A Framework for Secure and Interoperable Cloud Computing with
RBAC, MAC, and DAC

Mohammed S. Baihan
Ph.D. Dissertation
Major Advisor: Dr. Steven A. Demurjian

Associate Advisors: Dr. Reda Ammar, Dr. Swapna Gokhale, Dr. Thomas Agresta

Cloud computing has emerged as a de facto approach throughout society, commercial and
government sectors, and research/academic communities. In the last decade, many organizations
have considered outsourcing their IT service to the cloud where the services would have better
availability and quality. However, this requires mobile and desktop clients for different
stakeholders, in a domain such as healthcare, to obtain information from multiple systems, that
may be: operating with different paradigms (e.g., cloud services, programming services, web
services); utilize alternate cloud service providers; and, employ diverse security/access control
techniques. This raises two main problems: services integration and security policies integration.
The services integration problem focuses on the difficulties that occur when a client is trying to
access services that could be operating with different types of APIs. The security policies
integration problem occurs since the alternate cloud service providers may have different access
control capabilities, making it difficult for the client developer to realize a cohesive security
solution. In order to address these two problems, this dissertation presents a Framework for Secure
and Interoperable Cloud Computing (FSICC) that provides a set of global cloud services for use
by clients and systems with access control provided by RBAC, MAC, and DAC. The work

presented herein involves five research areas: Architectural Blueprints for Supporting

Mohammed Baihan- University of Connecticut, 2018

FSICC that contain options for connecting clients and systems with FSICC; an Integrated RBAC,
MAC, and DAC Model for Cloud Computing via a Unified Cloud Computing Access Control
Model (UCCACM) that contains a set of definitions necessary for supporting the work on FSICC,;
Security Mapping/Enforcement Algorithms for Global Security Policy Generation and Global API
Generation which includes Security Policies and Services Registration, Global Services
Generation, and Global Security Policy Generation; a SOA-Based Security Engineering Process
(SSEP) for FSICC that is utilized to combine security policies from different systems into one
global security policy in which SSEP also includes a process for security enforcement code
generation; and, Dynamic Enforcement via Intercepting Process involves a set of programmatic
mechanisms that are able to intercept a service call from a client to a FSICC global service to

perform security enforcement checks.

A Framework for Secure and Interoperable
Cloud Computing with RBAC, MAC, and
DAC

Mohammed Baihan

B.S., Computer Science, King Saud University, Saudi Arabia, 2005

M.S., Advanced Computer Science, University of Manchester, United Kingdom, 2011

A Dissertation
Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
at the
University of Connecticut

2018

Copyright by

Mohammed Baihan

2018

APPROVAL PAGE

Doctor of Philosophy Dissertation

A Framework for Secure and Interoperable

Cloud Computing with RBAC, MAC, and DAC

Presented by
Mohammed Baihan

B.S., Computer Science, King Saud University, Saudi Arabia, 2005
M.S., Advanced Computer Science, University of Manchester, United Kingdom, 2011

Major Advisor

Dr. Steven Demurjian

Associate Advisor

Dr. Reda Ammar

Associate Advisor

Dr. Swapna Gokhale

Associate Advisor

Dr. Thomas Agresta

University of Connecticut
2018

ACKNOWLEDGEMENTS

| am very grateful for all the support | have received from my major advisor, Dr. Steven
Demurjian. My PhD could not have been completed without the insightful suggestions and
encouragement over the years from you! Whenever | did not know how to proceed, | could count
on an immediate and knowledgeable response from you! You were always willing to share your
expertise in access control and API security. In addition, 1 would like to thank Dr. Reda Ammar,

Dr. Swapna Gokhale, and Dr. Thomas Agresta for being part of my doctoral committee.

Also, | would like to thank the people I love the most in this world my amazing family. My
parents (Salhah and Shaya), and my brothers and sisters (Abdullah, Ahmed, Zahra, Waleed, and
Ghadah)! You were with me throughout all this process and never let me felt like I wasn’t at home
by talking to me on Skype almost every night and by making sure everything was in order. You are
my support system and | could have never survived these past few years without you. Mom, my
personal tracker and one of my best friends, thank you for always worrying deeply about me, for
making me the person | am today. Dad, thank you so much you were my escape in times where |
had a lot of work and reminded me | needed to take it easy every once in a while. Thank you for
always making sure | had everything | needed. My wife, Jawza has been extremely supportive of
me throughout this entire process and has made countless sacrifices to help me get to this point. My
children, Yazeed, Wateen, and Sara, have continually provided the requisite breaks from

philosophy and the motivation to finish my degree with expediency. I love you all very much!

Table of Contents

Chapter 1: INTrOAUCTIONc.oiiiiiccece e re et e st e e sre e enes 1
1.1: Motivation for Access Control for Cloud COMPULINGooveveieiiiiiiiiiee s 5
1.2: Motivation for Healthcare Systems and APpliCationScccooviiiic i 7
1.3: Motivation of Security Requirements and Cloud Computing Capabilities for FSICCc.cccenee. 9
1.4: A High-Level View of Presented APPrOACIccoiiiiiiiiiieieicis e 11
1.5: Research Objectives and Expected CONtribULIONcccooiiiiiiiiiiicc e 15
1.6: RESEArCH Progress t0 DALcccciiiiiiiiriiieieiei sttt bbbttt n e 19
1.7: DiSSertation OULIINEcoiiiiiiiiii bbbt 21
Chapter 2: BaCKGIOUNGc..oiiiececee ettt et sreeneaneenae e 23
2.1: Cloud Computing @nd APIS ..o 23
2.2: ACCESS CONIOI IMOTEIS ...ttt 25
2.3: FHIR @Nd HAPT FHIR .ottt ettt enes 34
2.4: A HEAITNCAIE SCENATOeiviiiiiitite ettt bbbttt bt b e enes 38
Chapter 3: Security Requirements and Cloud Computing Capabilities for FSICC 47
3.1: FSICC SECUNitY REQUITEMENTS ...cvviiviiiiiitiiie ettt ettt sttt s te ettt esbe b e sbeebaebesbeebsesbesreenresre e 51
3.2: FSICC Cloud Computing Capabilitiescooiiiiiiiieieieiees s 55
3.3: Related Work in Cloud COMPULINGeooviiieiiiiiie ettt sre e e e e 62

Chapter 4: A Unified Cloud Computing Access Control Model (UCCACM) for RBAC,

YN G- 1o To [5 7 N 66
4.1: Core Definitions 0N SCNEMAScooiiiiiiiiiie e 68
4.2: Core Definitions on Enterprise APPHCALIONcooviiiiiiiiiiieice s 69
4.3: Core Definitions on RBAC, MAC, and DAC for ROIES/USELScovcveiiiiiiiee st 72
4.4: Advanced Definitions on Enterprise APPHCAtIONSccvoiiiiiiiiicic e 76

4.5: Core Definitions on Global Resources and Permissions by APL ... 86

4.6: Advanced Definitions 0N FSICC ..o e 89
4.7: Core Definitions 0N INTEICEPLONSc.viviiiiieiiieiei et 94
4.8: Related Work on Access Control for Cloud COMPULINGc..ooveieiiiiiiiieieeeeeee e 100

Chapter 5: Architectural Blueprints to Facilitate Interoperability and Information

Exchange of CHents and SYStEMSccoiiiiiiiie e 103
5.1: Issues that Impact INteroperabilitycccvoiiiiiic i e 106
5.2: Application INtegration OPLIONScccooeiieiiiiiiie s 110
5.3: Integration Steps and Processes of Architectural BIUEPIINSccccovevieiiiiiii i 116
5.4: Blueprint Prototype Applied to the Healthcare SCenario..........ccoccevvvveie v sieie s 127
5.5 REIAIEA WOTK ... bbbttt bbbt e 142

Chapter 6: Global Security Policy Generation and Dynamic Enforcement for FSICC145

6.1: Security Policy Integration AlGOrithmSccooiiiiiiiiie s 147
6.2: HAPI FHIR Implementation and RBAC/MAC/DAC INtErCeporscoovverieieeienieneneniesiesieineneas 164
6.3: Related work in Security Policy Integration and Enforcementc.cccocvevieiiiiecvcie i 180
Chapter 7: SOA-based Security Engineering for FSICCccccoooiiiiviii e 185
7.1: A Pre-Process Step for JOINING FSICC ..o 186
7.2: An SOA-based Security Engineering Process (SSEP) for FSICC ... 187
7.3: Demonstrating the SOA-based Security ENgineering ProCeSSccooeieiieiiieeiiene e 199
Chapter 8: CONCIUSIONviiiie ittt e e et e e be e sraesbeenree s 220
8L SUMIMIAIY etttk b b e bbbt bt s bt h bR e b e bR bt e b e s bt eb e b s et e bt e et b e e e bt e 221
8.2: RESEArCh CONITDULION ... 225
8.3: ONQOING AN FULUIE WOTKoiiiiiitiiieieieeee sttt 230
RETEIEINCES ...ttt e ettt 234

Vi

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 2.6.

Table 2.7.

Table 2.8.

Table 4.1.

Table 4.2.

Table 4.3.

Table 6.1.

Table 6.2.

Table 6.3.

Table 7.1.

Table 7.2.

Table 7.3.

Table 7.4.

List of Tables

CTZ SEIVICES ...vveviiieeesete ettt ettt 42
CTZROIES ..ottt 42
ShareMYHEAITt SEIVICESc.veciiie e e re s 42
ShareMyHEAItN ROIESooiiiiii e 43
OPENEMR SEIVICES ...viivieiiiite ettt ettt sttt et et e st e e te et e s be e st e ebeareeaesbe et e nreeres 44
OPENEMR ROIES ...ttt 44
MYGOOGIE SEIVICES ...ttt ettt ettt s b et e b e s te e s s e besre e e e sbeessesreateenrenre s 45
MYGOOGIE ROIES ...t s te et s ae e sr et e e sreere e renre s 45
FSICC Global Services for Global ReSOUICe Gcoviiiiiiiriiiiieces e, 88
FSICC Global Roles for Global ReSOUICE Gcvueiiiiiiiicieieeseee e 88
Mapping Tables to GIODal SEIVICES ..o 92
Primitive Functions Utilized by the Algorithms for Global RBAC Generation 152
Primitive Functions Utilized by the Algorithms for Global MAC Generation 161
Primitive Functions Utilized by the Algorithms for Global DAC Generation 162
Initial Set of FSICC’S GIODAl SEIVICESeciivvviiiiieiiieiiie it se e ste e srae e sree e snee e 206
Comparisons Information of the RBAC Integration Stepccocvviiviiiiiiiiiic e 207
An Example of a Sensitivity Levels Mapping LiSt ..o 210
An Example of a Corrected Global ROIES LIStccooviiiiiiiiiiii e 211

List of Figures

vii

Figure 1.1. The Framework for Secure and Interoperable Cloud Computing (FSICC)ccccoceiviveiennenn, 3

Figure 1.2. A Component-Level View of the presented FSICCcccooiiiiiiiiiiiiccc e 13
Figure 1.3. High-Level View of FSICC Research Areas and FOCIcccoveviveiiiie i 19
Figure 2.1. Cloud SErvice MOUEc.viiiiiiic ettt ans 25
FIgure 2.2. RBAC MOGEI ...t 27
Figure 2.3. AN EXaMPIe OF MAC ...ttt et ba e reans 29
Figure 2.4. Confidentiality Labels from HL7 Release 3 Standardccccooviiiiiiiiiiiiec e 30
Figure 2.5. A Multi-Level Healthcare Sensitivity LEVEIScccovviiiiiiiiiic e 32
FIQUIE 2.6. DAC IMOGET ...ttt 33
Figure 2.7. An Example of Patient Resource in JSONcociiiiiiiiiiiii e 36
Figure 2.8. The HAPI-FHIR Server ArchiteCtUIecocooviiiiieciccc et 37
Figure 2.9. The Methods of HAPT INTEICEPLONoviiiiiiiiiiiicie it 38
Figure 2.10. CT? Mobile Application - iOS Version INtErCePLOrccovvvveveeeveeeieeeeeeeeeeeeeeeee e, 40
Figure 2.11. ShareMyHealth Mobile APPIICALIONc.coviiiiiiiiiee 41
Figure 4.1. MyGoogle Notation for EXample 4.4coooviiiiiiiiieie e 79
Figure 4.2. OpenEMR Notation for EXamMPIE 4.4c.coooiiiiiieiicie et 79
Figure 4.3. ShareMyHealth Notation for EXample 4.5 ... 80
Figure 4.4, CT2 Notation for EXaMPIE 4.5.........c.cviiiiiieeeccceeeeeee et 81
Figure 4.5. The UCCACM TOr RBAC PAIToouiiiiiiiiiiiie et 83
Figure 4.6. Global Resource G* Notation for EXample 4.6 ..o 88
Figure 5.1, AP and HIT SYSLEMSooeiiieieieiie ettt et e st e te e saeeneenneeneas 111
Figure 5.2a. Basic Architecture with Direct Database Access using IFMWK ... 113
Figure 5.2b. Basic Architecture customized with FHIR for IFMWKc.ccooiiiiieiicicece e 113
Figure 5.3a. Alternative Architecture with App RESTful APl Access using IFMWKcccceeenies 114
Figure 5.3b. Alternative Architecture customized with FHIR for IFMWKcc.ccocooiiiiiiiiiiiccec, 115

viii

Figure 5.4a. Radical Architecture without a Database using IFMWK ... 116

Figure 5.4b. Radical Architecture customized with FHIR for IFMWKccooiiiiiiic e 116
Figure 5.5. Alternative Architecture for Integrating CT? into OpenEMR via FSICCcccccovvrvrinnen. 129
Figure 5.6. Basic Architecture for Integrating SMH into MyGoogle via FSICCccocoviiiiiiiene. 130
Figure 5.7. CT? Data IteMS OF INTEIESEceiiivcieeiciieece et 132
Figure 5.8. FHIR ReSOUICES OF INTEIEST ..ot 133
Figure 5.9. Mapping from CTZto/from FHIRcccocvoviiiiiicteceeceeeee et 134
Figure 5.10. The OpenEMR Data Items Of INTEreStcociiiiiiiiecee s 135
Figure 5.11. Mapping from OpenEMR to/from FHIRccooi i 135
Figure 5.12. Combined Result of the TWO BIUEPIINESccooiiiiiiiiiiiie e 137
Figure 5.13. SMH Data Items OF INTEIESTcoviiiiiiiiiii s 139
Figure 5.14. FHIR ReSOUICES OF INTEIESEocviiiiiiiiiiecc ettt st 139
Figure 5.15. Mapping from SMH t0 FHIRooiiiii s 140
Figure 5.16. MyGoogle Data 1tems Of INTErESEcvciiiiiiieii it 140
Figure 5.17. Mapping from MyGoogle t0 FHIR ... 140
Figure 6.1. An Architecture for Global Security Policy Generation & Utilizationccccocooiiennne. 149
Figure 6.2. The Global-RBAC AIGOIthIMcooiiiii e 153
Figure 6.3. The Initialize_GRBAC AIGOIthMccoiiiiiiiii s 154
Figure 6.4. The IntegrateRBAC AlIGOItNMcoiiiiii e 156
Figure 6.5. The AddBasicParents AIGOrithim ..o 157
Figure 6.6. The Update Global Roles AIGOrithimccooiiiiiiiiiii s 159
Figure 6.7. The Global-MAC AlGOFtNMociii e 161
Figure 6.8. The Global-DAC AIGOTtRMcciiiiiiiiii s 162
Figure 6.9. A Global RBAC Policy EXample iN JSON ...t 169
Figure 6.10. RBAC Interceptor PSEUAO COUEccoieiiiiiiiiiiiie et 171
Figure 6.11. A Global MAC Policy Example in JSONcoociiiiiiiii s 173

Figure 6.12. MAC Interceptor PSEUAO COUEc.oiviiiiiiiiiiiiie et 174

Figure 6.13. A Global DAC Policy EXample iNJSON ..o 175
Figure 6.14. DAC Interceptor PSEUAO COUEc.coviiiiiiiiiiiiie et 178
Figure 6.15. Access Scenario One (REJECIEA)ccviiiiiiiiiiiei s 179
Figure 6.16. Access Scenario TWO (AHOWE)c.oouviiiiiiiii et 180
Figure 7.1. A High-Level View of SOA-Based Security Engineering Process for FSICC 191
Figure 7.2. A Detailed View of Phase 2.a 0f the SSEP ... 196
Figure 7.3. A Detailed View of Phase 2.0 0f the SSEPcccooiiiiiiiieee 199
Figure 7.4. OpenEMR’s FHIR Services in JSONc.coiiiiiiiiiiiienieieieeises et 201
Figure 7.5. OpenEMR’s RBAC/DAC policy in JSONcoiiiiiiiiiiiiiisce e 202
Figure 7.6. OpenEMR’s MAC/DAC policy in JSONcccoiiiiiiiiiiiiieiiiee e 202
Figure 7.7. MyGoogle’s FHIR services in JSONc.coiiiiiiiiiiieieieieisi et 203
Figure 7.8. MyGoogle’s RBAC policy in JSONccoiiiiiiiiiiiiiieee s 203
Figure 7.9. MyGoogle’s MAC policy in JSONccooiiiiiiiiiiiee s 204
Figure 7.10. SMH’s FHIR services in JSONcccoiiiiiiiiiiiiieiie ettt sne e e 204
Figure 7.11. SMH’s RBAC/DAC POlicy in JSONovvuiveeieeieeeeseeieeeesesseeessessseeese s 205
Figure 7.12. SMH’S MAC policy 1N JSONcoiiiiiiiiiiiiiiiiii s 205
Figure 7.13. The Role Hierarchy of the Global RBAC POIICYcccooviiiiiiiiiiicccc 208
Figure 7.14. The Initial Global RBAC POlIiCY INJSONc.oociiiiiiiiie e 209
Figure 7.15. The Global DAC POLCY INJSON ..o e 211
Figure 7.16. The Global MAC POlICY iN JSONcoiiiiiiiiiiiieeee s 212
Figure 7.17. MyGoogle Utilization Request iN JSONcooiiiiiiiieie it 214
Figure 7.18. SMH Policy Mapping Request iN JSON ..ottt 215
Figure 7.19. SMH Utilization ReqUESE iN JISONcooiiiiiiiiiiiiecee s 215
Figure 7.20. CT2 Policy Customize ReqUESE iN JSONcccciviiriiiriiiiieieicieee e 216
Figure 7.21. CT? Utilization ReqUESE iN JSONcciiiiiiiiecicceeeeee e 216

Figure 7.22. Overall Architecture of the Interactions for Clients and Systems with FSICC

Xi

Chapter 1
Introduction

Cloud computing has emerged as a de facto approach throughout society, commercial and
government sectors, and research/academic communities. In fact, the wide usage of mobile devices
means that average users understand the storage and synching of photos, videos, email, contacts,
files, etc., in the cloud. In the last decade, many organizations have considered outsourcing their IT
service to the cloud where the services would have better availability and quality. However, this
requires mobile and desktop clients for different stakeholders, in a domain such as healthcare, to
obtain information from multiple systems, that may be: operating with different paradigms (e.g.,
cloud services, programming services, web services); utilize alternate cloud service providers; and,
employ diverse security/access control techniques. This raises two main problems: services
integration and security policies integration. The services integration problem focuses on the
difficulties that occur when a client is trying to access services that could be operating with different
types of application programmer interfaces (APIs). In this case, the developer of the client will
need to work with different paradigms such as programming language APIs or web services that
may be constantly changing and must also be integrated in order to be successfully utilized for the
client. The security policies integration problem occurs since the different paradigms and alternate
cloud service providers may all have different types of security and access control capabilities,

making it very difficult for the developer of the client to realize a cohesive security solution.

Currently, there is no set of technologies and/or a framework that provides solutions for the
service integration and security policy integration problems. The notion of having a unified set of
global cloud services is one possible solution to the services integration problem. An approach that

supports the combination of different security policies such as Role-Based Access Control (RBAC)

1

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), Mandatory Access Control (MAC)
(Bell & La Padula, 1976), or Discretionary Access Control (DAC) (Dittrich, Hartig, & Pfefferle,
1988), from multiple sources into one global security policy is a possible solution to the security
policies integration. For services integration at the system level, the HL7 Fast Healthcare
Interoperability Resources (FHIR) (Health Level 7, Fast Health Interoperable Resources list, 2016)
provides a service integration infrastructure that can be extended to support RBAC, MAC, and/or
DAC models in which the infrastructure can serve as an initial solution for the two problems above

(i.e., services integration and security policies integration).

The main objective of this dissertation is to provide a solution to the service integration and
security policy integration problems that will allow clients and systems to interact with one another
in a framework. Such a framework would provide the unification of services and security
capabilities from different paradigms (e.g., cloud services, programming services, web services),
alternate cloud service providers, and diverse security/access control (RBAC, MAC, and/or DAC);
the main intent of the unification is to offer global services that can be available to clients and
systems alike. Towards this main objective, this dissertation presents a Framework for Secure and
Interoperable Cloud Computing (FSICC), shown in Figure 1.1, that provides a set of global cloud

services for use by clients and systems with access control provided by RBAC, MAC, and/or DAC.

To facilitate the discussion of Figure 1.1, we briefly review the following key terms: application
programmer interface (API), web service, cloud service, system, client, and registry. An API is a
general concept that creates a programming interface for a system that can be utilized by another
system or application without disclosing the actual source code of that system. In this dissertation,
API refers to the programming interface for legacy programming languages such as Java, C++, C,

etc. A web service is a programming interface (such as REST and SOAP) that typically operates

over the Hypertext Transfer Protocol (HTTP). A cloud service is a web service hosted in a cloud
environment that makes a cloud service more available and accessible than a normal web service.
A system is a type of software that provides services that can be API, web services, or cloud services,
where the system is intending to publish its services to FSICC. A client is a desktop, web, or mobile
application that is built using different sets of services (API, web services, or cloud services)
provided by systems via FSICC. A registry is a special service of FSICC that enables a system to
register and add its services to FSICC (System Registry), and, a client to utilize services of FSICC

(System Registry).

Client 1 Client N
. > S
Repository API Desktop/ ®® | Desktop/ ARl
Web/Mobile Web/Mobile
App App
P
R Integration
i S Layer
Client Registry |
> Global Authentication
| RBAC/MAC/DAC Interceptors |
=I Global Services I:
1 Global
1 Security Policy
1
1 '
Services Security Policy
Mappin, Mappin,
3 A |
Y ,v{ System Registry I“ _;':

-

-7 A A8 -
> Intogration FSICC x. > Integration |
Layer 4 ~ Layer
/ ~
4 ~
’ ~
o s
Web/ ey e Policy Web/

Cloud System 1 System M Cloud
services services

Figure 1.1. The Framework for Secure and Interoperable Cloud Computing (FSICC).

FSICC as presented in Figure 1.1 has two main actors that are interacting via FSICC to develop
applications in the service-oriented architecture (SOA) manner (IBM, 2015). These actors are

Clients, top of Figure 1.1, and Systems, bottom of Figure 1.1. From an overall viewpoint, each

system builds and publishes their cloud, programmatic, or web services, as shown at the bottom of
Figure 1.1. Then, a developer of a mobile or desktop client, at the top of Figure 1.1, discovers such
services and utilizes them to develop the client application. The FSICC in the middle of Figure 1.1,
augments SOA application development with two additional layers and their interactions: Global
Services and Global Security Policy boxes. The interactions of clients and systems with FSICC
occurs in anumber of different ways. From a system perspective, each system creates an Integration
Layer API in front of their APl and modifies their Security Policy to be defined against the
Integration Layer API. Each system then registers the system’s name, the Integration Layer API,

and the Security Policy into the FSICC using the Systems Registry box in the middle of Figure 1.1.

In support of systems, the security engineer of the FSICC creates a global resource that includes:
a set of Global API (Services) based the integration layer APIs of each system utilizing the Services
Mapping box; and, a Global Security Policy based on systems’ Security Policies which utilizes the
Security Policy Mapping box in the middle of Figure 1.1. From a client perspective, each client
creates an Integration Layer API, top of Figure 1.1, in front of their API. Each client then registers
the client’s name into the FSICC, using the Clients Registry box and reconfigures the client
Integration Layer API to call the Global API. In support of clients, the security engineer of the
FSICC performs actions that: associates each registered client with one of the registered systems;
and, defines a Global Security Policy that enables the authorized/authenticated clients, via the
RBAC/MAC/DAC Interceptor and Global Authentication boxes in the middle of Figure 1.1, to
access services of the appropriate system based on the client and system names. Note that in Figure
1.1, registered clients are first authenticated by the Global Authentication box and then authorized

by the RBAC/MAC/DAC Interceptor box, before access to Global Services is allowed.

1.1 Motivation for Access Control for Cloud Computing

Cloud computing provides services in the cloud to be utilized by mobile applications/users and
businesses. The Gartner group indicated that cloud computing represents the majority of IT funding
by 2016 (Shetty, 2013). The International Data Corporation (ldc.com, 2015) reported that
organizations and enterprises around the world spent approximately $70 billion to adopt cloud
computing services in 2015 with the number of cloud-based services expected to triple by 2020.
Cloud computing is provided by major corporations such as Amazon (Amazon.com, 2016), AT&T
(AT&T, 2016), Dell (Dell.com, 2016), etc. Security breaches have come to the forefront (Kelion,
2014) especially in personal cloud storage (Wingfield, 2015). Outsourced data and services are
located on servers that belong to security domains which are different from an organization’s
security domain, raising numerous security and privacy issues (Takabi, Joshi, & Ahn, 2010). Other
efforts have included: a survey of the different data/network security, authentication, authorization,
and confidentiality issues that impact cloud computing (Subashini & Kavitha, 2011); a review of
the available cloud computing advances in concepts, functionalities, unique features, and
technologies (Wang, Von Laszewski, Younge, He, & Kunze, 2010); and, the characterization of

cloud computing as the likely dominant technology for computing on the Internet (Pallis, 2010).

Outsourcing services to the cloud has many advantages including (Skyhigh Networks., 2016):
better availability, since most cloud providers ensure more that 90% uptime; better mobility where
the hosted services are typically accessible from any place on earth as long as internet connection
is available; and cost effective due to that fact that computing equipment are provided by the cloud
provider. Such advantages attract governments and businesses to move their services to the cloud.
However, the movement to the cloud has resulted in new attacks to illegally access a crucial and

sensitive data, such as electronic health records of large number of patients. This is possible since

these cloud services are typically designed to be utilized without any type of access control. There
is an emergent need to control who can access which cloud services at which times and under which
conditions. The publishing of services in the cloud leads to a large number of consumers of such
services in which controlling access to which services each consumer can utilize is not supported
in existing paradigms (e.g., cloud services, programming services, web services), and available
cloud service providers. One approach is to have cloud services controlled using the three main
aforementioned access control models, RBAC, MAC, and DAC, since they provide unique

capabilities that can control how services are accessed by users, clients, and systems.

RBAC provides an efficient way to manage consumers by using the concept of role in which
each role can be authorized to access a sub-set of the available cloud services and each consumer
is assigned one or more suitable roles. When cloud services need to access very sensitive
information such as patient data that needs to be more strongly controlled than other parts of the
patient data, MAC can be employed to control access to services. In this case, MAC can be utilized
to label cloud services and their consumers using sensitivity levels which are hierarchically ordered
from most to least secure: Top Secret (TS) < Secret (S) < Confidential (C) < Unclassified (U).
Using MAC, each cloud service can be assigned a sensitivity level known as a classification, and
each consumer can be assigned a sensitivity level known as a clearance along with read and write
properties. DAC can offer the ability of a consumer of the cloud services to enable another
consumer to utilize all or a sub-set of its authorized cloud services (that are assigned based on a role
or a clearance) through a delegation of authority. In this case, DAC can be utilized to keep a list of
delegated services, along with authorized delegated users, where each consumer can delegate all or

a subset of his/her authorized cloud services to another consumer anytime.

1.2 Motivation for Healthcare Systems and Applications

In this dissertation, we utilize healthcare as the primary vehicle to justify and explain our work
since it represents as a critical emergent application for cloud computing. In the United States, the
Center of Medicare and Medicaid Services released the Meaningful Use Stage 3 (Himss.org.,
2016) guidelines that require all health information technology (HIT) systems to have cloud
services to access, modify, and exchange health-related data. HIT systems include electronic health
records (EHR) such as OpenEMR (OpenEMR, 2016), OpemMRS (OpenMRS Inc., 2016), and
Drchrono EHR (Gibraltar Dr., 2016); and personal health records (PHR) such as Google Health
(Google Inc., 2016), Microsoft HealthVault (Microsoft Inc., 2016), and WebMD (WebMD LLC.,
2016). Insupport of the interoperability and exchange of healthcare data, the international Health
Level 7 (HL7) (Health Level 7, Health Level Seven INTERNATIONAL, 2016) organization has
taken a leadership role for standards to allow the integration, sharing, and exchange of electronic
healthcare data, specifically: HL7 Version 2 (Health Level 7, HL7 Version 2, 2016), HL7 Version
3 (Health Level 7, HL7 Version 3, 2016), the Clinical Document Architecture (CDA) (Health
Level 7, Clinical Document Architecture, 2016), and HL7 Fast Healthcare Interoperability
Resources (HL7 FHIR) (Health Level 7, Fast Health Interoperable Resources, 2016).

In support of this dissertation, we strongly leverage the Healthcare Interoperability Resources
(FHIR) which provides a RESTful Application Program Interface (API) to share data in a common
format. FHIR conceptualizes and abstracts information for HL7 into 119 currently defined (and
always increasing) Resources that effectively decompose HL7 into logical components to track a
patient’s clinical findings, problems, allergies, adverse events, history, suggested physician orders,
care planning, etc. The intent is to allow a unified access to FHIR’s RESTful health-related data

sharing APIs so that applications can be easily built to uniformly utilize multiple HIT systems.

