);

 225

112 class_id = serviceClassification.getInt("clearance_id");
113 httpMethod = serviceClassification.getString("http_method");
114 } catch (Exception e){/*throw new UnprocessableEntityException();*/}
115 //Retrieve MAC read or write property for pertinent user
116 if(httpMethod=="GET") {
117 macProperty = mac_read;
118 //Simple security property
119 if (macProperty == 1) {
120 if (clearance_id > class_id) {
121 acPermission = true;
122 }
123 }
124 //Strict * property
125 else if (macProperty == 2) {
126 if (clearance_id == class_id) {
127 acPermission = true;
128 }
129 }
130 }
131 else{
132 macProperty = mac_write;
133 //Simple integrity property
134 if (macProperty == 3) {
135 if (clearance_id >= class_id) {
136 acPermission = true;
137 }
138 }
139 //Strict * property
140 else if (macProperty == 4) {
141 if (clearance_id == class_id) {
142 acPermission = true;
143 }
144 }
145 //Liberal * property
146 else if (macProperty == 5) {
147 if (clearance_id <= class_id) {
148 acPermission = true;
149 }
150 }
151 }
152 return acPermission;
153 }
154
155 private boolean checkAndEnforceRBAC(int user_id, int role_id, int service_id) {
156 boolean acPermission = false;
157 Integer delrole_id = 0;
158 JSONArray role_set = null;
159 HttpClient httpClient = new DefaultHttpClient();
160 HttpContext localContext = new BasicHttpContext();
161
162 //MAC Service Delegation
163 delrole_id = delClrDAC(user_id, service_id);
164 if(delrole_id>0)
165 {role_id = delrole_id;}
166
167 //Get service set of roles
168 HttpGet httpGet = new HttpGet(serviceLink+"/roleSet/"+service_id);
169 try {
170 HttpResponse response = httpClient.execute(httpGet, localContext);
171 HttpEntity entity = response.getEntity();
172 String identifiers = getASCIIContentFromEntity(entity);
173 JSONObject rs = new JSONObject(identifiers);
174 role_set = rs.getJSONArray("");

 226

175 Integer role = 0;
176 for (int i = 0; i < role_set.length(); i++) {
177 role = role_set.getInt(i);
178 if(role_id == role) {
179 acPermission = true;
180 break;
181 }
182 }
183 } catch (Exception e) {//throw new UnprocessableEntityException();}
184 return acPermission;
185 }
186
187 private int delClrDAC(int user_id, int service_id) {
188 Integer delclr_id = 0;
189 HttpClient httpClient = new DefaultHttpClient();
190 HttpContext localContext = new BasicHttpContext();
191 //MAC Service Delegation
192 //Check if delegated user has a delegated clearance for the requested service
193 JSONObject userDelegation = null;
194 HttpGet httpGet = new
 HttpGet(serviceLink+"/userClearanceDelegation/"+user_id+service_id);
195 try {
196 HttpResponse response = httpClient.execute(httpGet, localContext);
197 HttpEntity entity = response.getEntity();
198 String identifiers = getASCIIContentFromEntity(entity);
199 userDelegation = new JSONObject(identifiers);
200 delclr_id = userDelegation.getInt("du_dclr_id");
201 return delclr_id;
202 } catch (Exception e){/*throw new UnprocessableEntityException();*/}
203 return 0;
204 }
205
206 private int delRoleDAC(int user_id, int service_id) {
207 Integer delrole_id = 0;
208 HttpClient httpClient = new DefaultHttpClient();
209 HttpContext localContext = new BasicHttpContext();
210 //RBAC Service Delegation
211 //Check if delegated user has a delegated role for the requested service
212 JSONObject userDelegation = null;
213 HttpGet httpGet = new
 HttpGet(serviceLink+"/userRoleDelegation/"+user_id+service_id);
214 try {
215 HttpResponse response = httpClient.execute(httpGet, localContext);
216 HttpEntity entity = response.getEntity();
217 String identifiers = getASCIIContentFromEntity(entity);
218 userDelegation = new JSONObject(identifiers);
219 delrole_id = userDelegation.getInt("du_drole_id");
220 return delrole_id;
221 } catch (Exception e){/*throw new UnprocessableEntityException();*/}
222 return 0;
223 }

3) Source Code for registering the server interceptor in HAPI FHIR

1 public class FHIR_RestfulServer extends RestfulServer {
2 private static final long serialVersionUID = 1L;
3 FhirVersionEnum fhirVersion = FhirVersionEnum.DSTU2;
4
5 @Override
6 protected void initialize() throws ServletException {
7 // Set the resource providers used by this server

 227

8 super.setFhirContext(new FhirContext(fhirVersion));
9 List<IResourceProvider> providerList=new ArrayList<IResourceProvider>();
10 providerList.add(new PatientResourceProvider());
11 providerList.add(new ConditionResourceProvider());
12 providerList.add(new ObservationResourceProvider());
13 providerList.add(new CarePlanResourceProvider());
14 setResourceProviders(providerList);
15 InterceptorAdapter addInterceptor = new AuthInterceptor();
16 registerInterceptor(addInterceptor);
17 }
18}