Concurrent with these activities has been an explosion of mobile health (mHealth) applications for
both patients and medical providers (Aitken, 2013). These mHealth applications also require
access to health data via cloud services from multiple HIT systems to ensure that all of the
necessary information is collected for patient care. Each of these HIT systems may operate with
different paradigms (e.g., cloud, API, web services) and employ different security/access control
techniques. Thus, mHealth applications would need to work with a heterogeneous collection of
paradigms and security protocols, with the strongly likelihood that set of information sources may
grow or shrink over time. This makes it problematic to develop mHealth applications that are
easily maintained and evolved.

The main issue for healthcare is to ensure that the available services of these HIT systems are
carefully authorized to control which mHealth application can utilize which service at which time;
this is specifically what FHIR has been defined to provide. For example, an HIT system for a
pharmacy would have cloud services for: a physician to submit a prescription (Rx) electronically
to the pharmacy (service S1); a pharmacist to be able to fill the Rx and reduce the number of refills
(service Sy); the pharmacist to send notification via text/phone to the patient that the Ry is available
(service S3); the insurance company to access the information on the Ry for approval and payment
(service S4); the physician to have the Ry inserted into his/her EHR (serviceSs); the patient to access
medications in the PHR (service Sg); and, so on. Access control for cloud services of an HIT system
can ensure that the mHealth application and its authorized users are restricted to particular services.

The problem is that there is currently no solution that allows cloud services to be controlled on
this basis, complicated by the fact that cloud services are available from different cloud suppliers
that may not be compatible with one another. For example, the cloud services S; to Se listed above

can be controlled by the three access control models, RBAC, MAC, and DAC. For RBAC, four

roles can be created: physician (authorized to access services Si and Ss), pharmacist (authorized
to access services Sy and S3), insurance company (authorized to access service Ss), and patient
(authorized to access service Sg). In this case, a user that has been authorized to a given role would
be limited to only invoke those Services of the role through the client application. For MAC, each
cloud service can be assigned a classification level: (Si, C); (Sz2, S); (Ss, U); (Sa, S); (Ss, C); and
(Se, TS). Inthis case, the user that has been authorized to a clearance level, say, S, would be limited
to invoke those services whose classification levels are less than or equal to the clearance of the
user, namely S, C, and U. For DAC, each cloud service can be delegated from one consumer to

another by delegating role or clearance that is authorized to each authorized cloud service.

1.3 Motivation of Security Requirements and Cloud Computing
Capabilities for FSICC

As discussed in Section 1.2, the healthcare domain is an emergent application for cloud
computing, in which the Meaningful Use Stage 3 guidelines recommend health information
technology (HIT) systems to provide cloud services that enable health-related data owners to access,
modify, and exchange data. This requires mobile and desktop applications for patients and medical
providers to obtain healthcare data from multiple HITs, that may be operating with different
paradigms (e.g., cloud services, programming services, web services), use different cloud service
providers, and employ different security/access control techniques. To address these issues, we have
identified four of security requirements and three cloud computing capabilities that will need to
underlie and support FSICC. These four security requirements and three cloud computing
capabilities for FSICC simplifies and enables client access via global resources using standardized

system APIs.

The four security requirements of FSICC are: Numerous and Varied Access Control Models,
Control Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC,
and Control Access to Cloud Services Using MAC; each are briefly reviewed. The Numerous and
Varied Access Control Models security requirement is intended to support a wide range of access
control such as RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), MAC (Bell &
La Padula, 1976), DAC (Dittrich, Hartig, & Pfefferle, 1988), Attribute-based Access Control
(ABAC) (Yuan, E. & Tong, J. , 2005), Usage Access Control (UCON) (Sandhu, R. & Park, J. ,
2003), etc.; this is since each system may utilize any access control model. The Control Access to
Cloud Services Using RBAC security requirement dictates that access to cloud services will be
realized by enhancing RBAC by extending permissions from objects to services. The Control
Access to Cloud Services Using MAC security requirement dictates that access to cloud services
will be realized by enhancing MAC by extending the labeling of objects with classifications to
services with classifications. Lastly, the Support Delegation of Cloud Services Using DAC security
requirement dictates that access to cloud services will be realized by enhancing DAC by providing
the ability to delegate services on a user by user basis.

The three cloud computing capabilities of FSICC are: Local Service Registration and Mapping
to Global Services, Local Security Policies Registration to Yield Global Security Policy, and Global
Registration, Authentication, Authorization, and Service Discovery for Consumers; each are briefly
reviewed. The Local Service Registration and Mapping to Global Service cloud computing
capability is for systems to register their local services which are then mapped to a global set. The
Local Security Policies Registration to Yield Global Security Policy cloud computing capability is
for systems to register their local security policy that is utilized to generate a global security policy.

The Global Registration, Authentication, Authorization, and Service Discovery for Consumers

10

cloud computing capability is to support the process of a consumer (mobile, web, or desktop app)

to register within FSICC to discover and be authenticated and then authorized to utilize services.

1.4 A High-Level View of Presented Approach

In this dissertation, the architecture view of our presented Framework of Secure and
Interoperable Cloud Computing (FSICC) in Figure 1.1 can be complemented with a component
view as given in Figure 1.2. Specifically, in Figure 1.2, there are six main components outlined
boxes. The first component Involved Parties, topmost component in Figure 1.2, refers to clients
and systems and their APIs previously shown in the top and bottom of Figure 1.1, and consists of:
a Clients box that includes an API; and, multiple Systems boxes that includes an API and a security
Policy. As the first step toward creating a global security policy and services, clients and systems
may utilize two separate components: the Security Policy Mapping component which refers to the
process and algorithms that can be utilized to generate the global security policy that was shown
in the middle of Figure 1.1; and, the Architectural Blueprint component which refers to the process
and steps that can be followed to create different integration layers for clients and systems.

An integration layer is a standard API (e.g., FHIR API for a healthcare case as discussed in
Section 2.4 of Chapter 2) that converts the data format of a system or client from/to a common
data format. Such a common data format can be utilized by other systems and clients, in addition
to the FSICC, to easily exchange data. An integration layer exists with an integration framework
(IFMWK) which is a set of standards and associated technologies that allow different systems to
interact with one another utilizing one common data representation. The associated technologies
allow integration servers to be designed and implemented to facilitate the exchange of information
using the common data representation via a set of shared unified services via an integration
layer. The FHIR standard is one example of an integration framework which has a set of resources

11

in XML, JSON, RDF, and Turtle that are a common data representation with associated services
for CRUD and searching.

In FSICC, all security policies (that can be any combination of RBAC, MAC, and/or DAC) of
each system go through two main phases: the Policies Combining phase (RBAC integration, MAC
integration, and DAC integration) that creates one set of policy (global security policy) that has all
policies from different systems; and, the Policies Updating phase (only for RBAC and MAC) that
is needed to update role names (for RBAC) and update global MAC with users and services form
systems based on the global sensitivity levels (for MAC). In addition, there are a number of
different Application Integration Options to allow an application to send/receive data with multiple
mixed clients and pure or mixed systems, via FSICC, by the creation of an integration layer API
in front of their API (services) by utilizing one of the Architectural Blueprint options. An
Architectural Blueprint option is a guideline that defines the way of placing and creating an
integration layer for a systems or client to allow such them to exchange data with other systems
and clients in one common data format. There are three Architectural Blueprints options as shown
in Figure 1.2: a Basic Architecture that includes an IFMWK server that works directly with the
App repository and IFMWK servers of different HIT systems; an Alternative Architecture that
includes a IFMWK server that works directly with the App RESTful APl and IFMWK servers of
different HIT systems; and, a Radical Architecture that removes the repository and has IFMWK

servers for the App APl and a number of HIT systems.

12

Involved Parties

Clients Systems

Architectural Blueprints /\ Security Policy Mapping

Basic Architecture Policies Combining

Alternative Architecture Policies Updating

Radical Architecture

Access Control Models

Generation of Global Policy and Services

Global Policy Enforcement (Authorization) ,l,

RBAC Interceptor MAC Interceptor DAC Interceptor

Figure 1.2. A Component-Level View of the presented FSICC.

The selection of an architectural blueprints option is determined based on four factors that
describe the situation of a client or system: the overall architecture of the application (i.e., one-
tier, two-tier, and three-tier architecture); the involved technologies that can be used to develop the
application (i.e., RESTful APIs, programmatic APIs, database API); the source code availability
of the application, APIs, server code, or database; and, the allowable access to system sources
(RESTful APIs, programmatic APIs). Based on the output of the Architectural Blueprints
component and after a system has registered at the Integration Layer, the security engineer of
FSICC can establish the global API (services) in a two-step process. First, the security engineer
creates a set of common services from the integration layer API, utilizing the Services Mapping
process using the Generation of Global Policy and Services component in Figure 1.2, where each

13

system in the global API is configured to send/receive requests to/from the integration layer API
of the appropriate system. Second, each client can configure its integration layer API to
send/receive requests to/from the Global API. Based on the output of the Security Policy Mapping
component, the security engineer utilizes the Access Control Models component to define the
security policies of systems that was shown at the bottom of Figure 1.1 and in the process to
establish the global security policy that was shown in the middle of Figure 1.1. The security
engineer can develop the global security policy by: creating global roles in which each global role
can be authorized to a subset of the global services and creating new users (from clients) in which
each global user can be assigned to one or more global roles (RBAC); assigning classification for
each global service, and assigning clearance for each global user with read and write properties
(MAC); and, enabling role or service delegation from one to another global users (DAC).

The resulting global services (API) and global security policy comprise the Generation of
Global Policy and Services component, shown in the middle of Figure 1.2. After establishing the
global security policy, a number of security interceptors can be created to enforce the global
security policy on the users’ access requests, after such users have been authenticated. A security
interceptor can be defined as a programmatic mechanism that is able to intercept a service call
from a client application to an API (service) in order to perform appropriate security enforcement
checks. The Global Policy Enforcement component shown at the bottom of Figure 1.2 refers to
the RBAC/MAC/DAC interceptors box that was shown in the middle of Figure 1.1, consists of
four boxes. The Global Authentication box is utilized to verify the claimed credentials, ID and
security token, that a user (client) provided is correct or not. The RBAC Interceptor box provides
the ability to allow/deny a global user with a global role from accessing a specific global service.

The MAC Interceptor box provides the ability to allow/deny a global user with a clearance from

14

accessing a specific global service. The DAC Interceptor box provides the ability to allow/deny a
global user (with a delegated global role, global service, or global clearance) from accessing a
specific global service. Collectively, FSICC as presented in Figure 1.2, represents a set of
interacting components that allows from a transition to isolated clients and systems being able to

join and utilize a global environment that provides a single common way to access services.

1.5 Research Objectives and Expected Contribution

In this section, we discuss the research objectives and expected contributions of this
dissertation. Since the component-level view of the presented FSICC in Figure 1.2 does not
provide an adequate representation of the underlying models, concepts, and research of FSICC for
the dissertation, we supplement Figure 1.2 with Figure 1.3 which provides a high-level view of the
research of FSICC as discussed in Section 1.4, organizing and grouping the components of Figure
1.2 into a perspective that identifies the research areas and foci of the dissertation. Figure 1.3 has
horizontal boxes that contain the main research foci of this dissertation and vertical boxes that span

across multiple foci.

The five horizontal boxes are: Architectural Blueprints that contain the different options for
architectural option for connecting clients and systems with FSICC that was shown in the upper
left portion of Figure 1.2; Unified Cloud Computing Access Control Model with boxes for Schema
Definitions, Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting
Definitions; Access Control Models for the ability to control services via RBAC, MAC, and DAC
as discussed for FSICC's security requirements in Section 1.3 and that was shown in the middle of
Figure 1.2; GSP (Global Security Policy) Generation and GAPI (Global API) Generation for

generating the security policy from multiple systems to make global APIs available to clients

15

what’s showing in the lower portion of Figure 1.2; and, Global Security Policy and Global API
Utilization and Security Enforcement that utilizes security interceptors that was shown in the
bottom of Figure 1.2 to allow/deny clients from access global services of FSICC. The security
requirements introduced in Section 1.3 are represented by the upper right vertical box SECURITY
REQUIREMENTS in Figure 1.3 that spans two horizontal boxes: Unified Cloud Computing
Access Control Model and Access Control Models. The cloud computing capabilities introduced
in Section 1.3 are represented by the lower right vertical box CLOUD COMPUTING
CAPABILITIES in Figure 1.3 that spans two horizontal boxes: Global Security Policy and Global

API Generation and Global Security Policy and Global API Utilization and Security Enforcement.

From a research perspective, the presented Framework for Secure and Interoperable Cloud
Computing that was shown in Figure 1.2 has the following four expected contributions (EC-A,
EC-B, EC-C, and EC-D) which are presented and discussed using the security requirements and
cloud computing capabilities of Section 1.3 and Figures 1.2 and 1.3. The expected contributions

are also highlighted in the horizontal and vertical boxes of Figure 1.3.

EC-A: Architectural Blueprints for Supporting FSICC: This contribution facilitates the
interoperability and information exchange of clients and systems and presents a collection
of three architectural blueprints (i.e., Basic Architecture, Alternative Architecture, and
Radical Architecture) for the design and development of integration framework (IFMWK)
servers utilizing a standard integration framework (e.g., FHIR in the healthcare domain)
that enable the integration between systems with applications. This was shown in the upper
half (left) of Figure 1.2. The architectural blueprints are represented as the first horizontal
box Architectural Blueprints in Figure 1.3 and includes three main boxes for:

Interoperability Issues, Integration Options, and Integration Blueprints. Each blueprint is

16

based on the location that IFMWK servers can be placed with respect to the components
of the application (Ul, API, Server) or a HIT system in order to define and design the

necessary infrastructure to facilitate the exchange of information via IFMWK.

EC-B: An Integrated RBAC, MAC, and DAC Model for Cloud Computing: This
contribution involves a Unified Cloud Computing Access Control model (UCCACM) for
the FSICC that provides a single view of global services to applications (i.e., clients) and
allows those global services to be authorized according to RBAC, MAC, and DAC policies.
The UCCAC model is represented by the second horizontal box Unified Cloud Computing
Access Control Model in Figure 1.3 that includes five main boxes for: Schema Definitions,
Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting
Definitions. The contribution will include a set of formal definitions for RBAC, MAC, and
DAC access control models that specifies, in detail, the way that: each system can register
its services and security policies; and, a security engineer can define a set of global RBAC,
MAC, and/or DAC policies on a unified set of global cloud services. The UCCAC model

basically provides formal definitions for the main components of Figure 1.2.

EC-C: Security Mapping/Enforcement Algorithms and SSEP: The Security
Mapping/Enforcement Algorithms aspect of this expected contribution is realized within
the horizontal box near the bottom of Figure 1.3, labeled GSP (Global Security Policy)
Generation and GAPI (Global API) Generation which includes Security Policies and
Services Registration, Global Services Generation, and Global Security Policy Generation.

This SOA-based security engineering process (SSEP) aspect of this expected contribution

17

for FSICC that can be utilized to combine security policies (that can be RBAC, MAC or
DAC) from different systems into one global security policy, in which SSEP also includes
a process for security enforcement code generation. This was shown in the upper right half
of Figure 1.2. A portion of the SSEP is human assisted in order to reconcile naming issues
of roles, mapping sensitivity levels, etc., that are integrated from multiple clients and
systems. Once the policies are successfully mapped, all of the security enforcement code
can be automatically generated by algorithms. The SSEP for FSICC is represented by the
left vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 that spans all of
the five horizontal boxes: Architectural Blueprints, Unified Cloud Computing Access
Control Model, Access Control Models, Global Security Policy and Global API
Generation, and Global Security Policy and Global API Utilization and Security

Enforcement.

EC-D: Dynamic Enforcement via Intercepting Process: This contribution involves a
set of programmatic mechanisms that are able to intercept a service call from a client app
to an API in order to perform appropriate security enforcement checks. This was shown
in the bottom of Figure 1.2. In Figure 1.3, these security interceptors are represented within
the last horizontal box Global Security Policy and Global API Utilization and Security
Enforcement in Figure 1.3, and the Security Enforcement via Interceptors box in Figure
1.2. Interceptors include: a RBAC Interceptor that is able to determine at runtime if the
requested API call on a global service can be executed for a specific user with a specific
role; a MAC Interceptor that is able to determine at runtime if the requested API call on a

global service can be executed for a user with a clearance and limited by if the services is

18

read or write; and a DAC Interceptor that is able to determine at runtime if the requested

API call on a global service can be executed for a specific user with a delegated

role/service/clearance.

Throughout the remainder of the dissertation, these expected contributions (EC-A, EC-B, EC-C,

and EC-D) will be high-lighted when relevant.

SOA-BASED SECURITY ENGINEERING (EC-C)

Architectural Blueprints (EC-A)

Interoperability Issues —® [ntegration Options — Integration Blueprints

l Unified Cloud Computing Access Control Model (EC-B) l

Schema » Enterprise ' Policy » FSICC s Intercepting
Definition Definition {Definition Definition | Definition

Access Control Models (EC-B)

4

=
5]
=]
£5
=
EZ
235
PR
£
-
w

Role-based Access Mandatory Access Discretionary Access
Control (RBAC) Control (MAC) Control (DAC)

GSP Generation and GAPI Generation (EC-C)

4

Securit__d Puli.cies a{nd Global Services i Global Ser.'uriFy Policy |
Services Registration Generation | Generation

l GSP and GAPI Utilization and Security Enforcement (EC-D) l

~
=3
z=g
g2
=
JB5°
;CJ

Utilization Rc.qucsts Utilization R'cqucsts Sccu'rity Enforcement
Constructing Processing via Tnterceptors

Legend:
GSP Global Security Policy GAPIL Global API(Services)

Figure 1.3. High-Level View of FSICC Research Areas and Foci.

1.6 Research Progress to Date

In support of the presented Framework for Secure and Interoperable Cloud Computing, a

number of articles have been published:

19

e Baihan, M., Sanchez, Y., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. (2018). A
Blueprint for Designing and Developing M-Health Applications for Diverse Stakeholders
Utilizing FHIR. In R. Rajkumar (Ed.), Contemporary Applications of Mobile Computing
in Healthcare Settings (pp. 85-124). Hershey, PA: I1GI Global.

e Baihan, M., and Demurjian, S. (2017). A Framework for Secure and Interoperable Cloud
Computing. In Research Advances in Cloud Computing, S. Chaudhary (ed.), Springer.

e Baihan, M., Demurjian, S., Rivera Sanchez, Y., Toris, A., Franzis, A., Onofrio, A., Cheng,
B., and Agresta, T. (2017). Role-Based Access Control for Cloud Computing Realized
within HAPI FHIR. Proceedings of 16th International Conference on WWW/INTERNET

2017 (ICWI 2017), October 2017.

Other published or submitted articles:

e Rivera Sanchez, Y., Demurjian, S., and Baihan, M. (2017). Achieving RBAC & MAC on
RESTTful APIs for Mobile Apps using FHIR. In The 5th IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering.

e Ziminski, T. B., Demurjian, S. A., Sanzi, E., Baihan, M., and Agresta, T. (2017). An
Architectural Solution for Health Information Exchange. In International Journal of User-
Driven Healthcare (IJUDH), 6(1), 65-103.

e Rivera Sanchez, Y., Demurjian, S., and Baihan, M. (2017). A Service-Based RBAC &
MAC Approach Incorporated into the Fast Healthcare Interoperable Resources (FHIR)
standard. Submitted to The Digital Communications and Networks Journal, special issue

on The Security, Privacy, and Digital Forensics of Mobile Networks and Mobile Cloud.

20

1.7 Dissertation Outline

The remainder of the dissertation has seven chapters. In Chapter 2, we review background
on: cloud computing and its main technologies; RBAC, MAC, and DAC models that are utilized
to enforce authorization on cloud services; application programming interfaces (APIs); and, the
Fast Health Interoperable Resources (FHIR) standard and its HAPI FHIR implementation. In
Chapter 3, we present and explain four security requirements and three cloud computing
capabilities for FSICC that both simplifies and enables client access via global resources via
standardized system APIs. Chapter 4 defines a Unified Cloud Computing Access Control model
(UCCACM) for RBAC, MAC, and DAC access control for a cloud setting; this addresses
Contribution EC-B: An Integrated RBAC, MAC, and DAC Model for Cloud Computing. In
Chapter 5, we present a set of blueprints for the design and development of IFMWK servers in
which an application can interact with multiple HIT systems via IFMWK through the design,
implementation, and usage of IFMWK servers. The architectural blueprints consist of three main
architectural integration options: Basic Architecture, Alternative Architecture, and Radical
Architecture; this addresses Contribution EC-A: Architectural Blueprints for Supporting FSICC.
Chapter 6 has two main parts. The first part presents a set of algorithms for generating the global
security policy of FSICC; this partially addresses Contribution EC-C: Security
Mapping/Enforcement Algorithms and SSEP by focusing on Security Mapping/Enforcement
Algorithms. The second part introduces and discusses three security interceptors for RBAC,
MAC, and DAC via a number of checks and an algorithmic approach for each interceptor; this
addresses Contribution EC-D: Dynamic Enforcement via Intercepting Process. Chapter 7
introduces and discusses an SOA-based security engineering process for FSICC that is intended

to help security engineers of systems and clients, on one side, and the security engineer of FSICC,

21

on the other side, to establish and maintain secure interoperable services via RBAC, MAC, and
DAC; this partially addresses Contribution EC-C: Security Mapping/Enforcement Algorithms
and SSEP by focusing on SSEP. Finally, Chapter 8 summarizes the contributions of the

dissertation and discusses future work.

22

Chapter 2
Background

This chapter provides background material on the main concepts and topics that support the
discussion and explanation in the remainder of this dissertation. Section 2.1 presents the cloud
computing concept and underlying application programming interfaces (APIs), and discusses
the main technologies behind cloud computing with an emphasis on the service-oriented
architecture (SOA) technology that underlies the cloud service model. Section 2.2 reviews the
three classic access control approaches: role-based access control (RBAC) (Ferraiolo, Sandhu,
Gavrila, Kuhn, & Chandramouli, 2001), discretionary access control (DAC) (Dittrich, Hartig, &
Pfefferle, 1988), and mandatory access control (MAC) (Bell & La Padula, 1976). Section 2.3
introduces and explains the Fast Health Interoperable Resources (FHIR) standard with an
emphasis on the FHIR Resources and reviews the HL7 Application Programming Interface FHIR
(HAPI-FHIR) which is one popular reference implementation of the FHIR standard. Section 2.4

introduces and presents a sample healthcare scenario utilized throughout this dissertation.

2.1 Cloud Computing and APIs

Cloud computing has emerged as a de facto approach throughout society, commercial,
governmental sectors, and research/academic communities. The National Institute of Standards
and Technology (NIST) (Mell & Grance, 2011) defines: “Cloud computing is a model for
enabling convenient, on-demand network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal management effort or
service provider interaction.” Historically, cloud computing emerged from the evolution of

existing technologies (Zhang, Cheng, & Boutaba, 2010), such as service-oriented architecture,

23

that are combined in a certain way to provide a new business model. Service-oriented
architecture (SOA) (IBM, 2015) is a model for designing systems in which the focus is around
offering services for different consumers. An SOA implementation, such as the web services
standard, could adopt the eXtensible Markup Language (XML) as an SOA approach that enables
systems to provide and consume services in a common manner without the need to use a specific
programming language or operating system.

This facilitates services integration. Service suppliers define and publish services for use by
consumers. Cloud services are provided and delivered based on the cloud service model
(Microsoft.com, 2016) by leveraging concepts from SOA. In the cloud service model in Figure
2.1, there are three main components: Cloud Service Registry, Cloud Service Supplier, and Cloud
Service Consumer. The Cloud Service Registry component maintains information on available
cloud services. The Cloud Service Supplier component publishes services to the Cloud Service
Registry. The Cloud Service Consumer component discovers services from Cloud Service Registry
and consumes them. Cloud services are the APIs that define the way that cloud consumers can
access and utilize cloud-computing resources such as software.

Cloud computing utilizes an Application Programming Interface (API) to support the definition
of services. An API requires a set of inputs via an HTTP request to generate a response in a
specific format such as the Extensible Markup Language (XML), the JavaScript Object Notation
(JSON), etc., based on the inputs. In cloud computing, the cloud services are the APIs that define
the way that cloud consumers can access and utilize cloud-computing resources such as software.
Some benefits of creating an API are: (1) data can be transferred from one system to another system
easily and smoothly; (2) an API can be called and processed by almost any programming language

that can be different from the programming language of the actual system implementation; and,

24

(3) an API can be utilized to encourage external developers to add new features or to enhance
current features of a system. An API can be designed using web services such as: Representational
State Transfer (REST) (Fielding, 2000), Simple Object Access Protocol (SOAP) (Microsoft Inc.,
2016), etc. Any API designed based using the REST protocol is called a RESTful API, which is
defined as a set of definitions for methods of the Back-end system. A RESTful API utilizes a
Hypertext Transfer Protocol (HTTP) request to interact with the API consumers and the back-end
system (Rouse, 2014). RESTful requests are frequently referred to as CRUD, which is short for
Create, Read, Update, and Delete functions. CRUD operations from an HTTP perspective are
typically defined as: GET to retrieves data; PUT or POST to insert data; POST, PUT, or PATCH
to update data; and, DELETE to remove data. RESTful APIs have become a dominant choice for

designing and implementing cloud services.

P \
Ml e 3
S Cloud S'erwce x/:.)
S Registry (-
S
]
((/ \3 Bind y
Cloud Service Cloud Service
Supplier Consumer

Figure 2.1. Cloud Service Model.

2.2 Access Control Models

Access control models have gained wide acceptance in computing, traditionally in controlling
access to data in objects that are in a database or a repository. The three classic approaches are:
role-based access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001),

discretionary access control (DAC) (Dittrich, Hartig, & Pfefferle, 1988), and mandatory access

25

control (MAC) (Bell & La Padula, 1976). RBAC provides an efficient way to manage consumers,
users of a system, by utilizing the concept of role in which each role can be authorized to access a
sub-set of the available cloud services and each consumer is assigned one or more suitable roles.
The RBAC model as shown in Figure 2.2 consists of three main components: elements that describe
the different components; constraints that can be defined on the elements; and, relations that exist
between the various elements.

There are five main elements in RBAC: objects that represent functionality for an application;
operations that are defined on objects; permissions that are the allowed operations on the different
objects; roles that represent a set of responsibilities for a user of the application to capture the
defined permissions; and, users that are assigned to a role during a session of an application. RBAC
supports a number of constraints that can be defined to restrict a user playing a specific role. Finally,
RBAC elements can be organized into relations: a role-user relation to assign users to roles; a role-
permission relation to assign permissions to roles; a role-session relation to assign sessions to roles;
a user-session relation to assign users to sessions; an operation-object relation to assign objects to
operations; and, a role-role relation to define a role hierarchy. Moreover, the role-role relations
form a partial order and are represented using an isa role hierarchy based on generalization
(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001). That is, any role that is located
higher up in the hierarchy, is a more general role than roles lower in the role hierarchy. As a
result, a non-root role inherits all of the permissions authorized to the roles above, namely, the
ancestors. In addition, some roles in the role hierarchy are abstract roles in which no users will
be assigned to such roles. For example, in healthcare, a physician role can be at a higher level
than a private physician role, which inherits all of the permissions authorized to the physician

role; in such a role hierarchy, the physician role is a more general role.

26

User_sessions Session_roles

Figure 2.2. RBAC Model.

When cloud services need to access very sensitive information such as patient data that needs
to be more strongly controlled than other parts of the patient data, MAC can be employed to control
access to services using the concept of a sensitivity level, which is a security label that can be
assigned to an object or a user to indicate the importance of such service or user. In MAC, sensitivity
levels are assigned to subjects (clearance) and objects (classification) with the permissions for the
subject to read and/or write an object dependent on the relationship between clearance (assigned to
users) and classifications (assigned to objects). MAC typically is modeled using four sensitivity
levels which are hierarchically ordered from most to least secure: Top Secret (TS) < Secret (S) <
Confidential (C) < Unclassified (U); this is referred to as the multi-level security model (MLS).
These terms are defined in the U.S. classification of information systems in a Presidential Executive
Order (National Archives, 1982):

“(1) "Top Secret" shall be applied to information, the unauthorized disclosure of which
reasonably could be expected to cause exceptionally grave damage to the national security.

(2) "Secret" shall be applied to information, the unauthorized disclosure of which reasonably
could be expected to cause serious damage to the national security.

(3) "Confidential” shall be applied to information, the unauthorized disclosure of which

reasonably could be expected to cause damage to the national security.”

27

In MAC, the central authority maintains a classification (CLS) for each object and a
clearance (CLR) for each user in the system. The MAC model (Bell & La Padula, 1976) also has
a set of properties, namely, Simple Security (SS), Simple Integrity (SI), Liberal* (L*), and Strict*
(S*) that has both Read and Write capabilities. Such properties are defined to determine under which
conditions a user with a CLR level can read or write a given data item with a CLS level. First, the
SS property (or read-down, no read-up) is the permission to read an object that has an equal or
lower CLS level. That is, a user is allowed to read an object with a CLS level equal to or lower than
their CLR level, but not those objects with a higher CLS level. Second, the SI property (or write-
down, no write-up) is the permission to write an object that has an equal or lower CLS levels. That
is, a user can write an object of equal or lower CLS level when compared to their CLR level, but
not to those objects with a higher CLS levels. Third, the L* property (or write-up, no write-down)
is the permission to write an object that has an equal or greater CLS level (the opposite of SI). Forth,
S* Write property (or write equal) is the permission to write an object that only has an equal CLS
level. Finally, the S* Read property (or read equal) is the permission to read an object that only has
an equal CLS level. From a definition and management perspective, an Security engineer of a
system would set the CLR level of users following the predefined sensitivity levels (e.g., TS, S, C,
and U) to establish the levels for both users and objects. These levels are then augmented on a user-
by-user basis by assigning the ability to read an object (via SS or S* Read properties) and the ability
to write an object (via Sl, L*, or S* Write properties).

To explain the read/write properties, assume that there is an object O; with a confidential
classification; an object O, with a top secret classification; a user U; with a top secret clearance,

with SS read property and Sl write property chosen for that user. Assume another user Uz with a

28

secret clearance with SS read property and Sl write property chosen for this user. In this setting, Uy

can read and write Oy and O, while U, can only read and write Oz, as shown in Figure 2.3.

Clear: TS @v Class: C
~—
- ~_
Clear: S @;’ Class: TS

Figure 2.3. An Example of MAC.

However, the four sensitivity levels typically used in MAC are insufficient to classify data in
some complex areas such as healthcare. For this reason, a number of healthcare-based sensitivity
level sets have been proposed in the literature. Two main works are: the HL7 v3 standard
confidentiality labels (Health Level 7., 2014); and a proposed healthcare multi-level security
labeling system (Demurjian, Sanzi, Agresta, & Yasnoff, 2018). In the first work, the HL7
organization introduced the HL7 v3 standard which contains a definition for a set of confidentiality
labels that is defined to accurately classify healthcare related data. Specifically, the HL7 v3 standard
defines six confidentiality labels: U — unrestricted, L — low, M — moderate, N — normal, R —
restricted, and V — very restricted; these six levels replace the four traditional sensitivity levels of
MAC. Figure 2.4 presents the HL7 v3 confidentiality labels with a definition and examples for each
confidentiality label, taken from (http://www.hl7.org/documentcenter/public_temp DFF235EF-
1C23-BA17-
0CB382AT77F4391FB/standards/vocabulary/vocabulary_tables/infrastructure/vocabulary/vs_Conf
identiality.html). Note that these confidentiality labels indicate the type of healthcare related data

that needs to be protected and are different from the typical four sensitivity levels of MAC.

29

U unrestricted This indicates that the information is not classified as sensitive,
Examples: Includes publicly available information, e.g., business name, phone, email or physical address.

L low The information requires protection to maintain low sensitivity.
Examples: Includes anonymized, pseudonymized, or non-personally identifiable information such as HIPAA limited data
sets. Low information might need to be accessed by a wide range of administrative staff to manage the subject of care’s
access to health services.

M moderate Thiz is moderately sensitive information, which presents moderate risk of harm if disclosed without authorization.

Examples: Includes allergies of non-sensitive nature used inform food service; health information a patient authorizes to
be used for marketing, released to a bank for a health credit card or savings account; or information in persenal health
record systems that are not governed under health privacy laws. Less sensitive information might need to be accessed by
a wider range of personnel not all of whom are actively caring for the patient (e.g. radiclogy staff).

N normal This information is typical, non-stigmatizing health information, which presents typical risk of harm if disclosed without
autheorization,

Examples: In the US, this includes what HIPAA identifies as the minimum necessary protected health information (PHI)
given a covered purpose of use (treatment, payment, or operations). Includes typical, non-stigmatizing health information
disclosed in an application for health, workers compensation, disability, or life insurance. Default for normal dinical care
access (i.e. most clinical staff directly caring for the patient should be able to access nearly all of the EHR). Maps to
normal confidentiality for treatment information but not to ancillary care, payment and operations.

R restricted This is highly sensitive, potentially stigmatizing information, which presents a high risk to the information subject if
disclosed without autherization.

Examples: In the US, this includes what HIPAA identifies as the minimum necessary protected health information (FHI)
given a covered purpose of use (treatment, payment, or operations). Includes typical, mon-stigmatizing heslth information
disclosed in an application for health, workers compensation, disability, or life insurance. Default for normal dinical care
access (i.e. most clinical staff directly caring for the patient should be able to access nearly all of the EHR).

V very This information is extremely sensitive and likely stigmatizing health information that presents a very high risk if disclosed
restricted without autherization. This informatien must be kept in the highest confidence.

Examples: Includes information about a victim of abuse, patient requested information sensitivity, and taboo subjects
relating to health status that must be discussed with the patient by an attending provider before sharing with the patient.
May also include information held under "legal lock” or attorney-client pnvilege. May not disclose this information except
as directed by the information custodian, who may be the information subject.

Figure 2.4. Confidentiality Labels from HL7 Release 3 Standard.
In the second work, Demurjian et al., (Demurjian, Sanzi, Agresta, & Yasnoff, 2018) proposed
a multi-level security labeling system for healthcare domain which has five healthcare sensitivity
levels (0-4) and within each level there are different categories of data that will be given to different
users based on their need as Figure 2.5 shows, where Level 0 is the least secure, while Level 4 is
the most secure. Specifically:
= Level 0 (Basic Information) is public data available to anyone without control in which
data in this level can be categorized into: 0-DM for basic demographics such as city and
state of residence, 0-C for general health condition, and O-FT for information related to
tracking fitness data.
= Level 1 (Medical History Data) contains data that has some restrictions in which data in
this level can be categorized into: 1-DM for detailed demographic data, 1-MHx for

history of the patient and his/her family, 1-FHx for more sensitive patient-collected

30

fitness data, 1-IM for immunizations, and 1-MH-Hx for mental health history of the
patient.

Level 2 (Summary Clinical Data) contains clinical data in which data in this level can be
categorized into: 2-Rx for prescription, 2-OTC for over-the-counter medications, 2-ALL
for allergies, 2-Dx for medical diagnoses and problem list, 2-PL for plan for treatment or
other related instructions, 2-MH-Dx for mental health, separate medical diagnoses and
problem list, and 2-MH-PL for plan for treatment or other related instructions.

Level 3 (Detailed Clinical Data) is for use by medical providers in which data in this
level can be categorized into: 3-RP for reports from imaging studies (CT Scans, MRIs,
X-Rays, etc.), 3-IM for the images from the studies, 3-EN for detailed information on
each medical visit, 3-LB for laboratory tests ordered, dates, and results including
surveillance data, 3-MH-EN for information about mental health encounters, 3-SR for
surveillance data, and 3-FT for clinical data from fitness devices.

Level 4 (Sensitive Clinical Data) contains sensitive information on a patient that is used
by medical specialists in which data in this level can be categorized into: 4-G for data on
genetics, 4-SA for substance abuse, 4-MH for mental health psychotherapy notes, 4-RH

for reproductive health, and 4-DV for domestic violence.

31

Level 4 — Sensitive Clinical Data

1-G 4-SA 4-MH 4-RH 4-DV
Genetic Substance Mental Reproductive Domestic
Data Abuse Health Health Violence
Level 3 — Detailed Clinical Data
3-RP 3-IM 3-EN 3-LB 3-MH-EN 3-FT 3-SR
Reports Images Enc Notes Lab Tests/Results Enc Notes FT-7,9,12,2526 SR-1-3,7-9
SR-24,25

Level 2 — Summary Clinical Data

2-Rx 2-0OTC 2-ALL 2-Dx 2-PL 2-MH-Dx 2-MH-PL
RxMeds OTC Allergies Diagnoses & Plan Diagnoses & Plan
Meds Problem List Problem List
SR-4-6,22.23
Level 1 — Medical History Data
1-FT 1-DM 1-MHx 1-FHx 1-IM 1-MH-Hx
Day/MonthOB Demographics Medical Hx Family Hx Immunizations History

FT-8,13,14,18,21,22 SR-10,12,17,19-21

Level 0 — Basic Information

0-FT 0-DM 0-C
FT-1-6,10,11,15-17, YOB,City,State,Zip,Gender,Race Overall health cond.
19.20,23.24 SR-11,13-16,18 (good, fair, serious, etc.)

Figure 2.5. A Multi-Level Healthcare Sensitivity Levels.

DAC can be defined as an access control mechanism that can restrict operations (e.g., read,
write, execute) on objects (or services) based on the identity of subjects (users) and/or groups to
which they belong, as shown in a Figure 2.6. The word “discretionary” in DAC indicates that a
subject with a certain access permission is capable of passing that permission on to any other subject
so that the delegated user may utilize the delegated permission. A subject is also called an original
user which means that the user was assigned the role directly in the security definition process. A
role that is assigned to an original user is referred to as an original role, in such an original role has
original role permissions. An original user may also be assigned a clearance level if they are
assigned mandatory access capabilities which is reference to as an original clearance. An original
user may have delegation of authority which allows the original user to pass on the original role to
a delegated user who acquires all of the capabilities of the original uses role. When the original

role is passed to the delegated user, is it is referred to as the delegated role of that delegated user.

32

The delegated role in turn has delegated role permissions, and if the original user had an original
clearance, it too could be passed to the delegated user as a delegated clearance. Two other important
concepts for DAC are delegation authority and pass on delegation of authority. Delegation authority
is the authority given to an original user that allows the original user to delegate his or her role to a
delegated user. Pass-on delegation authority, PODA, is the authority given to an original user or
delegated user that allows that user to delegate on a useful set of definitions and rules for delegation
which underlie a proposed delegation language (Zhang, L., Ahn, J., & Chu, T., 2001).

In a cloud computing setting, DAC can offer the ability of a consumer of the cloud services to
enable another consumer to utilize all or a sub-set of the consumer’s authorized cloud services, that
are assigned based a role or a clearance, through a delegation of authority. DAC, as shown in Figure
2.6, utilizes the concept of delegation to pass privileges among users to delegate both authority and
permissions to another user. For example, in healthcare, a physician Charles that is leaving the
office on the weekend could delegate his responsibilities (e.g., patients) to the on-call physician
Lois who will be covering any queries from patients. Charles can delegate all of his permissions
and also the ability to further delegate those permissions beyond the original scope. For example,
if the on-call physician Lois has to attend to an emergency, she could then employ user-directed
delegation to delegate the permissions passed to her by Charles to another user Thomas.

Administrative-directed delegation has a security engineer to control delegation.

Figure 2.6. DAC Model.

Traditionally, RBAC, DAC, and MAC models define permissions over objects and operations

of a system. However, the work in this dissertation is focused on a Framework for Secure and

33

Interoperable Cloud Computing (FSICC) which involves the definition of Global Services and the
need to define security policies that allow the ability to determine which user can access which
service at which times. The work in this dissertation is very cloud-computing focused with an
emphasis on services, and since we are interested in supporting Access Control in FSICC the
RBAC, DAC, and MAC models need to be upgraded, extended, and modified so that permissions
can be defined against cloud services. Such an extension to access control will provide us with the
ability to: specify which role can access which cloud service at which time and under which
situation thereby supporting RBAC; define a classification of each cloud service and a clearance
for each user/client in order to control which Services can be accessed thereby supporting MAC;
and, delegate a cloud service from one user to another user thereby supporting DAC. This allows
the FSICC to authorize a mobile, web, and desktop applications, by roles/clearance, to access cloud
services.
2.3 FHIR and HAPI FHIR

The Fast Health Interoperable Resources (FHIR) is a health integration standard developed by
the Health Level Seven International (HL7) organization (Health Level 7, Fast Health
Interoperable Resources, 2016). FHIR is primarily structured around the concept of FHIR
resources (Health Level 7, Fast Health Interoperable Resources list, 2016) which are the data
elements and associated RESTful APIs that can be leveraged for exchanging healthcare
information, particularly between mobile applications and HIT systems. FHIR Resources, the
main building block in FHIR, can hold any type of information that FHIR deals with to be
exchanged from one health information technology system to another via RESTful API services
that utilize with an XML or JSON format. Resources are broadly classified into different

categories: Clinical Findings; Patient Problems, Allergies, and Adverse Events; Patient History;

34

Suggested Physician Orders; and, Interdisciplinary Care Planning. To illustrate, sample FHIR
resources from the 119 currently defined (and always increasing) are: the Practitioner resource to
track medical providers (physicians, nurses, office staff, etc.); the Patient resource can track
demographic data on patients; the RelatedPerson resource to track parents/guardians; the
FamilyMemberHistory for basic information on a family medical history; the Condition resource
to track the relevant medical conditions; the Observations resource to track symptoms, and other
medical observations; and, the Encounter/EpisodeOfCare resources to track the different times that
changes to patient data occur based on a visit (Encounter) or action at the visit (EpisodeofCare).
FHIR Resources can be utilized by HIT systems and applications for different purposes. For
example, an mHealth application may use the Patient resource to store and exchange information
about patients back and forth with different HIT systems. All FHIR resources have five main
properties in common: a unique URL for identification purposes; common metadata; a human
readable section; a number of predefined data elements; and, an extension element that enables a
system to add new data elements. FHIR provides four main equivalent representation formats: the
Unified Modeling Language (UML) format for a diagrammatic representation of the resource; an
XML schema that is subset of the HL7 schema for the resource; a JSON representation to facilitate
a programmatic exchange via a RESTful APP; and, a Turtle resource definition format (RDF) to
assist the process of bridging between operational data exchange within formal knowledge
processing systems. Figure 2.7 shows an example of a FHIR Patient resource represented in the
JSON format. FHIR supports a number of REST API services to enable a system to retrieve and
modify data in the Resources. The main five services are: Create to add a new instance of a
resource; Read to retrieve an existing instance of a resource; Update to manipulate data in an

existing instance of a resource; Delete to remove an existing instance of a resource; and, Search to

35

retrieve all existing instances of a resource. The first four services are similar to CRUD, while the

fifth service for search is intended to allow repositories to be accessed.

{ "resourceType": "Patient",

"id" ;1"

"meta" : { "versionid" : "1", }

"text": { "status": "generated", },

"identifier": [{ "label": "OpenEMR",
"system": "http://www.healthorg.org/openemr”,
"value": "10“ }],

"name": [{"family": "Levin",

"given": "John" }],
"gender": {"text": "Male" },
"birthDate": "1985-02-12" }
Figure 2.7. An Example of Patient Resource in JSON.

One popular reference implementation of the FHIR standard is the HL7 Application
Programming Interface FHIR (HAPI-FHIR) (HAPI community, 2016) which is an open-source
Java-based library of the FHIR standard. Following the FHIR standard, the HAPI-FHIR library
provides a HAPI-FHIR server that can be used in front of a system. Figure 2.8 shows the HAPI-
FHIR server architecture that consists of three components: HAPI ResfulServer, Resource
Providers, and, the Back-end system. The HAPI ResfulServer is a Servlet that a developer utilizes
to: create instances of user-defined resource providers; and, specify the Servlet path. A Resource
Provider is a class that represents one FHIR resource (e.g., Patient) that has a number of empty
annotated methods for CRUD verbs that a developer needs to implement. These empty annotated
methods are utilized to to parse HTTP requests and convert the transferred data to/from FHIR
format/Back-end System format, and to interact with the Back-end System. The Back-end System
is a Health IT system (HIT) that handles the Resource Providers requests to retrieve or modify the

actual Electronic Health Records (EHR).

36

\a
" HAPI RestfulServer (Servlet)

Your Resource Providers

o LE-.g

: acken A
—=
Backend
System

Figure 2.8. The HAPI-FHIR Server Architecture (HAPI community, 2016).

The HAPI-FHIR library also provides a general HAPI server interceptor (University Health
Network, 2016) which is programmatic approach that allows a developer to examine each
incoming HTTP request to add useful features to the HAPI ResfulServer such as authentication,
authorization, auditing, logging, etc. The general HAPI interceptor, the InterceptorAdapter class,
defines a number of methods that enable a developer to interact with the incoming HTTP requests
at different points of the request lifetime. As Figure 2.9 shows, these methods are:
incomingRequestPreProcessed that is invoked before performing any action to the request;
incomingRequestPostProcessed that is invoked after determining the request type which
classifying the request; incomingRequestPreHandled which is invoked before sending the request
to the Resource provider; and, outgoingResponse which is invoked after the request is handled by
the appropriate Resource provider. Each of these methods must returns either true, to continue
processing the request, or false, to abort and reject the request. Moreover, a developer may extend
the InterceptorAdapter class and implement the needed methods and register the extended class in

the HAPI ResfulServer.

37

http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/InterceptorAdapter.html
http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/InterceptorAdapter.html

Resource/Plain

RSEeSrJ—:_L:l Interceptor Provider
IMethod
L]]
HTTP Request ! :
—_— ;]
. 1 incomingRequestPreProcessed

]
1 return true; u
Dty T
1
1
.
1
1

incomingRequestPostProcessed

]

1

1

1

1

1

1

1

1

1

1

1

1

1
return frue; I
G e 1
1

1

1

1

1

1

1

1
o

1
Requestis parsed :
L]

1
incomingRequestPreHandled

)

i L

] return;
__________________ -

i<

1 1

1 1 >

: : Requestis handled

R e e]

| I .

1 outgoingResponse .

] L 1

1 return frue; I
/@ _ HTTP Response < 7777777777777~ J—J '
Q ponse | |
\ S

] 1 1

1

Figure 2.9. The Methods of HAPI Interceptor (University Health Network, 2016).

2.4 A Healthcare Scenario

To assist in explaining FSICC and all of its components and features in this dissertation, this
section presents a healthcare scenario that has two mHealth client apps, the Connecticut Concussion
Tracker (CT?) and ShareMyHealth, and two HIT systems, the open electronic health record,
OpenEMR (OpenEMR, 2016) and MyGoogle. To begin, CT? is a mHealth app, as shown in
Figure 2.10 for Android and iOS devices, which is developed as a joint effort between the
Departments of Physiology and Neurobiology, and Computer Science & Engineering at the
University of Connecticut, in collaboration with faculty in the Schools of Nursing and Medicine.
The CT? app allows the user (e.g., parent/guardian, coach, athletic trainer, school nurse) to report
and manage the concussion incidents of students from kindergarten through high school. The CT?

app uses an HIT system (i.e., OpenEMR) as a back-end system to maintain patients-related data.

38

The CT? contains seven tabs starting from the top left and continuing to the second row in Figure
2.10 (‘Login’, ‘List’, ‘Student’, ‘Cause’, ‘Symptoms’, ‘Follow-up’, and ‘Return’) where: the
‘Login’ tab allows the user to enter a concussion, to retrieve an open case, or to find a student by
name; the ‘List’ tab which contains the list of students the user has permission to view and, for each
student gives him/her the option to add a concussion or edit an existing one; the ‘Student’ tab allows
the user to input the student’s general information (e.g., name, birthdate, school, and the date of
concussion); the ‘Cause’ tab allows the user to specify how and where the concussion occurred; the
‘Symptoms’ tab allows users to record the symptoms the student had within 48 hours and other
pertinent data; the ‘Follow-up’ tab allows users to record the status of the student over time; and,
the ‘Return’ tab allows users to specify when the student can return to school activities. Both
versions (Android and iOS) of CT? utilize an API (services) to manage CT? data as given in Table
2.1. Services CTy and CT> are used to: add/modify a student concussion status, and, retrieve such
status information, respectively. CT? utilizes CTs and CT4 services to: retrieve all information about
a student, and create/update new student information, respectively. Services CTs and CTe provide
ways for the CT? to: create/update a student follow-up summary, and retrieve follow-up
information, respectively. Finally, by calling services CT; and CTs, CT? can: retrieve all
information about a student concussion, and add/modify new student concussion information,
respectively. CT? defines four roles (see Table 2.2): Coach, Nurse, Trainer, and Parent. All of the
four roles can access: all GET services CT2, CTs, CTe, and CT7; and two PUT services CTa, except
Coach, and CTs. Moreover, Trainer has an additional PUT service (CTs) while Nurse has access to

all PUT services.

39

Welcome to the Connecticut
Tracker

P
) (VI——
Folow-uie

Immediate Symptoms:

If Loss of Canciousness, How Lang:

Min.

Sec:

Were Parents Notfied
within 24 Hours?

List
Students Information:

Lingering Symptoms:

It Other,
Please Specify:

All Symptoms Resolved in:

It Sport:

Others/Details:

Contact Mechanism:

Impact Location on Head:

Haad Gaar Usage:

Days Absent from School

Schedule/Activity
Modification:

504 Ptan Required:

Special Instructions:

H

School

Removed From Activity:

Sport

Removed By:
Further Details:

Madical Imaging

Concussion Assessment Date of Return
to Learn:
Additional Comments

ks

Figure 2.10. CT? Mobile Application - iOS Version Interceptor.

ShareMyHealth is an mHealth app as shown in Figure 2.11 developed by a team of
undergraduate students at the University of Connecticut, for Android and iOS devices.
ShareMyHealth provides patients with a means to manage and share their fitness data across
multiple systems. Patients can gather data from multiple sources (e.g., MyGoogle, OpenEMR, etc.)
that can then be made available to medical providers. The first row of Figure 2.11 contains four
screens: Welcome for the initial opening of the app; Sign In with Google to authenticate the user
credentials to access his/her fitness data, such as Google Fit API (via MyGoogle system); Initial
Access for the user to define fitness data; and Home where the user sees their basic information
and can access their “Health” and “Settings” pages. The second row of Figure 2.11 contains four
screens: Health View for viewing information on steps, calories, weight, and height; and a Settings

page to view setting such as name, gender, date of birth, etc.; and, a second setting page that to

40

modify information. Pressing the “View Steps” button utilizes the user’s Google API Token to
pull their data from the Google Fit cloud (via MyGoogle system). When a user presses the “Sync
Steps” button, the app packages the data into Google Fit via MyGoogle system which in turns
sends the information into OpenEMR via OpenEMR API. Settings such as name, gender, etc., are

updated by direct calls from ShareMyHealth to OpenEMR.

- Verizon ¥ 22T PM w4 R o005c Verizon ¥ 2™ EREE
ale GCavile Hi, John C. Doe!
S’éamﬂylicallh

Wadical Record

Goog
Signin

- apdr
H -

Figure 2.11. ShareMyHealth Mobile Application.

ShareMyHealth has access to a RESTful APl (SMH: to SMHs services, see Table 2.3).
Moreover, the ShareMyHealth AP makes calls (via MyGoogle system) to: Google OAuth API
that prompts the current user (patient) to allow ShareMyHealth access to the user’s Google Fit
data; Google REST Fit API to access measurement data (step, height, weight, and calorie); and
OpenEMR API to read and update patient data. Specifically, ShareMyHealth utilizes services
SMH; and SMH; to add/update and read a patient’s measurements data, respectively.
ShareMyHealth calls services SMH3z and SMH4 to add/update and read a patient’s demographic
information. In addition, service SMHs is used to grant ShareMyHealth app (using its Token) an
access to the user (patient) fitness data. ShareMyHealth has two roles (see Table 2.4): Patient, that
has access to all five services, and Physician, that has access to all services but SMH; and SMHs.

41

Table 2.1. CT? Services.

Sid Service Name

CT: PUT /CT2/concussion/status statusINFO

CT; GET /CT2/concussion/status statusIiD

CTs GET /CT2/student studentID

CT, PUT /CT2/student/add studentINFO

CTs PUT /CT2/followup/add followupINFO

CTs GET /CT2/followups followuplD

CT- GET /CT2/concussion/student studentlD

CTs PUT /CT2/concussions/fadd concussionsINFO

Table 2.2. CT? Roles.

Rid Role Service Name
CTr: | Coach CT,, CTs, CTe—CTs
CTr2 | Nurse CT:1—-CTs
CTrs | Parent CT2—CT4, CTs—CTs
CTrs | Trainer CT,-CTs

Table 2.3. ShareMyHealth Services.

Sid Service Name

SMH; PUT /SMH/newMeasure/mID mINFO

SMH; GET /SMH/Measures/mID

SMH; | PUT /SMH/newPatient/pID pINFO

SMH; | GET /SMH/Patients/pID

SMHs PUT /SMH/Users/ulD Token

Table 2.4. ShareMyHealth Roles.

Rid Role Service Name
SMHRl Patient SMHl — SMHs
SMHg; | Physician SMH,, SMH4, SMHs

OpenEMR (OpenEMR, 2016) is an open source Electronic Health Record (EHR) system and
a medical practice management app that can be utilized by any health/medical organization around
the world. OpenEMR is a Meaningful Use Stage 2 certified (Himss.org., 2016) and is expected to
be a Meaningful Use Stage 3 EHR certified soon (Himss.org., 2016). In addition to a web-based
interface, OpenEMR has a RESTful API from which we have selected a subset of eight services
as shown in Table 2.5. Services OEMR: and OEMR: enable an app (or a user via an app) to
add/update a note about a patient, and, retrieve information about such a note, respectively. An
app may utilize services OEMR3 and OEMR; to: retrieve patient information, and, create/update
new patient information, respectively. Services OEMRs and OEMRs provide ways for an app to:
create/update a patient follow-up summary, and, retrieve information about such a follow-up,

respectively.

Finally, by calling services OEMR7 and OEMRs, an app can: retrieve patient condition
information, and, add/modify new patient condition information, respectively. Moreover, the
OpenEMR system defines eight roles (see Table 2.6): Patient, Physician, Coach, Nurse, Trainer,
Parent, CT2, and MyGoogle in which the last two roles are designed for CT?, and MyGoogle,
respectively. The roles Nurse, Trainer, and Parent can access: all GET services OEMR2, OEMR3,
OEMRs, and OEMRYy7; and two PUT services OEMR4 and OEMRs. Moreover, Trainer has an
additional PUT service (OEMRs) while Nurse and Physician roles have access to all PUT services.

In addition, the Physician can only access OEMR2 and OEMR; services, while the Patient role can

43

access the services OEMR1, OEMR2, OEMR3 and OEMR4. The Coach role can access all services

except OEMR1, OEMR;, and OEMRs. Moreover, the MyGoogle role is restricted to access

OEMR; and OEMR: services, while the CT? role can access all services.

Table 2.5. OpenEMR Services.

Sid Service Name
OEMR; | PUT /OpenEMR/updatepatientnotes noteINFO
OEMR; | GET /OpenEMR/getnotes notelD
OEMR; | GET /OpenEMR/getallpatients patientID
OEMR; | PUT /OpenEMR/addpatient patientINFO
OEMRs | PUT /OpenEMR/addvisit visitINFO
OEMRs | GET /OpenEMR/getvisits visitID
OEMR; | GET /OpenEMR/getlist conditionID
OEMRg | PUT /OpenEMR/addlist conditionINFO
Table 2.6. OpenEMR Roles.
Rid Role Service Name
OEMRRg: | Physician OEMR;, OEMR4
OEMRRg: | Patient OEMR; — OEMR,
OEMRRs | Coach OEMR;, OEMR3, OEMRs — OEMRg
OEMRR4 | Nurse OEMR; — OEMRg
OEMRRgs | Parent OEMR; — OEMR4, OEMRgs — OEMRg
OEMRRgs | Trainer OEMR; — OEMRs
OEMRg7 | CT? OEMR; — OEMRs
OEMRge | MyGoogle | OEMR;, OEMR:

44

Table 2.7. MyGoogle Services.

Sid Service Name

MG, PUT /MyGoogle/fitness/dataSources/dsID dsINFO

MG, GET /MyGoogle/fitness/dataSources/dsID

MG; PUT /MyGoogle/newPatient/pID pINFO

MG, GET /MyGoogle/Patients/pID

MGs PUT /MyGoogle/Users/ulD Token

Table 2.8. MyGoogle Roles.

Rid Role Service Name

MGr: | SMH MG: - MGs

Finally, MyGoogle is a HIT that we developed to act as a middle layer between the
ShareMyHealth app and the two HIT systems: OpenEMR and Google Fit (Google, 2017), which
is an open HIT system for sharing and managing patient fitness data (e.qg., step, height, weight, and
calorie) that is maintained in the Google Fitness Store (in the cloud) that enables multiple apps to
access such data via Google Fit APIs. Google Fit consists of two APIs: Fit REST API to add/update
patient fitness data; and, Google OAuth API to authenticate apps to access users’ fitness data.
MyGoogle HIT has an API (Table 2.7) to access OpenEMR API and Google Fit APIs and acts on
behalf of apps. The MyGoogle API consists of five services. MG1 and MG: enable an app to
add/modify and read users’ fitness data from/into Google Fitness Store via Fit REST API,
respectively. MGz and MG4 add/update and read a patient’s demographic information from/into
OpenEMR via OpenEMR API, respectively. MGs utilizes Google OAuth API to authenticate an

app (using its Token) to access a user’ fitness data. In addition, MyGoogle defines one role, i.e.,

45

SMH, (see Table 2.8) which is designed to be assigned to ShareMyHealth app. The SMH role can

access all MyGoogle API services.

46

Chapter 3
Security Requirements and Cloud Computing Capabilities for
FSICC

As we discussed earlier in Section 1.2, the healthcare domain is an emergent application for
cloud computing, in which the Meaningful Use Stage 3 guidelines recommend health information
technology (HIT) systems to provide cloud services that enable health-related data owners to access,
modify, and exchange data. This requires that mobile and desktop applications for patients and
medical providers obtain healthcare data from multiple HITs, which may be operating with
different paradigms (e.g., cloud services, programming services, web services), use different cloud
service providers, and employ different security/access control techniques. To address these issues,
this chapter presents the four Security Requirements and the three Cloud Computing Capabilities
that underlie and support FSICC. These four security requirements and three cloud computing
capabilities for FSICC simplifies and enables client access via global resources using standardized
system APIs. A security requirement represents what we consider to be the key security features
for supporting security in FSICC. The four security requirements are: Numerous and Varied Access
Control Models, Control Access to Cloud Services Using RBAC, Support Delegation of Cloud
Services Using DAC, and Control Access to Cloud Services Using MAC. A cloud computing
capability represents what we consider to be the critical characteristics for supporting cloud
computing in FSICC. The three cloud computing capabilities of FSICC are: Local Service
Registration and Mapping to Global Services, Local Security Policies Registration to Yield Global
Security Policy, and Global Registration, Authentication, Authorization, and Service Discovery for

Consumers. To understand the role of security requirements and cloud computing capabilities for

47

FSICC, we reexamine Figures 1.1 to 1.3 which also provides a more complete discussion of FSICC
and its functionality.

To begin, recall that Figure 1.1 from Chapter 1 presented the architecture of FSICC. The top
of Figure 1.1, had client Applications (Web, Mobile, and Desktop) which corresponds to the Clients
box in the Involved Parties component that was at the top of Figure 1.2 from Chapter 1. These client
applications are interested in utilizing a subset of the available global services and global security
policies of FSICC. FSICC was shown in the middle of Figure 1.1 and had eight boxes that interact
with one another. The Clients Registry box, at the top of FSICC, is for clients to register themselves
into the FSICC. The next lower box is the Global Authentication box that is responsible for
verifying clients’ identities before allowing them to be authorized to access global services of
FSICC. The next box down is the RBAC/MAC/DAC interceptors box that is in charge of
allowing/denying clients requests to access global services of FSICC based on roles/clearances. The
Clients Registry, the Global Authentication, and the RBAC/MAC/DAC interceptors boxes refer to
the Global Policy Enforcement component that was shown in Figure 1.2. The Global Services box,
in the middle of FSICC, is the set of global services that mirror services of registered systems and
are available to interested clients to utilize.

The next lower box is the Global Security Policy box which has the global security policy that
defines what set of global services each client can access based on RBAC, MAC, and DAC models.
The two next boxes are: the Security Policy Mapping box that is responsible for combining a set of
security policies from different systems and generating the global security policy; and, the Services
Mapping box which combines a set of services from systems into one set of global services. The
System Registry, at the bottom of FSICC, enables systems to provide their services and security

policies. The System Registry, the Services Mapping, the Global Security Policy, and the Global

48

Services boxes refer to the Generation of Global Policy and Services component that was shown in
Figure 1.2. The Security Policy Mapping box refers to Security Policy Mapping component that
was shown in Figure 1.2. The bottom of Figure 1.1 had Web, Programming, and Cloud
Applications, which corresponds to the Systems box in the Involved Parties component at the top
of Figure 1.2, that are willing to provide their services and security policies into the FSICC. Security
requirements have influence on security policy and mapping boxes as well as the RBAC, MAC,
and DAC models and interceptors. Cloud computing capabilities have influence on the services,
service mapping, and system registry boxes.

In addition, FSICC that was given in Figure 1.2 is an infrastructure for cloud computing that
provides a global policy authorization and enforcement mechanism and is capable of supporting
different access control models such as RBAC, DAC, and MAC in the Access Control Models
component in the middle of the figure. This is the main component where security requirements
have an impact. FSICC organizes and globally manages the cloud services, APIs, and web services
from multiple service suppliers (systems) via the Systems box in the Involved Parties component
at the top of Figure 1.1 into a set of global services in the Global Services box in the Generation of
Global Policy and Services component in Figure 1.2. These are the main components where cloud
computing capabilities have an impact. This allows the mobile, web, and desktop applications
clients in the Clients box in the Involved Parties component at the top of Figure 1.2 to be used to
easily discover and utilize them in order to interact with multiple constituent systems with a
common interface. Representative technologies to support the implementation of FSICC include:
the HAPI FHIR reference model (Health Level 7, Fast Health Interoperable Resources, 2016) from
Section 2.3; the DIRECT project (The Direct Project, 2016) that allows for the sharing of

information with best practices that have trust and privacy considerations; and, the HEART WG

49

project (OpenID, 2016) that provides privacy and security specifications for authorization and
access to health-related RESTful APIs.

Furthermore, Figure 1.3 from Chapter 1 presented a high-level view of the FSICC’s main
aspects. Figure 1.3 has five horizontal boxes for each main aspect of FSICC and vertical boxes that
span across the horizontal boxes. The five horizontal boxes are: Architectural Blueprints box that
contain the different options for architectural option for connecting clients and systems with FSICC;
Unified Cloud Computing Access Control Model box with boxes for Schema Definitions, Enterprise
Definitions, Policy Definitions, FSICC Definitions, and Intercepting Definitions; Access Control
Models box for the ability to control services via RBAC, MAC, and DAC; GSP (Global Security
Policy) Generation and GAPI (Global API) Generation box for generating the security policy from
multiple systems to make global APIs available to clients; and, Global Security Policy and Global
API Utilization and Security Enforcement box that utilizes security interceptors to allow/deny
clients from access global services of FSICC. Moreover, the security requirements for FSICC,
which will be described in this chapter, are represented in Figure 1.3 by the upper right vertical box
SECURITY REQUIREMENTS that spans two horizontal boxes: Unified Cloud Computing Access
Control Model and Access Control Models. The three cloud computing capabilities, which will be
described in this chapter, are represented in Figure 1.3 by the lower right vertical box CLOUD
COMPUTING CAPABILITIES that spans two horizontal boxes: Global Security Policy and
Global API Generation, and Global Security Policy and Global API Utilization and Security
Enforcement.

The presentation in the remainder of this chapter is in four parts. Section 3.1 defines and explains
the four security requirements for FSICC: Numerous and Varied Access Control Models, Control

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and

50

Control Access to Cloud Services Using MAC. Section 3.2 details the three cloud computing
capabilities with associated components of the FSICC: Local Service Registration and Mapping to
Global Services; Local Security Policies Registration to Yield Global Security Policy; and, Global
Registration, Authentication, Authorization, and Service Discover for Consumers. Section 3.3
discusses related research in cloud computing as compared with FSICC. Note that the work in this

chapter has been published in (Baihan, M. & Demurjian, S., 2017).

3.1 FSICC Security Requirements
This section discusses four security requirements for FSICC, exploring the impact of the
SECURITY REQUIREMENTS vertical box in Figure 1.3. A security requirement represents what
we consider to be the key security features for supporting security in FSICC. To facilitate this
discussion, there must be a shift in focus on the concept of RBAC, DAC, and MAC permissions on
objects and operations to one that assigns permissions to individual cloud services. For RBAC, this
corresponds to the global services being assigned to different users by role. For MAC, global
services are assigned classifications (TS, S, C, U) with a user having a clearance and performing
domination checks on classification vs. clearance for every service invocation. For DAC, this
corresponds to the ability to delegate services from user to user by role and potentially limited by
classification/clearance checks if MAC has defined. The remainder of this section presents and
discusses the four security requirements: Numerous and Varied Access Control Models, Control
Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and
Control Access to Cloud Services Using MAC.
Security Requirement 1 - Numerous and Varied Access Control Models. The first security

requirement acknowledges that the constituent systems (i.e., service suppliers) that wish to publish

51

access to cloud, API, or web services may have access control and security protocols that are varied.
Thus, FSICC must be capable of supporting a wide range of access control models such as Role-
based Access Control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001),
Mandatory Access Control (MAC) (Bell & La Padula, 1976), Discretionary Access Control (DAC)
(Dittrich, Hartig, & Pfefferle, 1988), Attribute-based Access Control (ABAC) (Yuan, E. & Tong,
J., 2005), Usage Access Control (UCON) (Sandhu, R. & Park, J. , 2003), etc. This leads to Security
Requirement 1 - Numerous and Varied Access Control Models and is represented in the Access
Control Models horizontal box in Figure 1.3.

From the healthcare scenario of Section 2.4, we know that each HIT (MyGoogle and OpenEMR)
supports RBAC as illustrated in Tables 2.6 and 2.8. These systems also support DAC to allow
permissions (services) to be delegated from a physician Charles (user) to the on-call physician Lois
(user) after hours and weekends. FSICC, as was shown in Figure 1.1, enables these systems to
register their security policies (as shown for MyGoogle and OpenEMR in Tables 2.6 and 2.8) into
FSICC via the System Registry box in Figure 1.1. This is the Registration and Services Mapping
box of the Generation of Global Policy and Services component in Figure 1.2, in which security
policies are combined via the Security Policy Mapping box in Figure 1.1, Security Policy Mapping
component in Figure 1.2, to generate the global security policy via the Global Security Policy box
in Figure 1.1, Global Policy box of the Generation of Global Policy and Services component in
Figure 1.2. Specifically, the global security policy should define, for each role, the global services
assigned by role. This was accomplished as discussed by mapping permissions to call systems’
services (cloud, web, and API) from Table 2.5 and 2.7 into permissions to call global cloud services.

Security Requirement 2 - Control Access to Cloud Services Using RBAC. The second

security requirement involves the large number of services that are published in the cloud by

52

multiple systems which are to utilized by numerous consumers, meaning that the usage of such
services is expected to be high, which needs to be controlled so that only certain consumers at
different times can have access to specific services. Thus, when all of the system services are
collected into a set of global cloud services, the resulting set can be controlled based on roles, as
shown in the RBAC box of the Access Control Models horizontal box in Figure 1.3, in which each
role can be assigned on a consumer-by-consumer basis. This leads to Security Requirement 2-
Control Access to Cloud Services Using RBAC where global services can be assigned by role, see
the Role-based Access Control box of the Access Control Models component in Figure 1.2.

To illustrate, the global security policy may define nine global roles: GPhysician (global
physician), GPatient (global patient), GCoach (global coach), GNurse (global nurse), GParent
(global parent), and GTrainer (global trainer) would be assigned to individuals that are utilizing
applications, while GCT? (global CT?), GMyGoogle (global MyGoogle), and GSMH (global SMH)
represent the roles of the systems and applications that may need to utilize services. The GPhysician
role is used by a doctor to access his/her patients’ electric information and to provide better
healthcare services for his/her patients. The GPatient role is used by a patient to access his/her
digital information and to request different healthcare services. The GCoach role is used by a coach
to report a health incident (e.g., concussion) at an athletic event with very limited information on
the patient. The GNurse role is used by a nurse to manage a patient’s health incident from its
occurrence to its resolution. The GParent role is used by a parent to both report a health incident on
his/her child while attending the athletic event or to track the current status of his/her children that
have health incidents. The GTrainer role is used by a trainer to do a limited preliminary assessment
if a health incident occurs at a training event. Moreover, The GCT? application role is used by a

CT? application to gather information related to patients’ concussion incidents. The GMyGoogle

53

system role is used by the MyGoogle system to gather medical and fitness information of patients.
Finally, The GSMH application role is used by the ShareMyHealth application to retrieve/add
fitness information of patients. In addition, there is also a need to work on the ability to constrain
the invocation of a service based on values.

Security Requirement 3 - Support Delegation of Cloud Services Using DAC. Users of
applications, which consume services, may need: to collaborate with other users to accomplish a
better job; and/or to have other users to perform some of their tasks on behalf of them in case of
emergency. This leads to Security Requirement 3 - Support Delegation of Cloud Services Using
DAC where FSICC supports the ability to delegate cloud services from one user to another, see the
Discretionary Access Control box of the Access Control Models component in Figure 1.2 and the
DAC box of the Access Control Models horizontal box in Figure 1.3. For example, consider a user
Charles with a GPhysician role is leaving the office for the day or the weekend and is interested in
delegating his/her authority to access the services for his patient to the on-call physician Lois who
will be covering night and weekend inquiries from patients. In this case, Lois will then be utilizing
amobile application to access patient data that is available via OpenEMR services (see Section 2.4).
Charles could delegate all or some of his OpenEMR services to Lois. For example, Charles may
delegate global services that involve patient data. If the delegation for Charles to Lois is during the
week (Monday to Thursday) it could go into effect at 5pm (close of business) and be revoked at
9am (start of business). For weekend calls the delegation would go from Friday at 5pm to Monday
at lam.

Security Requirement 4 - Control Access to Cloud Services Using MAC. Many services may
access very sensitive information such as patient data that needs to be more strongly controlled than

other parts of the patient data. For example, mental health data is limited to a psychiatrist or

54

psychologist and not available to a family medical provider. This leads to Security Requirement 4 -
Control Access to Cloud Services Using MAC as shown in the Mandatory access control (MAC)
box of the Access Control Models horizontal box in Figure 1.3. This supports the definitions and
usage of classifications (for services) and clearances (for users) which are instrumental in
controlling access to a service and the data passed by a service. Thus, to further restrict access to
cloud services, FSICC supports MAC in addition to RBAC and DAC, has shown in the Mandatory
Access Control box of the Access Control Models component in Figure 1.2. That is, all of the global
services may be labeled with classification levels, and all users may be labeled with clearance levels.
Specifically, each of the global cloud services in FSICC can all be labeled with a classification level

(ie., TS, S, C,or V).

3.2 FSICC Cloud Computing Capabilities

The set of security requirements in Section 3.1 leads to the definitions of a set of three FSICC
cloud computing capabilities, as shown in the CLOUD COMPUTING CAPABILITIES vertical
box in Figure 1.3, that bring together all of the concept and focus on the process and components
of FSICC. Cloud Computing Capability 1, Local Service Registration and Mapping to Global
Services, is for systems to register local services which are then mapped to a global set. Cloud
Computing Capability 2, Local Security Policies Registration to Yield Global Security Policy, is
for systems to register their local security policy which is utilized to generate a global security
policy. Cloud Computing Capability 3, Global Registration, Authentication, Authorization, and
Service Discover for Consumers, is to support the process of a consumer's (mobile, web, or desktop

app) registration to discover and be authenticated and then authorized to utilize services. The

55

remainder of this section discusses these three cloud computing capabilities using the healthcare
scenario of Section 2.4.

Cloud Computing Capability 1 - Local Service Registration and Mapping to Global
Services. This cloud computing capability of FSICC enables a service supplier (system) to register
its cloud, programming, and/or web services as indicated by the arrows at the bottom of Figure 1.1,
as shown in the Security Policies and Services Registration and Global Services Generation boxes
of the GSP Generation and GAPI Generation horizontal box in Figure 1.3. Referring to column 2
in Tables 2.5 and 2.7, OpenEMR registers the cloud services OEMR; to OEMRg and MyGoogle
registers its services MGy to MGs. For eexampl, OpenEMR registers OEMR: with name
OpenEMR, URI (/OpenEMR/updatepatientnotes), PUT CRUD method, and input variable
noteINFO; MyGoogle registers MG with name MyGoogle, URI
(/MyGoogle/fitness/datasource/dsID), PUT CRUD method, and input variable dsINFO.

The end result of the registration is that all of the cloud services, API calls, and web services of
systems are transitioned to a set of equivalent global services. For each registered cloud, API, or
web service, a global cloud service is created with appropriate components that mirror the signature
of the system service named as a new global cloud service, which was represented in Figure 1.1 by
the Services Mapping and Global Services boxes that car spawns to the Generation of Global Policy
and Services component in Figure 1.2. For example, the service OEMR; can be mapped to a new
global service in FSICC. Note that the existence of OEMR1 is no longer visible to the mobile, cloud
or web application; this is true for all of the converted services/API calls. The end result is a unified
set of global cloud services to be presented to the mobile, web, or desktop applications as supported
by the Services Mapping box of FSICC as was shown in Figure 1.1, which maintains a mapping

list of system to global cloud services.

56

Cloud Computing Capability 2 - Local Security Policies Registration to Yield Global
Security Policy. This cloud computing capability allows HIT systems to register their local security
policies (roles and permissions to APIs) that can then be combined to yield a global security policy,
as shown in the Security Policies and Services Registration and Global Security Policy Generation
boxes of the GSP Generation and GAPI Generation horizontal box in Figure 1.3. The local policy
registration process of this cloud computing capability enables a service supplier (system) to specify
the security requirements or policy to access its services (cloud, web, and API) as indicated by the
arrows at the bottom of Figure 1.1. After the systems register the local services, as given in Tables
2.5 and 2.7, they can then register the local security policies that are available in their systems as
given in Tables 2.6 and 2.8. This includes for a particular HIT system: the defined roles, the
permissions that are defined on each local service, the permissions authorized to each role, the
classifications for each service, and the allowable delegations.

As local security policies are registered over time, a security administrator or policy engineer is
responsible to design and evolve an appropriate global security policy that would encompass all of
the local security requirements (from all different access control models) and provides a unified,
global view for the applications. This is supported in FSICC as shown in Figure 1.1 by the Security
Policy Mapping and Global Security Policy boxes, which correspond to the Security Policy
Mapping component and the Generation of Global Policy and Services component, respectively, in
Figure 1.2. The security engineer defines a global security policy over global cloud services based
on defined local roles and associated permissions in the bottom of Figure 1.1 to define a set of
global roles and their permissions. This is accomplished by: defining global roles, assigning global
permissions to global cloud services, authorizing global roles to global permissions, and defining

constraints over these assignments. In the healthcare scenario, the global roles can be defined and

57

evolved over time by considering and unifying all of the particular roles of the originally registered
HIT systems (such as MyGoogle and OpenEMR) and new systems that are added over time.

Specifically, for the healthcare scenario from Section 2.4, the RBAC permissions as given by
the roles and API services in Tables 2.6 and 2.8 are mapped to a global set of roles and the global
API services, respectively. For example, for the patient role in Table 2.6, the permissions to the
OpenEMR services OEMR:-OEMRs are mapped into the permissions to equivalent global cloud
services that are the authorized global services to the global patient role GPatient. Similarly, for the
SMH role in Table 2.8, the permissions to the MyGoogle services MG1-MGs are mapped into the
permissions to equivalent global cloud services that are the authorized global services to the global
SMH role GSMH. Essentially, at a high-level, the authorized permissions of the Patient role of
OpenEMR and the SMH role of MyGoogle are mapped into new global roles GPatient (global
patient) and GSMH (global SMH), respectively. The security engineer needs to make similar
mapping and define new global roles (GPhysician, GCoach, GNurse, GParent, and GTrainer) for
the other local roles and the other systems that are also functioning as roles (GCT? and
GMyGoogle). These processes are supported by the Security Policy Mapping box of FSICC as was
hownn in Figure 1.1. A mapping list of local to global security policies is maintained by the Global
Security Policy box of FSICC.

Cloud Computing Capability 3 - Global Registration, Authentication, Authorization, and
Service Discover for Consumers. This cloud computing capability enables services consumers
(mobile, web, or desktop app) to register themselves, which then allows application users to
discover and be authenticated and then authorized to utilize services by role, as shown in the GSP
and GAPI Utilization and Security Enforcement horizontal box in Figure 1.3. The intent is to

provide access for application users to the global roles and the authorized global services. The

58

global registration activity of this cloud computing capability is supported by the Client Registry
box of FSICC as shown in Figure 1.1, which corresponds to the Registration and Services Mapping
box of the Generation of Global Policy and Services component in Figure 1.2. The global
authentication activity of this cloud computing capability is supported by the Global Authentication
box of FSICC as was shown in Figure 1.1, which corresponds to the Global Authentication box of
the Global Policy Enforcement component in Figure 1.2. The global authorization activity of this
cloud computing capability is supported by the RBAC/MAC/DAC Interceptors box of FSICC as
shown in Figure 1.1, which corresponds to the RBAC Interceptor, MAC Interceptor, and DAC
Interceptor boxes of the Global Policy Enforcement component in Figure 1.2. The service discovery
activity of this cloud computing capability is supported by the Global Services box of FSICC as
was shown in Figure 1.1, which corresponds to the Global Services box of the Generation of Global
Policy and Services component in Figure 1.2. Note that we distinguish between consumers that are
designing and deploying new mobile, web or desktop applications vs. ones that are retrofitting an
existing mobile, web, or desktop application that may have its own access control (RBAC, DAC,
and/or MAC) and cloud/web/programming APIs.

For consumers designing and deploying a new application, we can extend the healthcare scenario
of Section 2.4 with a mobile application for the patient and a desktop EHR application for the
physician, where all of these applications have been developed using the global cloud services. To
accomplish this development, each application must register with FSICC in order to gain the
relevant global roles to be authorized to each application user. A user of the mobile application for
the patient would be authorized to the GPatient global role and limited to the services authorized to
GPatient. The physician using the EHR desktop application would be authorized to the GPhysician

global role and limited to the services authorized to GPhysician. For the HIT systems, MyGoogle

59

would have the GMyGoogle global role with its authorized global services. Note that OpenEMR
services are not called by the consumers’ applications instead MyGoogle services utilize OpenEMR
services to store/retrieve patient demographic data (see the healthcare scenario of Section 2.4).

Cloud Computing Capability 3 is also utilized to allow a consumer of a new application to
discover global cloud services for the healthcare scenario. This is accomplished by utilizing a
service discovery request to the Global Services box of FSICC as seen in Figure 1.1. The discovery
request returns a list of all available services by GSid, name, and description. Upon successful
discovery, the service consumer (application) can then submit a request to utilize one or more
discovered services. The application can send a list of the global services requested and its
identification information to the Global Authentication box of FSICC which authenticates the
application. Then, the RBAC/MAC/DAC Interceptors box of FSICC authorizes the appropriate
global user role associated with the requested services, and then forwards the service access request
along with the application’s global role to the Global Security Policy box of FSICC. The Global
Security Policy box then authorizes the requested global services only if the application’s global
role is authorized to access such a service. As a result of calling a global cloud service, the mapped
local service or API call of a local HIT system is invoked. Note that the HIT system allows the call
only as long as the application’s global role is mapped to an equivalent local role that is authorized
to access such a system service.

For example, suppose that the mobile application for the patient sends a service discovery
request to the Global Services box of FSICC to find a service to return the demographic information
for a patient. The discovery sends back the id of the required global service, name (e.g., GET
[FSICC/Patient/id), and a description such as calls the OEMR3 of the OpenEMR system. Based on

this, the patient mobile application can send a global service access request along with the

60

application identification information to the Global Authentication box. This box can then
authenticate the application and forward the request to the RBAC/MAC/DAC Interceptors box that
can authorize the application to utilize the GPatient role and forward the global service access
request along with the GPatient role to the Global Security Policy box. The Global Security Policy
box enables the patient mobile application to access the requested global service, since the GPatient
global role can access that global service. Then, the Global Security Policy box retrieves the patient
role, of OpenEMR system, which is mapped to the GPatient global role. As a result of calling the
authorized global service, an access request to the mapped system service OEMR3 along with the
patient local role is sent to the OpenEMR system. The OpenEMR system allows the patient mobile
application to access the service OEMR3 since the patient local role is authorized to access OEMRa.

For consumers retrofitting an existing mobile, web, or desktop application, there is an extra layer
(i.e., the integration layer) of functionality that must be considered. Recall the CT? and
ShareMyHealth mHealth (SMH) applications from the healthcare example in Section 2.4. Each of
these applications has its own API to access its database. Suppose that the developer of SMH needs
to expand SMH capabilities in order to store/retrieve patients’ fitness and demographic information
from MyGoogle and OpenEMR (via MyGoogle) systems, respectively. Suppose also that the SMH
has already defined roles for patient and physician that impact the way that the app works for
different users in terms of the fitness and demographic data collected can be entered, viewed, and/or
edited. In order to make use of the global roles and services of FSICC, the existing SMH app needs
to be able to map its own app roles to appropriate global roles, and, programmatically link its API
so that it will be able to call the appropriate global services of MyGoogle. In order to support this
programmatic link, the SMH app may also operate in the role of a provider per cloud computing

capability 1 to define and register a new set of services for the SMH app that link its current API

61

services to the global services. This requires a similar process as described above to map from the

local SMH roles to the global roles.

3.3 Related Work in Cloud Computing

In this section, we present a number of related efforts in cloud computing, from both academic
and industrial communities, that are solving similar problems to FSICC, comparing and contrasting
their work to FSICC. The first effort (Buyya, Ranjan, & Calheiros, 2010) proposed a framework
named InterCloud for federating cloud services to manage the services of multiple cloud service
providers in which the framework allocates cloud services to the cloud consumers based on quality
of service (QoS) needs of the consumer. To accomplish this, the Cloud Broker, which is a
component of their framework, determines the most suitable cloud service provider based on the
cloud services preferences through the Cloud Exchange, which is another component of InterCloud.
Our use of global services in FSICC provides a one-stop shopping location for consumers which is
similar to InterCloud since both frameworks remove the consumers’ needs to search through many
cloud providers. Further, our work utilizes the global roles (and their assigned services by RBAC,
DAC, and MAC) in order to control which services each consumer is allowed to perform which is
different from their work that does not provide any security features to control access to the cloud
Services.

A second effort (Nair, Porwal, Dimitrakos, Ferrer, & Tordsson, 2010) introduced a framework
design for cloud services that supports features including: data confidentiality and integrity for
cloud service consumers; enable cloud service providers to publish cloud services that are unified
to the cloud service consumers; and, manage the published cloud services. Their framework allows

the cloud service providers to receive access requests from the framework without the knowledge

62

of the actual service consumer requesting such an access, and enforces access control over the
published cloud services. Their approach contrasts with our approach, particularly for the
healthcare domain, where the knowing of the identity of the consumer by the provider is vital to
restrict access to protected health information (PHI). Moreover, the main common features between
our framework and their framework are: unifying multiple services from different providers to the
consumers side, and controlling the unified services using access control means.

A third effort in (Tordsson, Montero, Moreno-Vozmediano, & Llor, 2012) proposed a cloud
broker that enables a heterogeneous set of cloud service providers, in which each provider may
require a different infrastructure to operate, to integrate with the cloud broker. Such a cloud broker
is capable of: optimizing placement of virtual infrastructures across variant clouds; and, hiding the
processes of deploying and managing the cloud services of the cloud providers. The proposed
broker utilizes a scheduling algorithm that manages the processes of cloud services deployment.
Our work on FSICC is similar to their effort, since our global roles and services effectively hide the
location of the local services providers which is similar to the cloud broker approach in hiding the
processes of deploying and managing the cloud services. Our work utilizes RBAC, DAC, and MAC
access control models to control which services each consumer can access which is different from
their work that does not provide any security features to control access to cloud services.

The fourth effort (Vordel, 2016), the VVordel Cloud Service Broker, supports integrating local
on-site applications with offsite cloud services via the Multi-Domain Registry, one main component
of Vordel. VVordel also provides monitoring, and management services. VVordel is located between
the cloud service providers and the cloud consumers referred to as organizations. An organization
may utilize VVordel broker to introduce a level of trust within the cloud application of such an

organization. The work on Vordel is similar to our efforts in FSICC since they map the services of

63

cloud providers to organizations’ applications via a Multi-Domain Registry and we map local
roles/services to global roles/services that offer RBAC, DAC, and MAC security. The main
difference between our and theirs is that they do not clearly explain the way the integrated services
in the Multi-Domain Registry are controlled in term of what cloud services each consumer is
restricted to access.

A fifth effort (Jamcracker, 2016), the JamCracker platform, unifies the processes of cloud
management and governance. Specifically, JamCracker provides a number of services including:
risk and policy compliance management; operation management; and, create, deliver, and multi-
cloud services management. JamCracker also allows cloud service providers to unify delivery and
management of private and public cloud application/services and distribute them to cloud service
consumers. JamCracker enables cloud service providers to publish their services and virtualized
applications along with security policies (only RBAC is supported) to control their services and
applications via the JamCracker Connect, one main component of the JamCracker platform. The
main similarities between our work on FSICCC and the JamCracker are both frameworks that unify
multiple services from different providers to the consumers side, and control the unified services
using access control means. However, while our framework supports controlling access to the
unified services using RBAC, MAC, and DAC, JamCracker only supports RBAC as an access
control mechanism.

A final effort (Amato, Di Martino, & Venticinque, 2012) proposed a cloud broker that acts as a
component that: manages the use, performance, and delivery of cloud services; and, mediates the
process of enabling cloud service consumers to access cloud services of service providers. This is
achieved by the proposed cloud broker utilizing an agent that dynamically identifies a set of cloud

services from various providers based on the service consumer requirements. The architecture of

64

the cloud broker agent is presented along with its implementation in (Amato & Venticinque, Multi-
objective decision support for bro-kering of cloud sla, 2013). Their effort is similar to our work on
FSICC since both works remove the consumers’ needs to search through many cloud providers.
However, their effort utilizes an agent-based approach to find one cloud provider that most suit the
needs of the cloud consumer, while FSICC unifies many services from multiple cloud providers to
be used by the cloud consumers. Moreover, while our framework supports controlling access to the
unified services using RBAC, MAC, and DAC, their effort does not provide any security features
to control access the cloud services.

The major difference between our work in FSICC and the aforementioned efforts is that their
focus is on solving portions of the problems that we are attempting to address in FSICC; none of
these efforts provides a comprehensive solution to the problem of securing and integrating cloud

and none-cloud services provided from different service provides.

65

Chapter 4
A Unified Cloud Computing Access Control Model (UCCACM) for
RBAC, MAC, and DAC

This chapter defines and explains a Unified Cloud Computing Access Control Model
(UCCACM) for RBAC, MAC, and DAC that is intended to upgrade these existing access control
models so that they are capable of defining permissions based on services. The model has been
motivated and influenced by the four main security requirements of FSICC as presented in Section
3.1. The first requirement, Numerous and Varied Access Control Models acknowledges that the
systems providing services to FSICC may have access control and security protocols that are
varied (i.e.,, RBAC, MAC, DAC, ABAC, etc.), which would require UCCACM to have broad
access control abilities. The second requirement, Control Access to Cloud Services Using RBAC,
offers one possible way to the availability of services to users by assigning roles that authorize to
access a sub-set of the available cloud services on a role by role basis. The third requirement,
Support Delegation of Cloud Services Using DAC, offers the ability for users of cloud services to
enable other consumers to utilize all or a sub-set of the user’s authorized cloud services in which
DAC can be utilized to keep a list of delegated services, along with authorized delegated users, in
which each user can delegate all or a sub-set of his/her authorized cloud services to another
consumer anytime. Finally, the fourth requirement, Control Access to Cloud Services Using MAC,
provides the ability users that need access to sensitive information in certain secure cloud services
to utilize MAC to label cloud services with sensitivity levels called classifications (e.g., Top Secret
(TS) < Secret (S) < Confidential (C) < Unclassified (U)) which can be made available to users that

are assigned clearances under appropriate with read and write properties as described in Section

66

2.3 of Chapter 2. These last three security requirements for RBAC, MAC, and DAC, are the
foundational capabilities that need to underlie UCCACM.

In support of these requirements, this chapter presents a Unified Cloud Computing Access
Control Model (UCCACM) for the FSICC in which UCCACM provides a set of details
definitions to cover all aspect of the four requirements above along with examples for each
definition. UCCACM also provides a single view of global services to applications and allows
those global services to be authorized according to RBAC (FSICC’s security requirement 2),
MAC (FSICC’s security requirement 4), and DAC (FSICC’s security requirement 3) policies;
this supports expected contribution EC-B: an Integrated RBAC, MAC, and DAC Model for
Cloud Computing from Section 1.5. Moreover, UCCACM is an access control model that
utilizes three main access control models (RBAC, MAC, and DAC) to define and enforce
security policies for both: clients/systems, and global resources. That is, each client/system
defines RBAC, MAC, and/or DAC security policies against its objects. Moreover, the security
policies for the global resources of FSICC are defined and enforced against global cloud
services of such global resources. UCCACM has a critical placement as a layer in the High-
Level View of FSICC Research Areas and Foci of Figure 1.3, that provides of capabilities and
functionalities that are necessary to support the Access Control Models in the next layer. These
two adjacent layers are influenced by the four security requirements.

The rest of this chapter provides formal definitions of UCCACM in eight sections. Section
4.1 presents a set of core definitions on schemas to support authorizing users to a set of schemas
based on roles and/or sensitivity levels. Section 4.2 provides core definitions on enterprise
application that include definitions for clients, systems, and types of clients and systems as part

of the enterprise application. Section 4.3 discusses core definitions on RBAC, MAC, and DAC

67

models that describe the way that such access control models can be modified to support the
four security requirements of FSICC. Section 4.4 describes advanced definitions on enterprise
applications in which the security aspects of RBAC, MAC, and DAC models are introduced
into clients and systems of any enterprise application. Section 4.5 has core definitions on global
resources and permissions by API in which definitions that describe what are global services
and the way that such global services are controlled via means of RBAC, MAC, and DAC are
provided. Section 4.6 presents advanced definitions on FSICC that describe the way that
services and security policies of different systems are mapped. Section 4.7 discusses core
definitions on security interceptors for RBAC, MAC, and DAC along with enforcement checks
that each security interceptor utilizes. Section 4.8 presents related work on access control for
cloud computing. Throughout the entire presentation of UCCACM, detailed examples will be
provided utilizing the healthcare scenario of section 2.4 Chapter 2. Note that the work in this

chapter has been published in (Baihan, M., et al., 2017).

4.1 Core Definitions on Schemas

To begin, Definitions 1 to 4 are adopted from work on adding RBAC, MAC, and DAC to
XML schemas (De La Rosa Algarin A. , 2014) (De La Rosa Algarin, Ziminski, Demurjian, &
Rivera Sanchez, 2014) that allowed XML schemas to be customized based on role and

classifications to customize what each user is authorized to see from instances of the schema.

Defn. 1: Anelement e=<¢,¢,,,: > IS defined as two-tuple that represents a single piece of a
data abstraction that describes one aspect of a data structure, where e, is the element’s

unique identifier, and €y,ye IS an element name.

68

Defn. 2: A schema (SC) is a data abstraction that represents the structure of a particular kind

of information, and is defined as a three-tuple SC=<SC,5C, e 5C; > where SC is a

schema’s unique identifier, SCy,c is a schema name, and SC; is a set of elements (as

defined in Defn. 1) that represent the schema.
Defn.3: Each schema, SC;, has a set of ju schema instances, sci, =< sci, sci....sci >, Where

Sci; =< SCi,,SCk, > in which scCi, is an element-value set of a schema for all elements in

each schema.
Defn. 4: Let o={read, insert, update, delete}, be the set of operations that can be performed

against an element (e) of a schema.

Example 4.1: A schema for the Patient resource can be represented as SC, =<1 Patient Paient. > where
Paient. ={<1,id >,< 2,name>,< 3, gender >,< 4,birthDate>}. A schema instance of SC,can be
represented as sci,=<lsci, > where sci, ={<id,7><name, Ali >,< gender,male >,

< birthDate,2005 —8 -7 >}.

4.2 Core Definitions on Enterprise Application
After establishing definitions for schemas and schemas’ elements that describe the way that

data in FSICC is organized to be exchanged from system to system or from system to client via
FSICC, in this section, we provide core definitions on main actors of FCISS that provide,
consume, and/or maintain such data using the defined schemas and schemas’ elements. These
actors form a concept of an enterprise application that includes clients, systems, and types of
clients and systems as part of the enterprise application. The next set of definitions, Definitions

5 to 8, are associated with a large-scale enterprise application that is comprised of clients and

69

systems. Specifically, the definition for enterprise application explains the Involved Parties
component of Figure 1.2. Furthermore, the definitions for clients and systems describe that
contents and types of Clients and Systems boxes of the Involved Parties component of Figure

1.2

Defn. 5 An Enterprise Application, ga—< ea,, EA.,,.. EA., EA., EA... >+ NAs aunique identifier

(EAp), name (EAnawme), sets of client applications (EAcs) and systems (EAss), and a set of
schemas (EAscs). EA, via FSICC, allows multiple clients (mobile, web, desktop) to interact

with multiple systems via APIs (cloud, web, programmatic).

Example 4.2: An enterprise application for health information exchange (EAHie) would allow
applications for patients, family members, medical providers, insurance companies, etc. (e.g.,
CT? and ShareMyHealth from Section 2.4), to interact with OpenEMR and MyGoogle (from
Section 2.4) via cloud, web, or programmatic APIs. These HITs utilize FHIR Resources, the
integration layer in Figure 1.1 from Chapter 1, (Health Level 7, Fast Health Interoperable
Resources list, 2016) which include schema representations in both XML and JSON. The

schemas defined in EAscs are used by each HIT system.

The inclusion of schemas as part of an EA allows for the modeling of the information utilized
in a cloud computing application to be represented. Many cloud computing applications utilize
cloud computing services that send/receive XML or JSON objects, which in turn based on

underlying schemas; this is true with FHIR and the API reference implementation. Thus, an EA

70

with schemas provides an actual link from the type of information and the APIs. Given example

4.2, definitions for client and system can be provided.

Defn. 6: A client in an EA is a mobile, web, or desktop application, top of Figure 1.1 from
Chapter 1, that includes, as part of its functionality, cloud-based services, web services, or
a programming API of services, and is interested in utilizing a subset of EAscs via available
cloud computing services. A client can be characterized based on the degree that it is a
consumer and/or a provider in a cloud, web, or programming service-based setting.
There are two different types of clients:
i A Pure Client is only a consumer of services.
ii. A Mixed Client is primarily a consumer of services and is also a provider

of a small number of services.

Defn. 7: A system, bottom of Figure 1.1 from Chapter 1, in an EA provides functionality for
use by clients via cloud-based services, web services, or a programming API, and is
interested in providing access to a subset of EAscs via its services or API. A system can
be characterized based on the degree that it is a consumer and/or a provider in a cloud,
web, or programming service-based setting. There are two different types of systems:

I A Pure System is only a provider of services.
ii. A Mixed System is primarily a provider of services and is also a consumer

of a small number of services.

71

Example 4.3: Recall the healthcare scenario from Section 2.4 and let us assume that the CT? client
does not provide services. Based on this assumption we can categorize the ShareMyHealth and
CT? client Apps; and OpenEMR and MyGoogle systems as follows:

CT? client App is a pure client, since it only utilizes services from OpenEMR system

- ShareMyHealth client App is a mixed client, since it utilizes services from MyGoogle
system and provides a number of services

- OpenEMR system is a pure system, since it only provides services

- MyGoogle system is a mixed system, since it provides services and utilizes services from

OpenEMR

4.3 Core Definitions on RBAC, MAC, and DAC for Roles/Users

After providing definitions on enterprise applications, clients, and systems, in this section, we
transition to describe the way that three main access control models RBAC, MAC, and DAC,
see RBAC, MAC, and DAC boxes of the Access Control Models component in Figure 1.2, can
be modified to enable the clients and systems in an enterprise application to utilize such access
control models to protect their services from unauthorized access. The next set of definitions,
Definitions 8 to 30, discuss the way that the FSICC security requirements in Section 3.1 from
Chapter 3 are supported in our work. Specifically, providing RBAC features for systems and
clients supports the security requirement 2 of FSICC: Control Access to Cloud Services Using
RBAC. Moreover, providing MAC features for systems and clients supports the security
requirement 4 of FSICC: Control Access to Cloud Services Using MAC. Finally, providing DAC
features for systems and clients supports the security requirement 3 of FSICC: Support Delegation

of Cloud Services Using DAC.

72

Defn.8: A role, r, is defined as a two-tuple r=<r,le > Where I5 is a role unique

identifier and Iy,,e is a role name.
Defn.9: Let r_,, ={r,r,....,r;} De defined as the set of j roles for a given client/system

where r, e R, and 1; =<, Myae, >

C/S

Defn. 10: In support of mandatory access control (FSICC’s security requirement 4), we
define a linearly-ordered set of sensitivity levels (U-unclassified < C-confidential < S-
secret < TS-top secret) with the ability to assign levels of clearances (CLR) to users/clients

and classifications (CLS) to schemas’ elements and services.

In support of mandatory access control, Definitions 1 and 2 are revised in order to define the

classification on each schema and each element of a schema.

Defn. 1: (V2) An element €=<€,6,e s > 1S defined as three-tuple element that represents
a single piece of a data abstraction that describes one aspect of a data structure, where e,

is the element’s unique identifier, €y,e IS an element name, and €. ¢ is the element

classification, as described in Defn. 10.

Defn. 2: (V2) A schema (SC) is a data abstraction that represents the structure of a particular

kind of information, and is defined as a four-tuple SC=<SC,,SC,z SC¢,SCys > where SC,
is a schema’s unique identifier, SCy,,c is a schema name, SC; is a set of elements (as

defined in Defn. 1v2) that represent the schema, and SC, is the schema classification

that is equal to the least secure of all of its constituent elements.

73

Given the V2 revised Defns. 1 and 2, the corresponding permissions can be defined for RBAC
and MAC on roles and users with Definitions 11 to 19 to present: the concept of a permission,
the way that permissions are associated with roles, the way that a user is defined with a clearance,
the way that a user assigned a role, and the way that different roles are related.

Defn. 11: A permission, p, is defined as a three-tuple p-<p ,p. ,p,> Where p, isa
permission unique identifier, py. is ID of the involved schema (Defn. 2v2), and p, is the

operation (Defn. 4).

Defn. 12: Arole permission, rp, is defined as a three-tuple rp=<rp,, p,.r, > Where p,,r,, are
the IDs of the involved permission (Defn. 11) and role (Defn. 8), respectively.

Defn. 13: Each role r has a role-permission set (RPS) RPS. ={rp,rp,...,rpJof role
permissions (Defn. 12).

Defn. 14: A user, u, is defined as three-tuple U=<U,Uyue U >, Where U is a user unique

identifier, Uy,ve IS a user name, and Ug is a user clearance (Defn. 10).
Defn. 15: Let u_, ={u,,u,....,u;} be defined as the set of j users for a given client/system,

where u; cU,,; andu; =<Up ,Uyaye, s Ucrr, > -

Cc/s
Defn. 16: Each user u; €U, s can be assigned a role r, « r_,, for a user role assignment
(ura),ura, =<uj,r, >, that signifies that a user is limited to playing that role and the

authorized permissions. Note that a user can be assigned multiple roles but only plays one
role in any session with a client/system.

Defn. 17: The user-role-assignment set (URAScs) for a client/system,

URAS. s ={ura,,ura,,...,ura, }is the set of all k user role assignments (Defn. 16), that

74

contains an entry for relevant user/role combinations that are applicable for RBAC in
support of any client/system.

Defn. 18: Each role r has a role-role set (RRS) RRS,.i = {ry,1y,..,7%} based on the isa role
hierarchy as described in Section 2.2.

Defn. 19: The role hierarchy (RHcss) for a client/system, RH /s = {RRS,1, RRS,2,.., RRS .k}

is the set of all k role-role sets (Defn. 18).

In support of discretionary access control (FSICC’s security requirement 3) and based on the
DAC concepts that were introduced in Section 2.2, we provide definitions 20 to 30 that
distinguish between the user who performs the delegation act referred to as an original user and
the user who acquires additional permissions based on a delegation act referred to as a delegated
user. These definitions also present the way that an original user is supported with different options
to perform the delegation (i.e., delegate role, delegate role permission, and delegate clearance).

Defn. 20: An original role, or, is a system or client role that is delegable.

Defn. 21: Anoriginal role permission, orp, is in the role-permission set (RPS) of a specific
original role or.

Defn. 22: An original clearance, oc, is a clearance (Defn. 10) in a system or client that is
delegable.

Defn. 23: An original user, ou, is a system or client user who assigned: an original role
or, in which ouis illegable to delegate or or orp to another original userou; and/or an
original clearance oc with read/write properties, in which ouis illegable to delegate octo
another original userou.

Defn. 24: A delegated clearance, dc, is a clearance (Defn. 10) that is delegated to a user.

75

Defn. 25: A delegated role, dr, is arole that is delegated to a user.

Defn. 26: A delegated role permission, drp, isarole permission that is delegated to a user.

Defn. 27: A delegated user,du, is a user to whom a delegated role dr, delegated role
permission drp, or delegated clearance dcwill be delegated.

Defn. 28: Delegation Authority (DA): A Security engineer determines which users in a
system or client can delegate their roles/role permissions/clearance to other users in that
system or client.

Defn. 29: Pass On Delegation Authority (PODA) is a Boolean value assigned to a user
which determines if he/she can delegate his/her roles/role permissions/clearance to
another user (poda=true) or not (poda=false).

Defn. 30: A Delegation Set (DS) for a system or client is a set of active role/role

permission/clearance delegations DS, ={d, ,d,, ... , d,} in which each active

delegation d, ={ou ,du ,dr /drp /dc } has three parts: original user (ou), delegated

user (du), and a delegated role (dr), a delegated role permission (drp), or a delegated

clearance (dc).

4.4 Advanced Definitions on Enterprise Applications

As previously discussed in Section 3.2, we presented three main cloud computing capabilities
for FSICC with the associated components. These cloud computing capabilities were: Local
Service Registration and Mapping to Global Services, see the Security Policies and Services
Registration and Global Services Generation boxes of the GSP Generation and GAPI Generation
horizontal box in Figure 1.3; Local Security Policies Registration to Yield Global Security Policy,

see the Security Policies and Services Registration and Global Security Policy Generation boxes

76

of the GSP Generation and GAPI Generation horizontal box in Figure 1.3; and, Global

Registration, Authentication, Authorization, and Service Discover for Consumers, see the GSP

and GAPI Utilization and Security Enforcement horizontal box in Figure 1.3. Based on this, this

section provides a set of definitions, Definitions 31 to 33, that support the three aforementioned

cloud computing capabilities of FSICC. Also, a number of definitions from Sections 4.1, 4.2,

and 4.3 are redefined as version 2. To start, the three new definitions are for systems and clients

with RBAC/MAC/DAC.

Defn. 31:

A cloud, web, or programming service of a client or system, denoted o , is defined

as 0 =< 0)p, O pames Osicr Orype > With Unique 1D, name, signature, and type for each service.

A signature o,q is further defined in two different ways based on the technology used to

create a service as following:

Web/cloud: 0516 =< OmetHoD TYPE! OURI' O INPUT_VARIABLE = where

Cuethon vee €{Create, Read ,Update, Delete, GET, POST, PUT,DELETE} IS the
type of CRUD method, &, a unified resource identifier URI, and oy varinsie 1S

the input variable.

Program: o, in the

=< OmeTHOD_NAME! ORETURN_TYPE! O PARAMETERS ™ where O METHOD NAME

call name is the return type, and Oppramerers are the parameter

' ORETURN_TYPE

names/types.

A service type oy, of a web/cloud-based service can be: (read) if oyernop rvee 1S

Read/GET; or (write) if oyeryop vee IS Create/Update/Delete/POST/PUT/DELETE. A

77

service type oy, of a program-based service can be: (read) indicating that values of all
service parameters oparametersWill NOt be modified after the service call, (write) indicating
that values of all service parameters oparametersCan be modified after the service call, or

(read/write) indicating that values of some service parameters oparametersc@n be modified
after the service call while values of other parameters will not.

Defn. 32: A system, S'=<S|,,S\ue. Shprs Stc. Sk, + Skes, » Sk, » i, » Sbras, » Sbs, >+ S' € EA
is identified by a unique identifier, name, and cloud, web, or programmatic API of a
system, respectively, where a given SLPl is comprised of a set of i; API services
Sye1 ={01,03,03,...,07} with each o, as given in Defn. 31 along with a schema subset

Sgc, » sets of roles S;S , role permission sets Sg , role hierarchy Sg,, , users Sy, » user-role

assignment set SL‘,RASS , and system delegation set S‘DSS (Definitions 2v2, 9, 13, 19, 15, 17

and 30 respectively).
Example 4.4: MyGoogle and OpenEMR (from Section 2.4) are two systems in EAss where there
are RESTful cloud services for MyGoogle, and RESTful web services for OpenEMR. Figures 4.1
and 4.2 define MyGoogle and OpenEMR systems, respectively, with the signature osic as a

placeholder for readability.

78

Sl4sl \rIyGoogle_ S{PI S , S}-‘,Q =S;H9 S}?Pso , Sl.- SLRAS SDS =, where

1 st 5t ME
SAPI={ cf1 3(72 ,(73 ,(74 .0; }where g, =<MG;, NewDataSource, T g >,

L L . MG3
O'f = <MGa, ReadDataSource, G:QIG . f =<MGs, NewPatient, O g~
1
O} =<MG,, ReadPatient, G >, &7 =<MGs, AppAuth, G e
l
to show the contents of a service’s signature, we present the signature for Cl'1

o) ;{g = <PUT, /MyGoogle/fitness/dataSources/dsID, dsINFO=

1 5 5! 1o, ‘
Sce.={sc; ,sc; ,sc] }inwhich
1

>

§C; =<1,0bservation, {<1,id, BSI>, <2.subject.SIS>, <3 status BSI>, <4.performer. SIS} BSI>

1
SC‘"_,SV =<2 Patient, {<1,id BST>, <2,name ,BSI>, <3,gender,BSI>, <4,birthDate,SIS>},BSI>

1
sC f :<3 JPerson, {<1, idBSI> <2.name,BSI>, <3,Token,SIS>} BSI>
!
Sk, —{rl }mmhmh rl —<MGR1 SMH>
S =19}
S sl st st S st st st
{J“p1 TPy 1Py L 1P, L TP Yinwhich 1] =<ps, 1, S¢; inserts,

1

s s st § st
P, =<ps, ?’1 ,SCl Jead = 1Py =<ps, 17 . SC, ,insert >,

st 5 st 5t st
o =<pu iy =SC‘: jgread>, ¥pS =<ps, 1y, sc; insert>}

1 3
SUQ ={ ulSI } with lqgl =<1,ShareMyHealth,VSI,SS,L*>
1 1] " L
SCRASQ ={urd) } with urd =<, .7
DS % { ¢ }

Figure 4.1. MyGoogle Notation for Example 4.4.

2
§%=<s,, OpenEMR, Sirr- Sgce . Si~ Srzc& +Ses. SLE’e - Simus. - Szz)se =, whete

2 2 2 2 2 2 2 2 2 . . 52 . OEMR
Sipr— JS o JS ol US o U.S JS in which &; =<OEMR;, updatepatientnotes,
APT 1 P 4 6 = 8 1 p P

: Ysic E
M M
O"; = <0EMR;y, getnotes, U.S?If; 2 >, J e OEMR;, getallpatients, G.S‘If; 5 >,
OEMRA MRS
=< OEMR,, addpatient, O g >, o’ Y < OEMRs, addvisit, c? SIG

OEMRS OEMR7
O’6 7<OEMR6 getvisits, O g =, (7:S =< OEMRy, getlist, O g

=,
OEMRS
or —<OEMRg addlist, O g, =

to show the contents of a service’s signature, we present the signature for O'IS ?
Cfgf;MR = <PUT, /OpenEMR/updatepatientnotes, noteINFO>
Sae =tscts¢s el se) inwhich
5(,'13: =<1,0Observation, {<1.id, BSI>, <2,subject,BSI>, <3,status,BSI>, <4,performer,level_2>},BSI>
S, : =<2 Patient,{<1,id,BSI>, <2 name,BSI>, <3 gender,BSI>, <4, birthDate,SIS>} BSI>
56‘35l =<3,Encounter, {<1,1d,BSI>, <2.subject,SIS>, <3 status,BSI>, <4.appointment,BS[>} ,BST>
S€y : =<4 .Condition, {<1,id,BSI>, <2,subject.SIS>, <3 clinicalStatus, BSI>, <4,assertedDate,SIS=} BSI>
SZ {?’1 N ?’;: s sz’ s ?’451 s rjsl s rﬁsl s rﬂls! . rgsl } in which ?’151 =<0OEMRz,,Physicion>,
rf —<OEMRg2Patient>, 75 =<OEMRs;.Coach>, 7, :

=<OEMRgy4.Nurse>,

52 52 . 5?
¥y =<OEMRgsParent=, ¥; =<OEMRge. Trainer=, 5 =<OEMRg;,CT?>,

S}
¥y =<OEMRgsMyGoogle>

2 2 2 2 2
SRH:.« = {rhs } with rhf :{r; ,rf }

RN SR S L. . S 5 52
RPSe {rpl LDy L IPs TPy LIPS TP with o) =<pr. 1y
52 2 2 2 2

542
,85¢ ,read>,
s 52 52 s
rpz =<py, 17 .SC, | insert= 1p; =<pi 1, ,SC

, insert =,

5 58 52 52 st

1P, =<ps, ¥, ,SC, .read>, Fp; =<ps, ¥, .SC, ,insert>,
51 52 S}

1P =<ps 1, .SC, ,read=

S2 s 82 . 52 s _

Ue =i# .1, }with 2 =<1John,SID,SS.SI>, 1, =<2.Sara,SIS.S8.SI>
1 2 2 . 2 2 2 2 2 2
SLMSE—{uraf ,ura; } with uraf :<uf ,1’15 >, urai zuﬁ ,rf =

52 . 2 a 2 o2 2 2 2
Spe ={d’, d° Yy with d° =< o5 5 >, d5 =<u® o SID>

Figure 4.2. OpenEMR Notation for Example 4.4.

79

Defn.33: A client application, C' e EA. is defined as
C' =<Clp,Clame: Capr+Cec, »Cr » Caps, » Crur. » iy, Clias, - Cos, >With unique identifier, name,
Cle the set of ij API services Cl,, ={o}, 0}, 0%,..., o' }with each o, as given in Defn. 31,
and, a schema subset C;CC , sets of roles C_, role permission sets Cpps_, role hierarchy

C;HC, users CL‘,C, user-role assignment set CURASC, and client delegation set CiDSC

(Definitions 2v2, 9, 13, 19, 15, 17 and 30 respectively).
Example 4.5: In Section 2.4 we have two clients: ShareMyHealth with RESTful cloud services;

and CT?with RESTful web services, which are in EAcs. Figures 4.3 and 4.4 define ShareMyHealth

and CT? clients with the signature osic as a placeholder for readability.

1 1 1 1
C'=<c,, ShareMyHealth, CAPI , SC s C}E Cra 2 Chps.. C Clms . Cps,. =, where
c c ct ct SMAL
AP {‘71 L0, .03 O'4 G }w1th Gb'1 —<SMH1 NewMeasure, &

G, —<SI\JH—12 ReadMeasure, G;‘éH7> Cl' =<SMH3, NewPatient, G;‘éH =

o' —<SMHL, ReadPatient, ¢2%* >, &° | <SMH, AppAuth, o;‘g“
to show the contents of a service’s signature, we present the signature for O'1 :

G;\égl =<PUT, /SMH/newMeasure/mID, mINFO>

1 1 1 1
CSCP—{scf 8¢y, sl } in which
SC1 =<1,0bservation, {<1,id BSI>, <2 subject,SIS>, <3,status,BSI>, <4 performer,SIS=} BSI>

1
Sl:i'?l_C =<2 Patient,{<1,id BSI>, <2,name BSI>, <3, gender,BSI>, <4, birthDate,SIS>} BSI=
1

SC3C =<3 Person,{<1,id, BST>, <2,name.BSI>, <3, Token,5IS>},BSI>
ok Lo o v . ct -

R, ={n .r, }with ?”1 =<8MHg;.Patient>=, 1, =<SMHgy,Physician>

1 ol i el et

Co = (b it rh” = ()

c ' c ct .
RPS {"P1 P "ps TPy ?’p: }“here P Tpe t . SCG, msert,
1 1 1 1
rpf =<py, 1 ,scf ,1nsert> rp3 =i, 1, 3c , insert >,
1 1

rpf =<ps ¥ seb read> 1P =<ps, rE . scC . read>

1 . .
C —{HF,HS } in which uld =<1,8arah,VSI,SS,SI>, u:,cl =<2 Nasser,SIS, S8, L#*>

1 ol ol . 1 1 1 1
Cuus {wal waj }mth walc 7<HF,?‘IC >, umf :<H§,P’2C >

Dsp ={df }w1thd =<uf ,y, gL >

Figure 4.3. ShareMyHealth Notation for Example 4.5.

80

Cl=ccy, 012, Copy , Co L €2 ,Chis . C2

2 2 2 2
Clags..- CDsm =, where

2 ¢t _c¢* ¢* _c' _¢* _cf ¢ c? . c? cri
Cop=lol .05 .05 0 .05 .05 .07 .05 }with O] =<CTy, NewStatus, ogg =,

c?

%)

o2

Oy

2

T

ol

Cr2

=<CT:, ReadStatus, og;; =, GacA =<CT3, ReadStudent, 0_;23 >,

=<CT4, NewStudent, G_;?

=, 0'504 =<CTs, NewFollowup, GSC,? =,
=<CTs, ReadFollowup, g_;éﬁ =, GTC " =<CT>, ReadConcussion, G_;é? =,

. forg]
=<CTs, NewConcussion, Og; >

. . . c?
to show the contents of a service’s signature, we present the signature for 0y :

Cr1
GSIE

==<PUT, /CT2/concussion/status, statusINFO=

2 c? ¢’ 2 . .
Cse. =tsc” ,s¢ ,5¢E,5¢C) inwhich

C

56

o
ey
sef

o
5C;

=<1,0bservation, {<1,id,BSI>, <2,subject,SIS>, <3,status,BSI>, <4,performer,SIS>},BSI>
=<2,Patient, {<1,1d,BSI>, <2,name ,BSI>, <3 gender,BSI>, <4,birthDate,SIS>} BS[>
=<3,Encounter, {<1,id,BSI>, <2,subject,SIS>, <3,status,BSI>, <4,appointment,BST>} BSL>

=<4,Condition, {<1,id,BSI=, <2 subject,SIS>, <3,clinicalStatus,BSI>, <4,assertedDate,S>} ,BSI>

N)) s)))
2 ¢ _c? 1 c? . c? c?
C .=l 1 ,rf .1y }with 17 =<CTri,Coach> 7, =<CTrs,Nurse>,

1 c? .

?‘30 =<CTrs,Parent>, ¥y =<CTrs,Trainer>

2 c? c? c? c* c? c* c? c? c? c? c? . c? c? c?
CRPSF ={rp] .¥p; D5 KDL LID5 TP VD7 LD PPy TPy 7Py P with rpy =<pn 1y Sq creads,
c? c? c? c? c? 2 c? c? c?
| =<p2, By . SCy ,read >, 1P =<ps, I ,303C cread>, Fpy =<ps 1y . SC; .read >,
o? c? o o2 2 ot ol 2 o?
 =<ps 1), SCi insert>, rpy =<ps, rf . 8¢ ,read>, 1p; =<p;, rf . SC; .read >,
c? 2
1

C c? c?
| =P by, SCy insert>

2 c?o. 2 2 2 2 2 2
=<ps. rsc . SC, . insert>, Fp; =<ps, rf ,sc3c cread >, 1P =<pu, rf ., S, ,read >,

RS S IS

2 o c? c* .
C; ={u .u, }inwhich 1 =<lSarah,S> 1 =<2Alic,C>

Ue h Uy h h

2 e C o C? . Lo ot c? Lt bR
Clris , ={ura; ,ura; }with ura; =<u 1 >, ura; =<t ,Fy >

Cf,sﬂ ={d" } with d¥ =<uf u® >

Figure 4.4. CT? Notation for Example 4.5.

UCCACM for cloud computing, that supports the FSICC’s security requirements (see
Section 3.1), also provides the means to represent a unified set of global services encapsulated
into one Global Resource for a given EA and its systems. This allows the clients to be able to
utilize a set of shared global services rather than specific services for each system that may be
in different formats (e.g., cloud services, web services, programmatic API services in different
languages, etc.). This is basically meant to support the FSICC’s cloud computing capabilities
(see Section 3.2). Although, grouping multiple systems services attracts app developers, in a
domain such as healthcare, there is a need to create useful and rich apps (i.e., apps with many
features) in an easy and efficient way (i.e., avoid effort duplication). This need must be balanced
against the potential to create one great target that attackers can utilize to illegally access a large
set of crucial and sensitive data (see Security Risks of adopting FSICC in Section 3.3), through

services, such as electronic health records of large number of patients. Thus, an access control

81

mechanism should be developed and utilized to restrict services access only to the authorized
users and their Apps.

Moreover, since there is a demonstrated need to protect such global services we make two
major observations: (1) there must be a shift in focus on the concept of RBAC permissions from
objects and operations (in the traditional RBAC model) to permissions that define individual
global services that are authorized by role to make invocations (calls) on objects; and (2) there
is a need to utilize a larger set of the four sensitivity levels of MAC such that the set of
sensitivity levels can adequately classify sensitive data in complex areas such as healthcare,
note that the healthcare-based security level approaches discussed in Section 2.2 are too focused
on the healthcare domain. In this dissertation, we present an access control mechanism, i.e.,
UCCACM, that provides solutions for observations 1 and 2. Regarding the first major
observation, Figure 4.5 shows the UCCACM for RBAC part that consists of four elements:
Roles; Users; Sessions; and Permissions (i.e., the defined service calls on objects), and five
relations: User-Role (i.e., which user assigned to which role); Role-Permission (i.e., which role
authorized to which service in which each service calls a specific object); User-Session (i.e.,
which user is active in the current session); Role-Session (i.e., which role of the current user is
active in the current session); and Role-Role (i.e., which role, or set of roles, is the parent of the

active role based on the isa role hierarchy).

82

Role-Role
Relation

Role-Permission

Assighment

Permissions

Figure 4.5. The UCCACM for RBAC Part.

In the case of the second major observation, recall the work presented in Section 2.2 and
Figure 2.5. In Section 2.2, we reviewed the different HL7 confidentiality levels: U —
unrestricted, L — low, M — moderate, N — normal, R — restricted, and V — very restricted (Health
Level 7., 2014). In Section 2.2, we also reviewed the work on the lattice-based categories and
subcategories of sensitivities for healthcare that defined five main healthcare sensitivity levels:
0 — Basic Information, 1 — Medical History Data, 2— Summary Clinical Data, 3 — Detailed Clinical
Data, 4 — Sensitive Clinical Data (Demurjian, Sanzi, Agresta, & Yasnoff, 2018) in Figure 2.5.
Using that work as a basis, for the second major observation, we present a set of five sensitivity
levels (0-4) that can be utilized to classify data of any complex domain such as healthcare, but

not limited to the healthcare domain as follows:

Level 0: Public Information (PI) contains data that is freely available to anyone. Examples
for data at this level are: basic demographics such as city and state of residence; and general
personal information such as bachelor graduation year and university name.

Level 1. Basic Sensitive Information (BSI) contains data that has some restrictions.
Examples for data at this level are: detailed demographic data such as the patient name,

full address, and date of birth.

83

Level 2: Sensitive Information Summary (SIS) contains data that groups or summaries a set
of data that is classified as Basic Sensitive Information. Examples for data at this level are:
clinical data including prescription and over-the-counter medications; and key data of a
student’s academic record such as GPA.

Level 3: Sensitive Information Details (SID) contains data that elaborates and provides more
information about data that is classified as Basic Sensitive Information. Examples for data
at this level are: reports from imaging studies (CT Scans, MRIs, X-Rays); and detailed
academic information such as a report on a student academic record.

Level 4: Very Sensitive Information (VSI) contains very sensitive information about people
or organizations. Examples for data at this level are: sensitive information on a patient that
is used by medical specialists including data on genetics, substance abuse, mental health

psychotherapy notes; and sensitive employees’ information such as social security number.

In the examples from this point forward, we refer to Level 0 to Level 4, respectively, by the

acronyms: PI, BIS, SIS, SID, and VSI.

Given Figure 4.5, we revise the Definitions 9, 15, 16, 17, and 30 to version 2 (v2) that includes
G (for global) as an option for a role set, user set, user role assignment, user-role assignment set,
and delegation set.

Defn.9: (v2) Let R ,r;} be defined as the set of jroles for a given

crsic = e

client/system/Global Resource where r, € R and r; =<rp , Fyaue, >-

C/S/G

Defn. 15: (v2) Let U, 5,c ={u,,u,....,u;} be defined as the set of jusers for a given

client/system/Global Resource, where u, < u and u; =< Uip, » Unawe, » Uerr, >

C/s/G

84

Defn. 16: (v2) Each user u, eu can be assigned a role r <R for a user role

C/Ss/G C/S/G

assignment (ura), ura, =< u,,r, >, that signifies that a user is limited to playing that role

and the authorized permissions. Note that a user can be assigned multiple roles but only
play one role in any session with a client/system/Global Resource.
Defn. 17: (v2) The user-role-assignment set (URAScisic) for a client/system/Global

Resource, URAS_ ., ={ura,,ura,,...,ura, }is the set of all k user role assignments (Defn.

16v2), that contains an entry for relevant user/role combinations that are applicable for
role-based access control in support of any client/system/Global Resource.

Defn. 30: (v2) Delegation Set (DS) for a client/system/Global Resource is a set of active

role/role permission delegations DS ={d, ,d,, ..., d_} in which each active

C/SIG
delegation d. ={ou ,du ,dr /drp /dc } has three parts: original user (ou), delegated

user (du), and a delegated role (dr), a delegated role permission (drp), or a delegated

clearance (dc).

To complete the changes, based on the presented sensitivity levels above we revise the Defn.
10 to version 2 (v2) to include the five sensitivity levels.

Defn. 10: (v2) In support of mandatory access control (FSICC’s security requirement 4), we

define a linearly-ordered set of sensitivity levels (0-PI < 1-BSI < 2-SIS < 3-SID < 4-VID)

with the ability to assign levels of clearances (CLR) to users/clients and classifications

(CLS) to schemas’ elements and services.

85

4.5 Core Definitions on Global Resources and Permissions by API

As we introduced RBAC, MAC, and DAC into definitions for systems and clients in Section
4.3 and revised in Section 4.4, in this section, we present a set of definitions (Definitions 34 to
39) that focus on the higher-level needs of UCCACM within FSICC. Specifically, UCCACM
provides a unified set of global services encapsulated into a number of Global Resources. This
supports FSICC’s cloud computing capability 1 in Section 3.2, see the Security Policies and
Services Registration and Global Services Generation boxes of the GSP Generation and GAPI
Generation horizontal box in Figure 1.3. This set of global services belongs to a given enterprise
application and its systems in which interested clients are able to utilize authorized services from
this set of shared global services. This is to remove the need for clients to utilize multiple and
possibly heterogeneous services from each system, separately, that may be in different formats
(e.g., cloud services, web services, programmatic API services in different languages, etc.).
Moreover, the FSICC’s global services are controlled using RBAC, MAC, and/or DAC which
supports FSICC’s cloud computing capability 2 in Section 3.2 as was shown in the GSP Generation

and GAPI Generation horizontal box in Figure 1.3.

Defn.34: A global service of a global resource, denoted g, is defined as

B=<PLo Buwe Bsis Pes > With unique 1D, name, signature (similar to o in Defn. 31),
and a classification (Defn. 10) for each service.

Defn. 35: A global resource, G' represents a set of global services that are intended to map

to services from different Clients/Systems.

86

Defn. 36: For a global resource, G', a global service permission, S, =<ry, , B, >, binds
aj" global service ;] of Gy, by identifier, P, toarole r eGg by identifier, r .
Defn.37: For a global resource, G', and a role r, e G,_, a role permissions set, RPSIrki =

{Bip,+ Bap, - By, Fcontains all of the n global service permissions ﬂ;pj associated with a

role.

Defn. 38: For a global resource, G', the resource role permissions set, Gggp ={ RPSrli ,
RPSIr2i s s RPSr% } contains all of the role permission sets for the m roles in G;G .

Defn. 39: A global resource, G' can be represented as
G' =< G5, Glame:Ghp1: G, Gl »Glias, - Grars, :Gbs, > IS identified by a unique identifier,
name, and cloud API, respectively, where a given GLP, is comprised of a set of i; API
services gi LB B B B} with each g, as given in Defn. 34 along with sets of
roles Gy_, users G/_, user-role assignment sets G, (Definitions 9v2, 15v2, and 17v2
respectively), a resource role permission set, G‘RRPSG (Defn. 38), and a resource delegation

set Gp_ (Defn. 30v2).

Example 4.6: Figure 4.6 defines the Global Resource G* with the signature osic as a placeholder
for readability. The global services (see Table 4.1) are organized into one Global Resource G*

with global roles (Table 4.2).

87

Gl:‘(gl,EAmrFSICC,- GLP}! G;?G . GQ-G .G G Gjl;,sﬁ >, where

1
UR4S ; = TRRPS; >

1 G A6l A6l Gt aGt Gl G aGh 1.) ! . &
Gapr=t By By BB BB B A By yinwhich 7 =<gsi, NewObservation, S . $>,

ﬂ_,cl =<gs,, ReadObservation, ﬂé}l .S >, ,6’361 =<gs;, NewPatient, ﬂj,; ,C=,
/5’51 =<gsy, Rel::lr:lP::\tie:nt,){}'5'5}56i L8>, ﬁfl =<gss, NewUser, ﬂs‘g}g L8>,

ﬁf ' =<gss, NewEncounter, ﬁ;’:,f; LU=, ,376 ' =<gs7, ReadEncounter, S fjsg LU=,
ﬁsGl ==<gsg, NewCondition, 5 5,? ,C=, ,396 ' =<gso, ReadCondition, 5 5;9 ,C>

1
to show the contents of a service’s signature, we present the signature for ﬁG :
BE! =<PUT, /FSICC/Observation/id, obINFO=
1 1 1 1 1 1 1 1 1 3
G[l?G ={ rlG s rgG e rf B e S Rl B VIG =<Gr1,GPhysician=,
G . G G G
¥, =<Gro,GPatient>, 13 =<Gr3,GCoach>, 7, =<Ggrs,GNurse>, 15 =<Ggs,GParent>,
(e . Gt Gt e
1y =<Gges,GTrainer=, ¥, =<Ggr7.GCTZ>, 1 =<Grs.GMyGoogle>, 7~ =<Ggreo,GSMH>
¢ &, el : .
Gy, ={ 105 } with 1 =<1 John.VSI>, 2’ =<2, Al BSI>

1 fez Gt el & G e G G
Gupas, =tUrd’ urdy }with urq, =<iq 5 = urd, =<y .1

1 G G G! Gl G Gl G! Gl Gl pGl a6t Gl .
Gmpsﬁ ={rp .1py .} where 1p ={ ﬁgpl ’ﬂgpz ’)ng; oy =t ﬁgp4 ’ﬁgps ’ﬁgps ’ﬂgp. ’)ngg 1 with
G G' acG! G G pc G! G pc G! G pc!
B =<1i By >, Pg =<1 By >, Py =<n .5 >, Py, =<ry .G >,
1 1 1 1 1 1 1 1 1 1 1 1
ﬁg(;s =S BF >, ﬁgis =<t BY >, ﬂ;_ —<r” B >, ﬁ;g —<r” . pC =

1 e - G ¢ & &
GDSG:{d1 }with &7 =<wy i 7y >

1
=

Figure 4.6. Global Resource G* Notation for Example 4.6.

Table 4.1. FSICC Global Services for Global Resource Gt

Gid Service Name

gs1 PUT /FSICC/Observation/id obINFO

gs2 GET /FSICC/Observation/id

gs3 PUT /FSICC/Patient/id ptINFO

gs4 GET /FSICC/Patient/id

gss PUT /FSICC/User/id usINFO, Token

gss PUT /FSICC/Encounter/id enINFO

gs7 GET /FSICC/Encounter/id

gss PUT /FSICC/Condition/id cnINFO

gSo GET /FSICC/Condition/id

Table 4.2. FSICC Global Roles for Global Resource Gt

88

Rid Role FSICC Services
Gr1 | GPhysician g5, 854, £S5

Gr2 GPatient g51—8Ss

Grs | GCoach 8S2, 853, 857~ 8Se

Gra GNurse g8S1— 854, 8S6—8S9

Ggs GParent g52— 854, §57—8S9

Gre GTrainer g52— 854, 856 —8S9

Gry | GCT? 851— 854, 8S6—8So

Grs | GMyGoogle gs1, 852

Gro | GSMH gs1—8Ss

4.6 Advanced Definitions on FSICC

After presenting a set of definitions that describes the unified set of global services of FCISS,
this section continues and provides a set of Definitions 40 to 48 that explains the way that services
and security policies of different systems are mapped to generate global services and global
security policy for FSICC. Specifically, this section defines the main components of the FSICC
and the way that such components are generated from the separate mapping involving clients and
systems. The first mapping is from clients (which have services to register) and Systems to Global
resources. The second mapping is from Client/System roles to Global roles which is FSICC’s cloud
computing capability 2 in Section 3.2 and the Security Policies and Services Registration and
Global Security Policy Generation boxes of the GSP Generation and GAPI Generation horizontal
box in Figure 1.3. The third mapping is from Clients/Systems API services to Global API services

which is FSICC’s cloud computing capability 1 in Section 3.2 and the Security Policies and

89

Services Registration and Global Services Generation boxes of the GSP Generation and GAPI

Generation horizontal box in Figure 1.3.

Defn. 40: The Framework for Secure and Interoperable Cloud Computing (FSICC) can

be represented as FSICC= <G, R, U, URAS, RRPS> where G = {G' | all i resources}
is a set of all of the global resources in which each G as given in Defn. 39, R = {G;G |a||i}
of all role sets from all i global resources, U = {Gl‘JG |alli} of all user sets from all i global
resources, URAS :{G&RASG |alli} of all user role assignment sets from i the global resources,
and RRPS :{G;RPSG |ani} of all resource role permission sets from all i global resources.

Defn. 41: Client/System to Global Mapping CSGM =<C"/S"™ ,G" > where each C'

FsIcC,

/S" is mapped to one G' € G.

Defn. 42: Client/System to Global Mapping Set:

CSGMSgc =<CSaGM . ,CSGM, CSGM, .. >, where CSGM is as defined

C FSICCJ

J
Icc, ;

Icc, Jeeed

in Defn. 41.

Defn. 43: Client/System API to Global APl Mapping CSAGAM =<Cp 1S2,GP >

FsiCc,

where each ci., /s, is mapped to G,g,.

API

90

Defn. 44: Client/System API to Global API Mapping Set

CSAGAMS e =< CSAGAM_ .. ,CSAGAM CSAGAM, . >, Where cSAGAM, s as

Fsicc, ’ Fsicc, "2 Fsicc;

defined in Defn. 43.

Defn. 45: Client/System Roles to Global Roles Mapping CSRGRM =< Cq IS¢, .Gy, >

Fsicc,
where C;_/S;_are mapped to Gy_.
Defn. 46: Client/System Roles to Global Roles Mapping Set

CSRGRMS e =< CSRGRM__,CSRGRM CSRGRM_ . >, Where CSRGRM____Is as

Fsicc, Fsicc, ”*"*? FSICC; SICC;

defined in Defn. 45.

Defn. 47: Client/System Users to Global Users Mapping csuGgum =<Cy IS],Gy >

Fsicc;
where C;,_/S, are mapped to G;_.
Defn. 48: Client/System Users to Global Users Mapping Set

CSUGUMS 1 =< CSUGUM____,CSUGUM

Fsicc, ’ Fsicc, >’

CSUGUM,,, . >. Where csuqum,_ is as

defined in Defn. 47.

Note that the mappings in Definitions 41-48 are performed by a FSICC security engineer in regards

to reconciling roles and APIs as part of the mapping process. Part of this process is performed

utilizing a set of algorithms for global RBAC policy generation, global MAC policy generation

and global DAC policy generation; this will be explored in detail in Section 6.3 of Chapter 6.

Example 4.7: Table 4.3 contains the mappings of services and roles of MyGoogle, OpenEMR,

CT?, and ShareMyHealth (see Section 2.4). This is basically, the result of utilizing FSICC’s cloud

91

computing capability 1: local service registration and mapping to global services; and cloud

computing capability 2: local security policies registration to yield global security policy (see

Section 3.2). Table 4.3a is for the role mapping where the client role and system role could map to

the same global role, as shown for the first six rows, e.g., SMHr1and OEMRRg. rows are the Patient

role for Client/System, respectively, that maps to the global Patient role Ggro. Tables 4.3b to 4.3e

map CT?, ShareMyHealth, MyGoogle, and OpenEMR services, respectively, to global services.

Table 4.3. Mapping Tables to Global Services.

a. Mapping Client/System to Global Roles.

Client Client System Rid System Role Name Global Rid Global Role
Rid Role Name Name
CTr1 Coach OEMRg3 Coach Grs GCoach
CTr2 Nurse OEMRR4 Nurse Gra GNurse
CTrs Parent OEMRgs Parent Grs GParent
CTra Trainer OEMRgg Trainer Grs GTrainer

SMHg1 Patient OEMRg; Patient Gr2 GPatient

SMHg: Physician OEMRg; Physician Gr1 GPhysician

OEMRgy CT? Grs GCT?
OEMRgs MyGoogle Grs GMyGoogle
MGg1 SMH Ghro GSMH
b. Mapping of CT? Services to Global Services.
Sid Service Name Gid FHIR
CRUD/Resource
CTy PUT /CT2/concussion/status statusINFO G; | PUT Observation
CT, GET /CT2/concussion/status statusiD G, | GET Observation
CTs GET /CT2/student studentID G, | GET Patient

92

CTs PUT /CT2/student/add studentINFO Gs | PUT Patient
CTs PUT /CT2/followup/add followupINFO G; | PUT Encounter
CTe GET /CT2/followups followupID Gs | GET Encounter
CT, GET /CT2/concussion/student studentID Gio | GET Condition
CTs PUT /CT2/concussions/add concussionsINFO Gs | PUT Condition
c. Mapping of ShareMyHealth Services to Global Services.
Sid Service Name Gid FHIR
CRUD/Resource
SMH; PUT /SMH/newMeasure/mID mINFO G: | PUT Observation
SMH, GET /SMH/Measures/mID G, | GET Observation
SMH; PUT /SMH/newPatient/pID pINFO G, | GET Patient
SMH,4 GET /SMH/Patients/pID G; | PUT Patient
SMHs PUT /SMH/Users/ulD Token Gs | PUT User
d. Mapping of MyGoogle Services to Global Services.
Sid Service Name Gid FHIR
CRUD/Resource
MG, PUT /MyGoogle/fitness/dataSources/dsID dsINFO G: | PUT Observation
MG, GET /MyGoogle/fitness/dataSources/dsID G> | GET Observation
MG; PUT /MyGoogle/newPatient/pID pINFO Gs | GET Patient
MG, GET /MyGoogle/Patients/pID G; | PUT Patient
MGs PUT /MyGoogle/Users/ulD Token Gs | PUT User
e. Mapping of OpenEMR Services to Global Services.
Sid Service Name Gid FHIR
CRUD/Resource
OEMR; PUT /OpenEMR/updatepatientnotes noteINFO G; | PUT Observation
OEMR; GET /OpenEMR/getnotes notelD G, | GET Observation

93

OEMR; GET /OpenEMR/getallpatients patientID G, | GET Patient
OEMR, PUT /OpenEMR/addpatient patientINFO G; | PUT Patient
OEMRs PUT /OpenEMR/addvisit visitINFO G; | PUT Encounter
OEMRs GET /OpenEMR/getvisits visitID Gs | GET Encounter
OEMR; GET /OpenEMR/getlist conditionID Gio | GET Condition
OEMRs PUT /OpenEMR/addlist conditionINFO Gs | PUT Condition

4.7 Core Definitions on Interceptors

As we described earlier in Section 3.2 of Chapter 3, the global security policy of FSICC is
generated by the cloud computing capability 2 of FSICC, i.e., local security policies registration
to yield global security policy, that utilizes two components of FSICC: Security Policy Mapping
box of FSICC in Figure 1.1 and Global Security Policy box of FSICC in Figure 1.1. To enforce
the FSICC’s global policy defined on global resources with the allowed API service calls
controlled by RBAC (FSICC’s security requirement 2), MAC (FSICC’s security requirement
4), and DAC (FSICC’s security requirement 3) permissions, this section introduces a set of
definitions for security Interceptor that is able to intercept API calls to global services in order
to perform appropriate RBAC, MAC, and DAC security enforcement checks. To begin, we

define an interceptor as follows:

Defn. 49: A Security Interceptor is defined as a programmatic mechanism that is able to

intercept a service call from a client application to an API in order to perform appropriate

security enforcement checks.

94

The remainder of this chapter reviews the interceptors for RBAC, MAC, and DAC. Section 4.7.1
provides a set of definitions that explains the way that the global RBAC policy are enforced using
the RBAC interceptor. Section 4.7.2 discusses a set of definitions that explains the way that the
global MAC policy is enforced using the MAC interceptor. Section 4.7.3 provides a set of
definitions explains the way that the global DAC policy are enforced using the DAC interceptor.
Note that at the end of each subsection, we provide an example for the respective definitions.
4.7.1 Definitions on RBAC Interceptor

In support of the FSICC’s security requirement 2 (see Section 3.1), this section presents
definitions for the RBAC interceptor. Definitions 50 to 52 provide two enforcement checks that
the RBAC interceptor utilizes to enforce the global RBAC policy.

Defn. 50: User-Role Enforcement Check: For a global resource, G', a user u'® € G'us can
utilize a role r'P € G'rg iff the entry <u'P, r'P> exists in the User-Role set G'urasc.

Defn. 51: Role-Service Enforcement Check: For a global resource, G', a user with a role r'P
€ G'rg can access a global service o'ip € G'apy iff the entry <r'®, ¢'ip> exists in the role
permissions set RPSrig € G'rrpsc.

Defn. 52: The RBAC Interceptor of FSICC is a programmatic security enforcement check
utilizing Definitions 50 and 51 that is able to determine at runtime if the requested API
call on a global service can be executed for a user u'® (Defn. 15v2) with a role r'® (Defn.

9v2).

Example 4.8: Consider a Global Resource G! that has: a user ulG1:<1,John>; and a role

G

r® =<1,GPhysician > in which r° is authorized to access global services {5°, 5%, p°}; and

95

G

. 1 1 1 . . 1
suppose that the user-role assignment ura® =<u_ ,r° > is established, then the user u’ can

invoke all the three global services {5°, 5%, °}.

4.7.2 Definitions on MAC Interceptor
In order to support the FSICC’s security requirement 4 (see Section 3.1) and the MAC

Interceptor, we first define the level of security enforcement checks that are required for MAC.
The MAC model (Bell & La Padula, 1976) has a set of properties, namely, Simple Security (SS),
Simple Integrity (SI), Liberal* (L*), and Strict* (S*) that has both Read and Write capabilities.
Such properties are defined to determine under which conditions a user with a CLR level can read
or write a given data item with a CLS level. For the purposes of FSICC, this is focused on whether
a user with a CLR level can invoke a write service (i.e., Create, Update, or Delete) or a read service
(i.e., Read) with a CLS level that is part of a global service permission. Now we explain the way
that MAC properties are used in FSICC. First, SS property (or read-down, no read-up) is the
permission to invoke a read service that has an equal or lower CLS level. That is, a user is allowed
to invoke a Read service with a CLS level equal to or lower than their CLR level, but not those
Read services with a higher CLS level. Second, SI property (or write-down, no write-up) is the
permission to invoke a write service that has an equal or lower CLS levels.

That is, a user can invoke a Create, Update, or Delete service of equal or lower CLS level when
compared to their CLR level, but not to those Create, Update, or Delete services with a higher CLS
levels. Third, L* property (or write-up, no write-down) is the permission to invoke a write service
that has an equal or greater CLS level (the opposite of SlI). Forth, S* Write property (or write equal)
is the permission to invoke a write service that only has an equal CLS level. Finally, S* Read
property (or read equal) is the permission to invoke a read service that only has an equal CLS level.

From a definition and management perspective, an Security engineer of FSICC would set the

96

CLR level of users following the predefined sensitivity levels (e.g., TS, S, C, and U - see Defn.
10) to establish the levels for both users and services. These levels are then augmented on a user-
by-user basis by assigning the ability to invoke a read service (via SS or S* Read properties) and

the ability to invoke a write service (via Sl, L*, or S* Write properties).

In support of the FSICC’s security requirement 4 (see Section 3.1), this section presents
definitions for the MAC interceptor. Definitions 53 to 56 introduce concepts on MAC read/write
properties and an enforcement check that the MAC interceptor utilizes to enforce the global MAC
policy.

Defn. 53: Available MAC properties: There are four properties: Simple Security (SS), Simple
Integrity (SI), Liberal* (L*), Strict* (§*) that has both Read and Write capabilities. The SS
property allows a user to invoke a read service iff the user’s CLR is equal or higher than
the CLS of the read service. The Sl property allows a user to invoke a write service iff the
user’s CLR is equal or higher than the CLS of such a service. The L* property allows a
user to invoke a write service iff the user’s CLR is equal or below the CLS of such a service.
The S* Write property allows a user to invoke a write service iff the user’s CLR is equal
to the CLS of such a service. The S* Read property allows a user to invoke a read service
iff the user’s CLR is equal to the CLS of such a service.

Defn. 54: User Assigned MAC Properties: The Security engineer is responsible for
assigning each user one read property (SS or S* Read) and one write property (SI, L*, or

S* Write).

97

Defn. 55: MAC Enforcement Check: For a global resource, G', auser u e G/,_can invoke a

Read, Create, Update, or Delete global service ﬂiGi iff the CLR of u satisfies established

MAC properties (Definitions 53 and 54).

Given Definitions 53 and 54, we revise Defn. 15v2 as below:

Defn. 15: (v3) A user, u, is defined as five-tuple U=<U,,Uyae YoirUnacro Unacwr™>, Where

Upacrp 1S SS or S* Read and Uy,acyr 1S SI, L*, or S* Write (Defn. 53).

Example 4.9: Consider a Global Resource G* that has a user u161:<1,John,TS> and three global
services: a Create service 8 =< gs”, NewRx, A%, S >, aRead service B¢ =< gs', AllRx, 8522, S
>, and a Read service 4% =<gs**,CanRe fill, 8%%*,C >, and suppose that the Security engineer
established two MAC properties (SS, Sl) on ufl, then the user ulGl can invoke all the three
global services, since the CLR level (TS) of uf1 is greater than all CLS levels (S, S, and C) of

services (5, A2, and), respectively.

Defn. 56: The MAC Interceptor of FSICC is a programmatic security enforcement check
utilizing Definitions (53, 54 and 55) that is able to determine at runtime if the requested
API call on a global service can be executed for a user with a CLR (Defn. 15v3) and

limited by a Read/Write properties combination (Defn. 54).

4.7.3 Definitions on DAC Interceptor

98

In support of the FSICC’s security requirement 3 (see Section 3.1), this section presents
definitions for the DAC interceptor. Definitions 57 to 60 provide three enforcement checks that
the DAC interceptor utilizes to enforce the global DAC policy.

Defn. 57: Delegated User-Delegated Role Enforcement Check: For a global resource, G, a
delegated user du'® € G'yg can utilize a delegated role dr'® e G'rg iff the entry < ou'®, du'®,
dr'®> exists in the Delegation Set G'ps.

Defn. 58: Delegated User-Delegated Role Permission Enforcement Check: For a global
resource, G', a delegated user du'® € G'yc can utilize a delegated role permission drp'® iff
the entry < ou'®, du'®, drp'P> exists in the Delegation Set G'psc.

Defn. 59: Delegated User- Delegated Clearance Enforcement Check: For a global resource,
G', a delegated user du'® e G'yg can utilize a delegated clearance dc'® € G'rg along with the
associated read/write properties iff the entry < ou'®, du'P, dc'®> exists in the Delegation
Set G'bse.

Defn. 60: The DAC Interceptor of FSICC is a programmatic security enforcement check
utilizing Definitions 57-59 that is able to determine at runtime if the requested API call

on a global service can be executed for a delegated user du'P.

Example 4.10: Consider a Global Resource G! that has: two users uf1:<1,John> and

u§1:<2,AIi>; and a role rfl =<1,GPhysician > in which the resource delegation set Gy has
anentry {d® }with d® =<u® u' r® > then the user uS can utilized all the global permissions

that are authorized to r° .

99

4.8 Related Work on Access Control for Cloud Computing

In this section, we review a number of related works on access control for cloud computing,
comparing and contrasting their work to our approach in this chapter. We classify these related
efforts into two main groups: the first group of three efforts involves data-based RBAC in a cloud
setting while the second group of three efforts involves RBAC in a cloud setting at an API level.

The first effort (Tang, Wei, Sallam, Li, & Li, 2012) proposed an RBAC model with an owner
role to enable the data owner to grant a user access to their data and to update the owner data in
cloud, with a user role. Our work on UCCACM is similar to this effort since both works involve
definitions for RBAC and DAC that can be utilized to restrict users access in the cloud. However,
while our UCCACM provides MAC based capabilities to secure sensitive services, their effort
does not consider the need for controlling users access based on sensitivity levels (MAC).

The second effort (Wang Z. , 2011) proposed a cloud-based RBAC that authorizes permissions
to data in cloud with roles that assigned to cloud users. This is accomplished by two main
algorithms: the User Role Assignment and the Role Permissions Assignment. To further control
sensitive data, this effort enables a cloud user to disable/enable roles that are authorized to such
sensitive data. The main common aspect between this effort and our work on UCCACM is that
both works utilize RBAC to control user access in the cloud. However, regarding more sensitive
data/services, their effort utilizes it approach that disable/enable roles while in UCCACM we
utilize a more advanced technique with sensitivity levels (MAC).

The third effort (Takabi, Joshi, & Ahn, 2010) proposed a security framework for cloud
computing environments that has an access control module that protects a provider’s data in cloud
using classic RBAC. Our work on UCCACM is similar to this effort since both works involve

definitions for RBAC that can be used to restrict users access in the cloud. However, while our

100

UCCACM provides MAC and DAC based capabilities to secure sensitive services, their effort
does not consider the need for controlling users access based on sensitivity levels (MAC) and
delegation (DAC).

The fourth effort (Sirisha & Kumari, 2010) proposed an API-based RBAC model for cloud
services that defines permissions against cloud services where permissions are authorized to roles
that are assigned to users. This effort is similar to our work on UCCACM since both works define
permissions against cloud API (cloud services). However, our UCCACM is more fine-grained
since permissions are assigned to different CRUD methods of cloud services, while their effort
allows/denies access to all CRUD methods.

The fifth effort (Wonohoesodo & Tari, 2004) proposed a Web Service (SOAP)-based RBAC
model in which a role assigned to a service consumer is authorized to both a SOAP service and a
parameter of a SOAP service with an access mode (e.g., read, write, execute, modify, and delete).
The main common aspect between this effort and our work on UCCACM is that both works utilize
RBAC to restrict the way that users can access services. However, while their effort is dedicated
to SOAP-based services, the permissions in UCCACM can be defined and enforced on any type
of cloud or web services such as SOAP and REST.

The last effort (Feng, Guoyan, Hao, & Li, 2004) also proposed a Service (SOAP)-Oriented
RBAC model that authorizes SOAP services to roles that can be assigned to users, where when a
user activates a role, an Actor is created that enables the user to access SOAP services authorized
to the role. Although this effort introduced the role activation by users, this effort basically is
similar to our work on UCCACM since both works utilize RBAC to restrict access to services.

However, their effort is more focused on SOAP-based services, while in UCCACM the

101

permissions can be defined and enforced on any type of cloud or web services such as SOAP and
REST.

Overall, our work on UCCACM contrasts with the three first efforts by focusing on defining
permissions against cloud services as opposed to data. Regarding the last three efforts, their work
differs from UCCACM since none of these efforts utilizes sensitivity levels (MAC) or delegations

(DAC) to restrict access to the services.

102

Chapter 5
Architectural Blueprints to Facilitate Interoperability and
Information Exchange of Clients and Systems

As presented in Section 1.4 of Chapter 1, an integration layer was defined as a standard API
that converts data from a system or client into a common data format to facilitate information
exchange. Such a common data format can be utilized by other systems and clients, within a
framework like FSICC, to easily exchange data. An integration layer exists with an
integration framework (IFMWK) which is a set of standards and associated technologies that allow
different systems to interact with one another utilizing one common data format. The associated
technologies allow integration servers to be designed and implemented to facilitate the exchange
of information using the common data format via a set of shared services via an integration layer.
The integration framework facilitates the interactions of clients and systems with one another in
FSICC by providing a common layer to allow clients and systems to interact with one another.
The common layer of IFMWK can be used to map to and from cloud, programming, or web
services. To accomplish this mapping, we assume that the integration framework IFMWK has an
available implementation that can be utilized to generate dedicated IFMWK servers for two-way
mapping and exchange as needed. The FHIR standard presented in Section 2.3 of Chapter 2 and
its HAPI FHIR reference implementation, which has a set of resources in XML, JSON, RDF, and
Turtle that are a common data representation with associated services for CRUD and searching, is
an example of an integration framework (FHIR) and its implementation (HAPI).

As described in Chapter 1, the interactions and integration of clients and systems with the
Framework for Secure and Interoperable Cloud Computing (FSICC), as shown in Figure 1.1, can

be defined from a client perspective and from a system perspective. From a system perspective,

103

each system, which corresponds to the Systems box in the Involved Parties component at the
topmost of Figure 1.2 from Chapter 1, needs to create an integration layer API in front of their
API, and modifies their security policy to be defined against the integration layer API. This
integration layer corresponds to the Architectural Blueprints in Figure 1.3. Architectural
Blueprints, the main focus of this chapter, are guidelines that define the way of placing and
creating an integration layer for a systems or client to allow such them to exchange data with
other systems and clients in one common data format. There are three Architectural Blueprints
options as shown in Figure 1.2: a Basic Architecture option that includes a IFMWK server that
works directly with the App repository and IFMWK servers of other systems; an Alternative
Architecture option that includes a IFMWK server that works directly with the App RESTful API
and IFMWK servers of other systems; and, a Radical Architecture option that removes the
repository and has IFMWK servers for the App API and the other systems. Once a blueprint option
has been chosen and applied, each system is able to register: the system’s name, the integration
layer API, and the security policy into FSICC. This is done using the Systems Registry box in the
middle of Figure 1.1, which corresponds to the Registration and Services Mapping box of the
Generation of Global Policy and Services component in Figure 1.2. Based on the integration layer
of registered systems, the security engineer of the FSICC creates a global API. This corresponds
to the Global Services box of the Generation of Global Policy and Services component in Figure
1.2, which is an integration layer in which clients may utilize such a global API via FSICC. Each
of the different alternatives of the architectural blueprints process the means to integrate the
services of a system so that can easily map to/from the global services.

From a client perspective, each client, which corresponds to the Clients box in the Involved

Parties component at the topmost of Figure 1.2, creates an integration layer API at the top of Figure

104

1.1 in front of its API. Clients, like systems, may require an architectural blueprint option to
integrate with FSICC, particularly in the case where it is a mixed client, see Defn. 6 in Section 4.2
of Chapter 4. With or without a blueprint, each client is able to register: the client’s name into the
FSICC, using the Clients Registry box, and reconfigure the client integration layer API to call the
global API of FSICC, see Figure 1.1. The integration layer that can be created by systems, clients,
and FSICC is the technology that facilitates the bi-directional mapping and exchange of
information: between clients’ applications and global services of FSICC; and, between systems’
services and global services of FSICC.

The architectural blueprints presented in this chapter have a strong interaction with UCCACM
as was shown in the top portion of Figure 1.3 from Chapter 1. UCCACM has four definitions
that are directly related to architectural blueprints. Definitions 41 to 44 involve, respectively: the
mapping of clients and systems that provide services to global resources in FSICC in Defn. 41; the
set of all of the global resources that were mapped from clients and systems in Defn. 42; the
mapping of the services of the APIs from clients and systems to the global services APIs of FSICC
in Defn. 43; and, the set of all of the global APIs for all clients and systems in Defn. 44. The
architectural blueprints that enable clients and systems to provide an API that is conducive to being
integrated via UCCACM into FSICC which is facilitated using the mappings of Definitions 41 to
44. This chapter explores and examines three architectural blueprints options, Basic
Architecture, Alternative Architecture, and Radical Architecture, for design and development
processes that can be followed to integrate an mHealth, web, or desktop application utilizing
FHIR to multiple HIT systems via FSICC. The work in this chapter supports expected
contribution EC-A: Architectural Blueprints for Supporting FSICC from Section 1.5, this is

represented by the Architectural Blueprints box at the top of Figure 1.3.

105

The remainder of this chapter is organized into a five-part discussion. In Section 5.1, we
explore four issues that must be understood for an application of FSICC to support a discussion
of the architectural blueprint options: the overall architecture of the application; the involved
technologies that can be used to develop the application; the source code availability of the
application, APIs, server code, or database; and, the allowable access to system sources. In
Section 5.2, we examine the three different Architectural Blueprint options, namely, Basic,
Alternative, and Radical, for integrating an application to multiple HIT systems via FSICC,
utilizing an integration framework, IFMWK, with examples provided using FHIR. In Section
5.3, we present Architectural Blueprints for each of the three options that illustrates the way that
the options can be realized using IFMWK, including the various phases and steps that are
required. In Section 5.4, we explore a complex example that utilizes the Alternative and Radical
Architectural Blueprint options prototype applied to the healthcare scenario from Section 2.4 of
Chapter 2 via FHIR as an IFMWK and HAPI as a server. In Section 5.5, we discuss two related
works in the literature that explain alternative ways that FHIR can be implemented to integrate
healthcare systems and/or applications in different settings. Note that the work in this chapter
has been published in (Baihan, M., et al., 2018) (Ziminski, T., Demurjian, S., Sanzi, E., Baihan,

M., & Agresta, T., 2017).

5.1 Issues that Impact Interoperability

In this section, we explore the different characteristics and components of an application and
its interaction with multiple mixed clients and pure or mixed systems via FSICC and as a result
define for issues that impact interoperability. The four issues are: the overall architecture of the

application with respect to tiers of functionality of mixed clients and pure or mixed systems such

106

as one-tier, two-tier, and three-tier architectures, etc.; the involved technologies that are utilized by
different mixed clients and pure or mixed systems such as RESTful APIs, programmatic APIs,
database API, etc.; the source code availability of the mixed clients and pure or mixed systems
such as the app, APIs, server code, or database; and, the allowable access to the mixed clients and
pure or mixed systems via RESTful APIs, programmatic APIs, etc. Each is discussed in turn.
The first issue that impacts interoperability choices is the overall architecture of the application
with respect to tiers of functionality of mixed clients and pure or mixed systems such as one-tier,
two-tier, and three-tier architecture, etc. That is, in order to integrate a mixed client or pure or
mixed system, via FSICC, one must understand its architecture. In general, there are three different
architectures: one-tier, two-tier, and three-tier. In a one-tier architecture, the client/system would
contain all of the components of the client/system including: user interface (the presentation layer);
user request processing (the business layer); and the repository (the data layer). In atwo-
tier architecture, the client/system would have the user interface (the presentation layer) while user
request processing (the business layer) and the repository (the data layer) are hosted in a separate
server. In athree-tier architecture, the client/system would only have the user interface (the
presentation layer) with the user request processing (the business layer) hosted by a separate server
through an API and the repository (the data layer) hosted in another separate (third) server. Note
that the repository in all three cases may in turn interact with another layer but from the perspective
of the architectural blueprints options, this will be hidden. Also note that for the two and three tier
architectures, the middle request processing layer might involve access to multiple separate APIs.
For the purposes of this dissertation, the mixed clients and pure or mixed systems are client
mHealth apps or system HITs. The second issue that impacts the choice of an integration option is

the involved technologies that are utilized by different mixed clients and pure or mixed systems

107

such as RESTful APIs, programmatic APIs, database API, etc. These technologies can be utilized
by a mixed client or pure or mixed system to make external integration with FSICC possible. The
programmatic APl of a client/system is a set of definitions for functions or methods of that
application, where an external application may call an API to perform an application’s method
without the knowledge of the actual code of such a method. A repository API is similar to the
programmatic API, however, the functions or methods of such API perform operations over
repository items that may be in a database or some other option. A RESTful API is a set of
definitions for methods of an application. Such an APl is designed based on the REST architecture
(Fielding, 2000) which utilizes Hypertext Transfer Protocol (HTTP) requests to interact with the
data of a client/system. Cloud services are the APIs that define the way that cloud consumers can
access and utilize cloud computing resources such as software. These cloud services can be
designed using web services such as Representational State Transfer (REST), Simple Object
Access Protocol (SOAP), etc.

The third issue that impacts the choice of an integration option is the source code availability
of the mixed clients and pure or mixed systems such as the app, APIs, server code, or database.
Since a client/system can be developed based on different architectures (as described in issue 1),
it is crucial to consider the availability of source code of components such as the app, APIs, server,
or repository. Specifically, the source code of the client/system is the code that is used to
implement: the user interface component and the methods that interacting with any external
servers. The API’s source code is the code that is utilized to map the application’s methods to an
abstract set of calls that an external source can invoke. The server code is the code that is used to
implement the business logic of the application. The repository source code is the source file or

database schema and any code that is used to access data in such a repository. Some of the

108

architectural blueprint options require access to source code in order to make limited programmatic
changes to support the integration. The intent is to try to minimize these changes when attempting
to integrate an app with multiple mixed clients and pure or mixed systems via FSICC, in order to
have little or no impact on existing code.

The fourth and final issue that impacts the choice of an integration option is the allowable
access to the mixed clients and pure or mixed systems via RESTful APIs, programmatic APIs, etc.
This enables external applications to be integrated with such mixed clients and pure or mixed
systems. The ability to integrate these various API and services seamlessly with an integration
framework such as HAPI FHIR is critical to support the different integrations options presented in
this chapter. Recall in the introduction to this chapter, we defined an integration framework,
IFMWK, as a set of standards and associated technologies that allow different systems to interact
with one another utilizing one common data representation. The associated technologies allow
integration servers to be designed and implemented to facilitate the exchange of information using
the common data representation via a set of shared unified services. The FHIR standard is one
example of an integration framework which has a set of resources in XML, JSON, RDF, and Turtle
that are a common data representation with associated services for CRUD and searching. The
HAPI FHIR reference implementation is the associated technology that implements the FHIR
framework that uses CRUD services; as a result, it is possible to develop a FHIR server as a means
to support integration. In summary, the exact configuration of each of the four aforementioned
issues (overall architecture, involved technologies, source code availability, and allowable access
to mixed clients and pure or mixed systems) has a direct impact on the different available options
that can be utilized via an integration framework such as HAPI FHIR to integrate a particular

application architecture and multiple mixed clients and pure or mixed systems via FSICC.

109

5.2 Application Integration Options

In this section, we enumerate a number of different Application Integration Options to allow
an application to send/receive data with multiple mixed clients and pure or mixed systems, via
FSICC, by the creation of integration servers. To begin, Figure 5.1 contains an architecture of an
App (a client/system), its RESTful API, and its repository along with three systems (OpenEMR,
OpenMRS, and a PHR such as MTBC (MTBC, 2016)). Note that while we use health information
technology (HIT) in the example, the integration options and blueprints work for any IT system
from any domain. The different components in Figure 5.1 define three architectural blueprint
options that illustrate the alternate ways that the App can be integrated with the systems, via
FSICC, based on the four issues previously discussed in Section 5.1 (overall architecture, involved
technologies, source code availability, and allowable access to client/system). In order to facilitate
the integration of multiple systems with one another, we utilize the previously integration
framework, IFMWK, to accomplish this mapping, we assume that the integration framework
IFMWK has an available implementation that can be utilized to generate dedicated IFMWK
servers as needed. Note that the aforementioned FHIR standard and its HAPI FHIR reference
implementation correspond to the sample of an integration framework and its implementation.
Using this discussion as a basis, in this section, we present three architectural blueprint options: a
Basic Architecture option that includes an IFMWK server that works directly with the App
repository and IFMWK servers for OpenEMR, OpenMRS, and PHR; an Alternative Architecture
option that includes an IFMWK server that works directly with the App RESTful APl and IFMWK

servers for OpenEMR, OpenMRS, and PHR; and, a Radical Architecture option that removes the

110

repository and has IFMWK servers for the App API, OpenEMR, OpenMRS, and PHR. Note that
the HITs that are shown (OpenEMR, OpenMRS, and PHR) are illustrative and in practice, a
generalized version could have one or more systems via FSICC, but for explanation purposes we
utilize three HIT systems. Note that in the rest of this chapter, we use the term HIT systems as
follows. HIT is referring to health information technology such as EMRs and PHRs, and systems

is referring to pure or mixed systems as discussed in Defn. 7 of Section 4.2.

App
Repository

Calls to
RESTful API
Y
RESTful API
\ 4

App

OpenEMR OpenMRS PHR

Figure 5.1. App and HIT Systems.

The Basic Architecture option is shown in Figure 5.2a, where the assumption is made that:
direct access to the app repository is available; and, the source codes of app, RESTful API,
OpenEMR and OpenMRS HIT systems and their APIs are available. In Figure 5.2a, at the bottom,
there are IFMWK servers, see the ovals in Figure 5.2a, to load/store data from OpenEMR,
OpenMRS and PHR (named OpenEMR.IFMWK, OpenMRS.IFMWK, and PHR.IFMWK) using
their APIs (a third tier) into selected IFMWK resources; and an App.IFMWK server to load/store
data from the App repository, at the top of Figure 5.2a. Basically, each HIT systems requires an
IFMWK server (e.g., OpenEMR.IFMWAK) to extract data to/from HIT via IFMWK resources that
in turn interacts with the App.IFMWK server of the App repository. Interactions from the App

via its RESTful API are not impacted; also, the App RESTful API to the App repository. However,

111

to enable the App to take advantage of the HIT systems, two new IFMWK services
App.IFMWK.LOAD and App.IFMWK.STORE are defined. The App.IFMWK.LOAD service
retrieves all of the data from either OpenEMR, OpenMRS, or the PHR in the IFMWK format.
This App.IFMWK.LOAD service takes the JSON IFMWK from the HIT.IFMWK (e.g.,
OpenEMR.IFMWK) server and add them into the App repository via an App IFMWK service,
which converts the IFMWK format into App repository format. This allows all of the App
RESTful API calls to use this temporary data. The App.IFMWK.STORE service extracts data
from the App repository, via an App IFMWK service, which coverts App repository format into
IFMWK format and adds them into the OpenEMR, OpenMRS, or the PHR repository. The
App.IFMWK.LOAD and App.IFMWK.STORE services require source code availability of the
repository in order to make the needed calls to stage data back and forth from HIT sources. Note
that the App.IFMWK.LOAD and App.IFMWK.STORE services may also be periodically called
to ensure that the repositories at both sides are updated. In this way, the App, API, and repository
are not modified. Figure 5.2b presents a customized Basic Architecture applied to the healthcare
domain where the FHIR framework is used as an example of an integration framework for

healthcare, where all IFMWKS in Figure 5.2a is replaced by FHIR in Figure 5.2b.

112

App
Repository

RESTful API

App

Calls to
RESTful API

. X
OpenEMR g% PHR

EMR.
IEMWI
API

OpenMRS | & (g

API
= Open

z z
2= <
L 3le———| 2 App
=F
App S @ E’ Repository
o @
|
OpenEMR | & | FH | openmRs | & |(EH PHR |Z

Figure 5.2b. Basic Architecture customized with FHIR for IFMWK.

In the second option, shown in Figure 5.3a, the situation is similar to the basic option in Figure
5.2a, except that there is no direct access to the app repository. Thus, the App.IFMWK server on
the App side is moved in order to directly interact with the App RESTful API. There are still the
HIT.IFMWK servers for OpenEMR/OpenMRS/PHR as in Figure 5.3a. In this option, the App
continues to use the App RESTful API without change. However, the App.IFMWK.LOAD and
App.IFMWK.STORE services transition to become part of the App RESTful API. That is, each
App.IFMWK.READ service of the App RESTful API first calls the App.IFMWK.LOAD service,
which takes an id of the queried instance and: retrieves the related data from OpenEMR,
OpenMRS, or PHR via their IFMWK server. The second call adds retrieved data into the App
repository via another App IFMWK API service using the App.IFMWK.CREATE service. This

requires slight programmatic changes and source code availability (third issue of Section 5.1). The

113

next step in the process calls the App.IFMWK.READ service of the App RESTful API which
retrieves the related data from the App repository (which is updated with the new data from the
HIT system). Similarly, each App.IFMWK.CREATE service of the App RESTful API first adds
the related data into the App repository. Then, the App.IFMWK.CREATE service of the App
RESTful API calls the STORE service, which takes the newly added data from the App repository
via another App.IFMWK API service (i.e., a App.IFMWK.READ service) and adds them into the
OpenEMR, OpenMRS, or the PHR database, via their IFMWK service. Note that, in this way,
while the App and its calls to the App.IFMWK.RESTful API are not modified, there is a single
call is added to either the App.IFMWK.LOAD or App.IFMWK.STORE services RESTful API.
This requires source code availability of the RESTful API. Figure 5.3b presents a customized
Alternative Architecture applied to the healthcare domain where the FHIR framework is used as
an example of an integration framework for healthcare, with all of the IFMWKSs in Figure 5.3a is

replaced by FHIR in Figure 5.3b.

App
Repository

|

RESTful API

App

Calls to
RESTful API

~ APP.IFMWK

OpenEMR | & |#H | openMRs | Z | PHR

API

Figure 5.3a. Alternative Architecture with App RESTful APl Access using IFMWK.

114

App

App Repository

Calls to
RESTful API
RESTful API

App.
FHIR

OpenEMR Gg% OpenMRS PHR

API

o

Figure 5.3b. Alternative Architecture customized with FHIR for IFMWK.

In the Radical Architecture, shown in Figure 5.4a, the situation is the same as the alternative
option of Figure 5.3a, but alters the tiers by removing the repository (database). As a result, this
option is a more drastic and involves replacing the App repository and so that it now totally relies
on the HIT systems. This option would move and reconfigure all of the App data under the control
of the HIT system to store and manage all data. This requires a total rewrite of the code for the
App RESTful API with the strong requirement that all service signatures remain unchanged so as
not to impact the App. In this case, every rewritten App RESTful API service implements a
App.IFMWK service to directly call OpenEMR.IFMWK, OpenMRS.IFMWK, or PHR.IFMWK
as required to load/store data as needed. In the Radical Architecture, the services defined are:
App.IFMWK.CREATE, App.IFMWK.READ, App.IFMWK.UPDATE, and
App.IFMWK.DELETE. Source code availability and changing the APIs may be required. This
approach is clearly time and effort prohibitive. Figure 5.4b presents a customized Radical
Architecture applied to the healthcare domain, where the FHIR framework is used as an example
of an integration framework for healthcare, with all of the IFMWKSs in Figure 5.4a is replaced by

FHIR in Figure 5.4b.

115

App

o
<
3
£
9]
w
4

Calls to
RESTful API

APP.IFMWK

OpenEMR | % (B39 | openMRS PHR

API

Figure 5.4a. Radical Architecture without a Database using IFMWK.

o % %
03l | 3
App |B L b
O
x ['4
OpenEMR GE% OpenMRS (glﬁ PHR E@

Figure 5.4b. Radical Architecture customized with FHIR for IFMWK.

5.3 Integration Steps and Processes of Architectural Blueprints

This section presents a discussion of the steps and processes that are necessary to develop the
various IFMWK servers illustrated in Figures 5.2a, 5.3a, and 5.4a for the Basic, Alternative, and
Radical options. The end result is set of guidelines for the architectural blueprints for the
integration of an App application, via a App.IFMWAK server that integrates with the App RESTful
API, with multiple HIT systems, via FSICC, and a HIT.IFMWK server that integrates with the
APIs of OpenEMR, OpenMRS, and PHR. The guidelines presented in this section provides
stakeholders with a process to integrate an App with multiple HIT systems via FSICC using
IFMWK servers. This section details the blueprints for the Basic, Figure 5.2.a, Alternative, Figure

5.3.a, and Radical, Figure 5.4.a, architectures. All three of these architectures blueprints share the

116

common HIT.IFMWK blueprint which involves defining the HIT system data items to be
sent/received and designing a HIT.IFMWK server to facilitate the exchange. The three
architectures have their own specific needs, namely, the App.IFMWK server required at the App
side Repository in Figure 5.2.a, the App.IFMWK server in Figure 5.3.a, and rewriting the App
RESTful API in Figure 5.4.a with a App.IFMWK server. Note that while we are using an HIT
system and the health care domain, this is generalizable to any IT system and associated domain.
To begin, the common HIT IFMWK Blueprint involves defining the HIT system data items to
be sent/received back and forth via a set of Identified IFMWK Resources to another IFMWK
server or client, and designing a HIT IFMWK server (HIT.IFMWK) with a RESTful API to
facilitate the exchange. The processes of each step that are the guidelines are as:
1. Define the HIT system data items (i.e., for the HIT repositories in Figures 5.2.a, 5.3.a, and
5.4.a) that are needed to be exchanged to/from the App. This step consists of four sub-steps:
a. ldentify each single candidate data item (e.g., “patient name” table field) in the HIT
repository that are accessible via an HIT API.
b. For each candidate data item:
= Provide a short and clear item name: by reviewing the IFMWK resources, identify
a IFMWK resource, and mapping the candidate data item to the most comparable
data item of the identified IFMWK Resource.
= For the candidate data item, if there is no similar item’s name for the identified
IFMWK resource, identify an item of a IFMWK resource that has the same datatype

as the candidate data item.

117

= Provide a brief description that explains the mapping for the case where there is a
comparable IFMWK data item and more importantly, the case where there is only
a comparable IFMWK data type.

c. Group multiple related HIT system data items (e.g., patient name and patient gender) into
a separate and distinct data abstraction (e.g., patient entity). This would make mapping to
an ldentified IFMWK Resource clearer by finding the most similar IFMWK resource’s
name.

d. End Result: A set of Identified IFMWK Resources that map to the HIT data entities and
items.

2. Design an HIT.IFMWK server in front of the HIT system API in two sub-steps:

a. A HIT.IFMWK server is designed for all of the Identified IFMWK Resources in Step 1d
that defines a IFMWK API that has CRUD operations for all of the Identified IFMWK
Resources and interacts with the HIT API.

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the HIT.

= Create an HIT.IFMWK.Controller class that receives requests from the App (or any
other system) and forwards each request to the appropriate Identified IFMWK
Resource class based on the universally unique identifier (UUID) of an Identified
IFMWK Resource.

= Create a class for each Identified IFMWK Resource that receives requests from the
IFMWK controller class and performs the requested CRUD service. This class is
defined for each ldentified IFMWK Resource as HIT.IFMWK.IFRCName where
IFCRName is the Identified IFMWK Resource Class name. This class implements

four main CRUD services:

118

A HIT.IFMWK.IFRCName.Create service that stores an instance of a
IFMWK resource from an external call from another IFMWK server to
create and store new data into the HIT repository. This service takes the data
in as a IFMWK Resource and then converts the data into a format that can
be stored in the HIT repository via a call to one or more HIT API services.
This effectively stores IFMWK Resource data into the HIT repository. For
example, OpenEMR.IFMWAK _Patient (the Patient IFMWK Resource)
would call the service of an OpenEMR API that stores the data into the
Patient data table of OpenEMR’s MySQL database.

A HIT.IFMWK.IFRCName.Read service that is a request for an instance of
a IFMWK resource from an external call from another IFMWK server that
to read existing data from the HIT repository. This service takes the request
for a IFMWK Resource that requires a call to one or more HIT API services
to retrieve the data from the HIT and create an instance of an Identified
IFMWK Resource to send back. For example, OpenEMR.IFMWK .Patient
(the Patient IFMWK Resource) would call the service of an OpenEMR API
that reads the data from the Patient_data table and perhaps other tables of
OpenEMR’s MySQL database and creates a FHIR Patient instance.

An HIT.IFMWK.IFRCName.Update service that receives an instance of a
IFMWK resource from an external call from another IFMWK server to
update existing data into the HIT repository. This service takes the data in

as a IFMWK Resource and then converts the data into a format that can be

119

stored in the HIT repository via a call to one or more HIT API services that
update an existing instance.

e A HIT.IFMWK.IFRCName.Delete service that receives a request to
remove one or more instances (based on the parameters in the request) of a
IFMWK resource from an external call from another IFMWK server to
delete existing data from the HIT repository. This service takes the request
for a IFMWK Resource and interprets the request to call one or more HIT

API services to delete instance(s).

Note that for healthcare and similar domains in practice, there may be a desire to not implement
either HIT.IFMWK.IFRCName.Update or HIT.IFMWK.IFRCName.Delete services since in
electronical medical records, incorrect data is not deleted, but is marked as incorrect. For example,
an incorrect laboratory test result assigned to the wrong patient can be marked as not valid.

The Basic Architecture Blueprint, Figure 5.2.a, allows information from the App repository to
be sent/received back and forth via a set of Identified IFMWK Resources to another IFMWK
server or client by designing an App IFMWK server (App.IFMWK) with a RESTful API to
facilitate the exchange. There are three main steps to the guideline: define the App data items,
design the App IFMWK server with the LOAD and STORE services, and reuse the HIT IFMWK
guideline:

1. Define the App data items (i.e., App repository tables’ fields in Figure 5.2.a) needed to be
exchanged with an HIT system. This step consists of four sub-steps in which the first three

processes are identical to the processes of Step 1 of the HIT IFMWK Blueprint with the data

120

items now referring to the App data items as opposed to the HIT data items.
End Result: A set of Identified IFMWK Resources that map to the App data items.

2. Design the App IFMWK server which consists of the App.IFMWK.LOAD and
App.IFMWK_.STORE services. This step has two sub-steps.

a. A App.IFMWK.LOAD service that calls “read” services of an HIT.IFMWK to retrieve
(in IFMWK format) all of the new added data from the HIT repository. Then, the
App.IFMWK.LOAD service converts the retrieved IFMWK resources into a format
that can be stored into App repository via App repository API. This read occurs upon
startup to initialize the App repository with information from HITs.

b. A App.IFMWK.STORE service that calls App repository API to retrieve all of the new
added data in App repository and converts into the IFMWK format. Then, the
App.IFMWK.STORE service simply forwards the converted data to appropriate
HIT.IFMWK.CREATE services which add the new data into the HIT repository. This
store occurs when the mobile app closes to update the HIT repository with information
from App repository.

3. Employ the HIT IFMWK Blueprint.

Recall that the Basic Architecture has access to the source code of the repository. There may be
more than one way to access the repository via Web/cloud services, an API (as with OpenEMR),
or by direct programmatic access to the repository (e.g., a MySQL database). As a result,
App.IFMWK.LOAD and App.IFMWK.STORE services would utilize one of these access modes
in conjunction with calls to HIT.IFMWK CRUD services (e.g., OpenEMR.IFMWK .Patient.Read)
and take the result of these calls for the identified IFMWK resources, and parse and put this

information to/from App repository.

121

The Alternative Architecture Blueprint, Figure 5.3.a, also communicates with the common HIT
IFMWK Blueprint as previously described in the last step of the Alternative Architecture blueprint.
There are four main steps to the Alternative Architecture guideline: define the App data items and
design the App IFMWK server (similar to the one in the Basic Architecture Blueprint), design the
LOAD and STORE services, and reuse the HIT IFMWK Blueprint. The processes of each step are
similar to the ones of the Basic Architecture guideline of Figure 5.2.a:

1. Define the App data items (i.e., App repository tables’ fields in Figure 5.3.a) that are needed
to be exchanged with an HIT system. This step consists of four main processes in which the
first three processes are identical to the processes of Step 1 of the HIT IFMWK Blueprint with
the data items now referring to the App data items as opposed to the HIT data items.
End Result: A set of Identified IFMWK Resources that map to the App data items.

2. Design an App.IFMWK server in front of the App RESTful API in two sub-steps:

a. A App.IFMWK server is designed for all of the Identified IFMWK Resources in Step
1d that defines a IFMWK API that has CRUD operations for all of the Identified
IFMWK Resources and interacts with the HIT.IFMWK server.

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the
App repository.
= A App.IFMWK.IFRCName.Create service that stores an instance of a IFMWK

resource from an external call from another IFMWAK server to create and store new
data into the App repository. This takes the data in as a IFMWK Resource and then
converts the data into a format that can be stored in the App repository via a call to

one or more App RESTful API services. This effectively stores IFMWK Resource

122

data into the App repository. This would be similar to the OpenEMR example for
the HIT.IFMWK server.

= A App.IFMWK.IFRCName.Read service that is a request for an instance of a
IFMWK resource from an external call from another IFMWK server that to read
existing data from the App repository. This takes the request for a IFMWK
Resource that requires a call to one or more App RESTful API services to retrieve
the data from the App repository and create an instance of an Identified IFMWK
Resource to send back. This would be similar to the OpenEMR example for the
HIT.IFMWK server.

= AnApp.IFMWK.IFRCName.Update service that receives an instance of a IFMWK
resource from an external call from another IFMWK server to update existing data
into the App repository. This takes the data in as a IFMWK Resource and then
converts the data into a format that can be stored in the App repository via a call to
one or more App RESTful API services, updating an existing instance.

= A App.IFMWK.IFRCName.Delete service that receives a request to remove one or
more instances (based on the parameters in the request) of a IFMWK resource from
an external call from another IFMWK server to delete existing data from the App
repository. This takes the request for a IFMWK Resource and interprets the request
to call one or more App RESTful API services to delete instance(s).

These App.IFMWK CRUD services are called by the App API in order to send information
back and forth in a IFMWK format that can then be shifted to the HITs via the

App.IFMWK.LOAD and App.IFMWK.STORE operations defined in Step 3.

123

3. Design the App.IFMWK.LOAD and App.IFMWK.STORE services. These two services are
located between the App.IFMWK server and any HIT system IFMWK server and have sub-
steps. The HIT.IFMWK CRUD services are used to support these functions.

a. A App.IFMWK.LOAD service that calls “read” services of an HIT.IFMWK to
retrieve (in IFMWK format) the new added data into HIT system. Then, the
App.IFMWK.LOAD service simply forwards the retrieved data to “create” services
of App.IFMWK which adds the new data into the App repository. This read occurs
when the App.IFMWK.IFRCName.Read is called to update the App repository
with information from HITSs.

b. A App.IFMWK.STORE service that calls “read” services of the App.IFMWK to
retrieve (in IFMWK format) the new added data in App repository. Then, the
App.IFMWK.STORE service simply forwards the retrieved data to “create”
services of HIT.IFMWK which adds the new data into the HIT repository . This
store occurs after the App.IFMWK.IFRCName.Create is called to update the HIT
repository with information from App repository.

4. Employ the HIT IFMWK Blueprint.

Note that in practice, there may be a desire to not implement either

App.IFMWK.IFRCName.Update or App.IFMWK.IFRCName.Delete since in electronical

medical records, incorrect data is not deleted, but is marked as incorrect. In this case, we may not

want the App to propagate incorrect data into the HIT systems.
Finally, the Radical Architecture Blueprint, Figure 5.4.a, has three main steps: define the App
data items, redesign the App RESTful API, and communicate the IFMWK HIT Blueprint. The

processes of these steps in this guideline are:

124

1. Define the App data items, see Figure 5.4.a, that are needed to be exchanged with an HIT
system. This step consists of four main processes in which the first three processes are identical
to the processes of Step 1 of the HIT IFMWK guideline with the data items now referring to
the App data items as opposed to the HIT data items.
End Result: A set of Identified IFMWK Resources that map to the App data items.

2. Redesign the App RESTful API to implement App.IFMWK server in two sub-steps:

a. App.IFMWK server is designed for all of the Identified IFMWK Resources in Step 1d that
defines a IFMWK API that has CRUD operations for all of the Identified IFMWK
Resources and interacts with the HIT.IFMWK.

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the App.

= A App.IFMWK.IFRCName.Create service that receives the new data from the
App, converts it into a format that can be assigned to a IFMWK resource, creates
an instance of the IFMWK resource, and populates the IFMWK resource with the
converted data. After that, this service calls the HIT.IFMWK.IFRCName.Create
service with the IFMWK resource as a parameter.

= A App.IFMWK.IFRCName.Read service that receives the id of a IFMWK resource
from the App, invokes the HIT.IFMWK.IFRCName.Read service with the id as a
parameter. After receiving the result in IFMWK format, this service converts the
result into a format that can be used by the App and sends it to the App.

= An App.IFMWK.IFRCName.Update service that 1is similar to the
App.IFMWK_.IFRCName.Create service, however, this service updates the existing

data.

125

= A App.IFMWK.IFRCName.Delete service that receives the id of a IFMWK
resource from the App, calls the HIT.IFMWK.IFRCName.Delete service.
3. Employ the HIT IFMWK Blueprint.
Note that for healthcare and similar domains in practice, there may be a desire to not invoke either
App.IFMWK.IFRCName.Update or App.IFMWK.IFRCName.Delete services for the same issue
discussed above. Also note that there is no need for LOAD and STORE in this Radical option
since there is no repository remaining on the App side of Figure 5.4.a.

In summary, there are a number of observations to make regarding the IFMWK CRUD, LOAD,
and STORE services. The CRUD services are defined to manipulate a single IFMWK resource
that interacts with either the App Repository or the HIT system in order to take information in
IFMWK format and convert it back and forth into the format of the data items in the
Repository/HIT. This requires creating, reading, updating or deleting to/from the Repository/HIT
using the respective API. For the read service on a particular resource, the information is retrieved
using services of the API in the native format of the Repository/HIT and converted to the common
format of the IFMWK resource so that it can be delivered through the IFMWK.READ service.
For the update service on a particular resource, the resource comes in the common format and the
update service would extract out the data items so that they can be assembled to call the appropriate
Repository/HIT API services. The create and delete services would work in a similar fashion. The
LOAD and STORE services differ in that they deal with multiple IFMWK resources. For STORE,
a set of IFMWK resources is passed in via a common format and these resources are extracted and
assembled to allow multiple API services to be called to store the information in the destination
format of the Repository or HIT system. For LOAD, multiple API services from the

repository/HIT are called to gather information that is then converted and assembled into the

126

appropriate IFMWK resources. The resource concept of IFMWK facilitates information
exchange. However, there is still extraction/conversion required to transition the data from the

source to the sharable IFMWK format.

5.4 Blueprint Prototype Applied to the Healthcare Scenario

This section presents a proof-of-concept prototype that demonstrates the ability of a select
subset of the Blueprints from Sections 5.2 and the usage of the corresponding guidelines in Section
5.3, that can be applied to the healthcare scenario from Section 2.4. This is by applying the
blueprint process on two integration cases: (case 1) integrate the CT? mHelth app into the
OpenEMR HIT system via FSICC (Chapter 3); and (case 2) integrate the ShareMyHealth
mHelth app into the MyGoogle HIT system via FSICC (Chapter 3). In the process, we fully
illustrate the application of two of the three architectures blueprints (Basic, Alternative, Radical)
and the HIT IFMWK blueprint to the two integration cases above. The end result of this process
is that the CT? and ShareMyHealth client Apps are able to utilize the services of the OpenEMR
and MyGoogle systems, respectively, via the global services of the FSICC. The remainder of
this section is organized into two parts. In Section 5.4.1, we detail the rational of the chosen
architectural options for integrating the two mHelth apps into the two HIT systems (cases 1 and
2) using: the Alternative architecture to integrate CT? app into OpenEMR, see Figure 5.3b in
Section 5.2; and the Basic architecture to integrate ShareMyHealth app into MyGoogle, see Figure
5.2b in Section 5.2. Then, in Section 5.4.2, we apply the three architectural options and associated
guidelines of Section 5.3 to describe the integration steps and processes for integration cases 1 and

2.

5.4.1 Integrating Architectural Options for CT? and ShareMyHealth

127

This section explains the rationale that influenced the selection of the most suitable integration
option for the two mHealth apps/clients CT2? and ShareMyHealth and two HIT systems
OpenEMR and MyGoogle for the three architecture options, Basic Figure 5.2, Alternative Figure
5.3, Radical Figure 5.4, discussed in Section 5.2. Note that we made an assumption that the FSICC
has already been built and published its own IFMWK server (FSICC.FHIR) so that different apps
and systems can integrate via the FSICC FHIR server. To begin, for the CT? mHealth app (case 1),
the Alternative architecture was chosen and reconfigured, as shown in Figure 5.5, based on a
number of reasons. First, we had significant human knowledge of the CT2? mHealth app and
RESTful API and maintain the MySQL database. Second, we had the source code available for:
the App, the RESTful API, and the MySQL database. This meant that we had the ability to do any
of the three architectural options, but we chose the Alternative architecture we were able to
maintain the processing and flow of the CT2 app through the RESTful API to the database. To
apply the Alternative architecture, two FHIR servers, as shown in Figure 5.5, are created: one for
the CT? RESTful APl (CT2FHIR) and another one for the OpenEMR APl (OpenEMR.FHIR).
These two FHIR servers are utilized for exchanging data between CT2 and OpenEMR via FSICC.
Moreover, from the CT? App’s perspective, the signatures of the services of the CT2?RESTful APIs
remained unchanged, while from the CT2 API’s perspective, the interaction with the app and the
database remained unchanged. For example, when a user interacts with the CT2 App to view and
modify a concussion incident for a student, the process transitions from the user request to an API
call to a database access to a returned concussion incident. The only change in the process is at the
start when a user requests a concussion incident for the student and at the end when a user stores
the modified concussion incident for a student. In both situations, the FHIR server of the CT?

RESTful API intercepts and retrieves/stores the concussion incident to OpenEMR via FSICC.

128

When the incident is loaded from OpenEMR.FHIR via FSICC.FHIR, a temporary copy is made in
the CT? database and all of the changes that occur via the RESTful API are made to the database
on that temporary copy. The final store sends the temporary copy through the CT2.FHIR and
FSICC.FHIR servers to OpenEMR.FHIR. We decided against the Radical Architecture since we
didn’t want to make the substantial changes that would be required to migrate all of the information
in the CT? database to OpenEMR. This would have included registration information, permissions
(who can see/modify which concussion incidents), etc., that would have been difficult to directly

store in OpenEMR.

CiZ

App
Database

CT?
mHealth
App

Calls to
RESTful API
r
A
RESTful API

| FSICC

OpenEMR

Figure 5.5. Alternative Architecture for Integrating CT? into OpenEMR via FSICC.

For case 2, the Basic architecture was chosen and reconfigured for the ShareMyHealth (SMH)
mHealth app as shown in Figure 5.6. For the SMH app, the source code is available for: the app,
the RESTful API, and the repository. Based on this, we are able to utilize any of the three
architectural options. However, we decide to apply the Basic architecture since we want to keep
the SMH’s architecture unchanged as much as we can. To apply the Basic architecture two FHIR
servers as shown in Figure 5.6 are created: one for the SMH repository (SMH.FHIR) and another

one for the MyGoogle APl (MyGoogle.FHIR). These two FHIR servers, in addition to

129

FSICC.FHIR server, are utilized for exchanging data between SMH and MyGoogle via FSICC.
The Basic architecture also requires SMH to create two services into FHIR: SMH.FHIR.LOAD
which retrieves related data from MyGoogle, via FSICC.FHIR, in the FHIR format; and,
SMH.FHIR.STORE which grabs the data from the SMH repository, via an SMH FHIR service,
and sends them to MyGoogle via FSICC.FHIR. These two services are meant to be periodically
called to ensure that the repositories at both sides are updated. Note that interactions from both the
SMH via its RESTful APl and the SMH RESTful API to the SMH repository are not changed The

Alternative and Radical architectures are not suitable for the same reason stated for case 1.

SMH

SMH
Repository

Calls to
RESTful API
y 3
A
RESTful API
4

FHIR
MyGoogle API

Figure 5.6. Basic Architecture for Integrating SMH into MyGoogle via FSICC.

5.4.2 Applying Integration Steps and Processes

In this section, we apply the guidelines of the Blueprint of Sections 5.2 and 5.3 to enumerate
the integration steps and processes for integration cases 1 and 2 from Section 5.4.1. For case 1 in
Section 5.4.1, we know that we need to integrate the CT? mHelth app into the OpenEMR HIT

system via FSICC, see Figure 5.5, using two blueprints: the Alternative architecture to create

130

the CT2.FHIR server, and the HIT FHIR blueprint to create OpenEMR.FHIR server. First, the
steps of the Alternative architecture from Section 5.3 can be reformulated as:

1. Define the CT? mHealth data items from the CT? that need to be exchanged with
OpenEMR via FHIR to yield the Identified FHIR resources for CT?.

2. Design a CT2.FHIR server in front of the CT? RESTful API.

3. Design CT2FHIR CRUD services (CT2FHIR.IFRCName.Create,
CT2.FHIR.IFRCName.Read, CT2.FHIR.IFRCName.Update, and
CT2FHIR.IFRCName.Delete) in addition to CT2.FHIR.LOAD and CT2FHIR.STORE
services that extend the CT? RESTful API so that the exchange via FHIR can occur
with OpenEMR.

4. Employ the HIT FHIR Blueprint.

Then for the HIT FHIR blueprint, the two steps can be reformulated as:

1. Define the OpenEMR system data items that are needed to be exchanged to/from the
CT?mHealth app via FHIR to yield the Identified FHIR resources for OpenEMR.

2. Design an OpenEMR.FHIR server in front of the OpenEMR system API.

The main focus for both of these blueprints is in Step 1 of each which focuses on the way to identify
the data items that need to be exchanged from each side via FHIR. This requires a designer to
understand the correspondence between two sets of information:
e The data items of the CT? concussion MySQL database and the relevant FHIR resources
that can be chosen to store them.
e The data items of the OpenEMR MySQL database and the relevant FHIR resources that

can be chosen to store them.

131

The challenge is to consider these correspondences simultaneously to understand the way that the
data items of the concussion app can be mapped via FHIR resources to the data items of OpenEMR.
The end result is a set of Identified FHIR resources that serves as the common layer to facilitate
the exchange of data between CT? and OpenEMR via FHIR services.

To begin this analysis process, in Step 1 of the Alternative Architecture Blueprint from Section
5.3, we start by identifying the four key data items of CT2 mHealth that are in four tables of the
MySQL Concussion database, namely: the Students table that tracks basic information on students
(e.g., demographics, school, etc.); the Incidents table that tracks information on the concussion
incident (e.g., when concussion happened, initial symptoms, etc.); the Incident_Locations table
that tracks where the concussion occurred (e.g., at school, at sports field, at home, etc.); and, the
Incident_Lingering_Symptoms table that tracks concussion symptoms observed in the days

following the concussion (e.g., dizzy, nauseous, etc.). These four tables are shown in Figure 5.7.

Students incidents

student_id
first_name
middle_name
last_name

suffix

Email
student_number
school_id

incident_id
incident_reference_id
student_id
incident_location_id
incident_location_details
sport_id
contact_mechanism_id
impact_location_id
Removed
removed_by_user_id
tool_id
symptom_comments
Date

school_id
reporting_user_id

head_gear_usage
parents_notified
loss_conciousness

incident_locations incident_lingering_symptoms
location_id record_id
title symptom_id
description

Figure 5.7. CT? Data Items of Interest.
Given the understanding of this information, we can continue the analysis process with Step 2

of the Alternative Architecture Blueprint in Section 5.3 to determine the Identified FHIR

132

Resources that can be utilized to capture the information from Figure 5.7. To track concussion
data on a student, we can use the FHIR resources (Health Level 7, Fast Health Interoperable
Resources, 2016) as shown in Figure 5.8. The Identified FHIR Resources are: Patient, Condition,
Encounter, and Observation. Specifically: Patient to track demographic and other basic
information on patients (students that suffer concussions); Condition to track a medical condition,
in our case a concussion; Encounter to track the different times that changes are made, in our case,
as the concussion incident is tracked over time such as lingering symptoms; and Observation to
track symptoms and lingering symptoms of patients (students). Examining the MySQL tables of
the CT? database in comparison to the aforementioned FHIR resources, we can establish a
correspondence or mapping between them as shown in Figure 5.9. In this mapping of CT? database
MySQL tables < FHIR resources we have: students < Patient; incidents < Condition;

incident_lingering_symptoms <> Observations; and incident_locations<> Encounter.

Patient Condition
Id id
name given Code
name.given Patient.reference

name family Encounter.id
name.suffix Notes
Telecom

categon
Identifier : BOTY
managingOrganization Evidence [d

bodySite
clinicalStatus
Asserter

evidence detail
dateRecorded

identifier
Encounter.reference
Evidence.detail
Evidence.FormatComment
Evidence.hashCode

Observation

Id id

location id
reason Subject.id
Performer.id
issued
related.type

status
value

Figure 5.8. FHIR Resources of Interest.

133

Students

student_id

incidents

Condition

first_name

incident_id

id

incident_reference_id

middle_name

Code

student_id

Tast_name

Patient.reference

incident_location_id

suffix

€—> [Encounter.id

incident_location_details

Email

Notes

student_number

school_id

sport_id

category

Contact_mechanism_id

Evidence.id

impact_location_id

bodySite

Removed

removed by user_id

clinicalStatus
Asserter

tool_id

Abatement

symptom

Date

school_id

reporting_user_id

head_gear_usage

parents_notified

loss_conciousness

incident_locations

incident_lingering_

Observation] location_id

[record_id

| title

[symptom_id

N\

Encounter

Id

location

reason

Figure 5.9. Mapping from CT? to/from FHIR.

Now, let’s turn the discussion to Steps 1 and 2 of the HIT FHIR Blueprint from Section 5.3 that

involves an analogous process to Figures 5.7, 5.8, and 5.9, with the data items of OpenEMR. Since

we have already arrived at the FHIR resources needed for mapping, Figure 5.8, we can reuse the

aforementioned Identified FHIR Resources to assist in the identification of the appropriate four

data items in OpenEMR in Figure 5.10, namely: the Patient_Data table that tracks patient (student)

demographic data; the Lists table that tracks issues related to medical problems, etc. (concussion

medical problem); the Form_Encourter table that tracks the event involved with the patient

visiting (student seeing nurse); and, the Procedure_Order_Code table that tracks different codes

associated with procedures. These four items correspond to the FHIR Resources as shown in

Figure 5.11. This mapping has: Patient_data <> Patient; Lists <> Condition; procedure_order_code

< Observations; and form_encounter< Encounter.

134

Patient_data Lists

Pid Id

Fname Title

Mname P'd

Lname injury_type

T E— Extrainfo

. Activity

Email injury_grade

Pubpid injury_part

referrerlD Occurance
User
reinjury_id
Comments
Begdate
Destination
Referredby
Type
Classification
Diagnosis

procedure_order_code form_encounter

procedure_order_id id

procedure_order_seq facility
reason

Figure 5.10. The OpenEMR Data Items of Interest.

Patient_data Patient Lists Condition
Pid Id Id id
Fname name given Title Code
Mname name given Pid Patient reference
Tname nome ?u’;;:‘xv injury_type le—> [Encounter.id
Title Dame:sy Extrainfo Notes
Emal dontifier Activity. category
Pubpid ‘managingOrganization injury_grade Evidence.id
HmensEnEEERe injury_part bodySite
referreriD Occurance clinicalStatus
User Asserter
reinjury id Abatement
Comment 1t idence.detail
Begdate dateRecorded
Destination identifier
Referredby Encounter.reference
Type Evidence.detail
Classification Evidence.FormatComment
Diagnosis Evidence.hashCodk

rocedure_order_code

procedure_order_id

procedure_order_seq

Encounter

form_encounter I

id
facility
reason

location
reason

Figure 5.11. Mapping from OpenEMR to/from FHIR.

The last step of the HIT FHIR Blueprint is the creation of the OpenEMR.FHIR server. As
described in the HIT FHIR Blueprint and based on the selected FHIR resources in the provisos
steps, we created a FHIR controller class which receives requests from the CT? mHealth app, or a
third-party such as FSICC, and sends the request to the appropriate OpenEMR FHIR resource class
along with any parameters. We also created four OpenEMR Identified FHIR resources classes
(i.e., Patient, Condition, Observation, and Encounter) as shown in the bottom right of Figure 5.12.
For each OpenEMR FHIR resources classes, we defined: OpenEMR.FHIR.IFRCName.Create and
OpenEMR.FHIR.IFRCName.Read). The OpenEMR.FHIR.IFRCName.Create service receives an
instance of a FHIR resource that involves new data, of a specific class, converts the data into a

135

format that can be stored in the OpenEMR system, and sends the converted data to a create service
of the OpenEMR system API that stores the data into the OpenEMR database. The
OpenEMR.FHIR.IFRCName.Read service retrieves data from the OpenEMR database via a read
service of the OpenEMR system API, creates a new instance of the specific FHIR resource class,
and converts the retrieved data into a format that can be assigned to the identified OpenEMR FHIR
resource instance. Following that, this service populates the corresponding OpenEMR FHIR
resource instance with the converted data, and sends this FHIR resource instance to the CT?
mHealth app, or a third-part such as FSICC. This service is also designed to retrieve all of the
related data on the specific data item if there are no passed parameters.

Finally, the remaining step of the Alternative Architecture Blueprint in Section 5.3 is to
implement the CT2.FHIR server. As described in the Alternative Architecture Blueprint and based
on the selected FHIR resources, we created a FHIR controller class which receives requests from
the CT2.FHIR.LOAD and CT2.FHIR.STORE services; and sends the request to the appropriate
CT? FHIR resource class along with any parameters. We also created four CT? Identified FHIR
resources classes (i.e., Patient, Condition, Observation, and Encounter) at the top right of Figure
5.12 shows. For each of these CT2 FHIR resources classes, we created two main CRUD service,
CT2FHIR.IFRCName.Create and CTZFHIR.IFRCName.Read and CT2FHIR.LOAD and
CT2FHIR.STORE services. The CT2FHIR.IFRCName.Create service receives an instance of a
FHIR resource with new data, converts the data into a format that can be stored in the CT? database,
and sends the converted data to the CT? RESTful API (a create service) which stores the data into
the CT? database. The CT2.FHIR.IFRCName.Read service retrieves data from the CT? database
viaa CT? RESTful API (aread service), creates a new instance of related CT2 FHIR resource class,

and converts the retrieved data into a format that can be assigned to the CT? FHIR resource

136

instance. After that, the CT2.FHIR.IFRCName.Read populates the CT? FHIR resource instance
with the converted data, and finally sends this FHIR resource instance to the request source. The
CT2.FHIR.IFRCName.Read service also retrieves all of the related data about specific data item
if there are no passed parameters. The CT2.FHIR.LOAD service takes an id of the queried
CT2FHIR resource instance, retrieves the related data from the OpenEMR system via
OpenEMR.FHIR and FSICC.FHIR servers, and adds retrieved data into the CT? database via
another CT? FHIR service (i.e., the CT2FHIR.IFRCName.Create service). Finally, the
CT2.FHIR.STORE service calls the CT2FHIR.IFRCName.Read service to retrieve (in FHIR
format) all of the new added data in CT? database. Then, the CT2.FHIR.STORE service simply
sends the retrieved data to “create” services of OpenEMR.FHIR, via the FSICC.FHIR server,

which adds the new data into the OpenEMR system.

SMH mHealth app CT2 mHealth app
Repository RESTful API
User Patient Observat tion Condition Encounter Patient
Resource Resource Resource Resource Resource Resource
| LOAD ‘—-| FHIR Controller ‘<—>| STORE | | LOAD ‘—-| FHIR Controller |<_>| STORE |
T—— SMH FHIR Server _ CT2 FHIR Server

FHIR Controller

FSICC FHIR Server

User Observation Patient Encounter ondition
Resource Resource Resource Resource | | Resource

MyGoogle FHIR Server) , OpenEMR FHIR Server

User Patient Observat tion Condition Encounter Patient Observation
Resource Resource Resource Resource Resource Resource

API API

MyGoogle OpenEMR

Figure 5.12. Combined Result of the Two Blueprints.

137

From Section 5.4.1, we know that, for case 2, we need to integrate the SMH mHelth app into
the MyGoogle HIT system via FSICC, see Figure 5.6, using: the Basic architecture blueprint to
create the SMH.FHIR server, and the HIT FHIR blueprint to create MyGoogle.FHIR server.
First, the steps of the Basic architecture can be reformulated as:

1. Define the SMH mHealth data items from the SMH’s repository that need to be
exchanged with MyGoogle via FHIR to yield the Identified FHIR resources for SMH.
2. Designa SMH.FHIR server in front of the SMH repository that includes the two service
SMH.FHIR.LOAD and SMH.FHIR.STORE so that the exchange via FHIR can occur
with MyGoogle.
3. Employ the HIT FHIR Blueprint.
Then, for the HIT FHIR blueprint, the two steps can be reformulated as:
1. Define the MyGoogle system data items that are needed to be exchanged to/from the
SMH mHealth app via FHIR to yield the Identified FHIR resources for MyGoogle.
2. Design an MyGoogle.FHIR server in front of the MyGoogle system API.
Similar to case 1, we start by performing Step 1 of the Basic Architecture Blueprint. Specifically,
we identify the three key data items of SMH mHealth that are in three tables of the SMH repository,
namely: the Measurements table that tracks fitness data of each patient (e.g., height, weight, steps,
etc.); the Patients table that tracks basic information on patients (e.g., demographics, gender, etc.);
and, the Users table that holds information on SMH’s users (e.g., user_id, user_name, etc.). These

three tables are shown in Figure 5.13.

138

Patients
patient_id
first_name
middle_name
last_name
Email

Measurements

measure_id

measure_name

measure_type

value

date

Users

user_id

user_name

Password_hash

Figure 5.13. SMH Data Items of Interest.

Given the understanding of this information, we can continue the analysis process with Step 2

of the Basic Architecture Blueprint to determine the Identified FHIR Resources that can be utilized

to capture the information from Figure 5.13. To track measurement data on a patient we can use

the FHIR resources as shown in Figure 5.14: Observation, Patient, and User. Specifically:

Observation to track measurement of patients; Patient to track demographic and other basic

information on patients; and, User to maintain users’ data. Examining the tables of the SMH

repository in comparison to the aforementioned FHIR resources, we can establish a

correspondence or mapping between them as shown in Figure 5.15. In this mapping of SMH

repository tables <> FHIR resources, we have: Measurements <> Observation; Patients <> Patient;

and Users < User.

Patient

Id
Name.given
Name.given
Name.family
Telecom

Observation

Id

Note

Type

Value

Issued

Users

Id

Name

Note

Figure 5.14. FHIR Resources of Interest.

139

Patients Patient Measurements Observation
patient_id Id measure_id Id
first_name _ « | Name.given measure_name P Note
middle_name ~ “[Name.given measure_type -~ Type
last_name Name.family value Value
Email Telecom date Issued
Users User

user_id |l

user_name S 7| Name

Password_hash Note

Figure 5.15. Mapping from SMH to FHIR.

For the HIT FHIR Blueprint, we now discuss Steps 1 and 2 that are similar to the processes in
Figures 5.13, 5.14, and 5.15, with the data items of MyGoogle. Since we have already arrived at
the FHIR resources needed for mapping, Figure 5.14, we can reuse the aforementioned Identified
FHIR Resources to assist in the identification of the appropriate three data items in MyGoogle in
Figure 5.16, namely: the DataSources table that tracks fitness data of each patient (e.g., height,
weight, steps, etc.); the Patients table that tracks patient demographic data; and, the Users table
that holds about MyGoogle users. These three items correspond to the FHIR Resources as shown
in Figure 5.17. In the mapping of MyGoogle data items <> FHIR resources we have: DataSources

<& Observation; Patients <> Patient; and Users < User.

Patients DataSources
p_id datasource_id
f_name datasource_name
m_name datasource_type
|_name value
Email date
Users
u_id
u_name
Psswrd_hash
Figure 5.16. MyGoogle Data Items of Interest.
Patients Patient DataSources Observation
p_id Id datasource_id Id
f_name _ « | Name.given datasource_name s Note
m_name = “[Name.given datasource_type =~ T Type
|_name Name.family value Value
Email Telecom date Issued
Users User
u_id Id

u_name

N

A 4

Name

Psswrd_hash

Note

Figure 5.17. Mapping from MyGoogle to FHIR.

140

The last step of the HIT FHIR Blueprint is the creation of the MyGoogle.FHIR server. As
described in the HIT FHIR Blueprint and based on the selected FHIR resources in the provisos
steps, we created a FHIR controller class which receives requests from the SMH mHealth app, or
a third-party such as FSICC, and sends the request to the appropriate MyGoogle FHIR resource
class along with any parameters. We also created three MyGoogle Identified FHIR resources
classes (i.e., Patient, Observation, and User) as shown in the bottom left of Figure 5.12. For each
of these MyGoogle FHIR resources classes, we defined: MyGoogle.FHIR.IFRCName.Create and
MyGoogle.FHIR.IFRCName.Read). The MyGoogle.FHIR.IFRCName.Create service receives an
instance of a FHIR resource that involves new data, of a specific class, converts the data into a
format that can be stored in MyGoogle system, and sends the converted data to a create service of
the MyGoogle system API that stores the data into the MyGoogle database. The
MyGoogle.FHIR.IFRCName.Read service retrieves data from the MyGoogle database via a read
service of MyGoogle system API, creates a new instance of the specific FHIR resource class, and
converts the retrieved data into a format that can be assigned to the identified MyGoogle FHIR
resource instance. Following that, this service populates the corresponding MyGoogle FHIR
resource instance with the converted data, and sends this FHIR resource instance to the SMH
mHealth app, or a third-part such as FSICC. This service is also designed to retrieve all of the
related data on the specific data item if there are no passed parameters.

Finally, the remaining step of the Basic Architecture Blueprint is to implement the SMH.FHIR
server. As described in the Basic Architecture Blueprint and based on the selected FHIR resources,
we created a FHIR controller class which receives requests from the SMH.FHIR.LOAD and
SMH.FHIR.STORE services and sends the request to the appropriate SMH FHIR resource class

along with any parameters. We also created three SMH Identified FHIR resources classes (i.e.,

141

Patient, Observation, and User) at the top left of Figure 5.12 shows. Then, we created the two
services: SMH.FHIR.LOAD and SMH.FHIR.STORE. The SMH.FHIR.LOAD service retrieves
all related data from the MyGoogle system via MyGoogle.FHIR and FSICC.FHIR servers, and
adds retrieved data into the SMH repository. Finally, the SMH.FHIR.STORE service retrieves, in
FHIR format, all of the new added data in SMH repository. Then, the SMH.FHIR.STORE service
simply sends the retrieved data to “create” services of MyGoogle.FHIR, via the FSICC.FHIR
server, which adds the new data into the MyGoogle system.

Note that the FSICC.FHIR, middle of Figure 5.12, has five resources: Observation, Patient,
Encounter, Condition, and User. These resources were selected as a result of FHIR resources
selection of both sides: CT? and OpenEMR require Observation, Patient, Encounter, and Condition
FHIR resources on the right side of Figure 5.12; and, SMH and MyGoolge require Observation,
Patient, and User FHIR resources on the left side of Figure 5.12. Also note that the role of
FSICC.FHIR server simply is to send the FHIR instances back and forth between the associated
clients and systems. That is, between CT? and OpenEMR FHIR servers on one side; and between

SMH and MyGoogle FHIR servers on the other side.

5.5 Related Work

This section reviews two efforts that illustrate FHIR design and implementation: enabling better
interoperability for healthcare (Kasthurirathne, Mamlin, Kumara, Grieve, & Biondich, 2015) and
applying FHIR in an integrated health monitoring system (Franz, Schuler, & Kraus, 2015). The

work in (Kasthurirathne, Mamlin, Kumara, Grieve, & Biondich, 2015) provided a new APl module

142

for OpenMRS system that has been built using FHIR. The processes of designing and developing
the OpenMRS FHIR API included: design a framework that assists in adding FHIR-based API for
OpenMRS; select a third party FHIR library to implement FHIR resources creation and validation;
develop a FHIR-based API for the OpenMRS system; and, implement the search service of a
number of FHIR resources that are capable of retrieve data from the OpenMRS system. The
architecture of the presented FHIR module consists of two layers: the FHIR web layer which
mainly retrieves FHIR resources from the FHIR API layer and the FHIR API layer that basically
models and validates FHIR resources. The initial prototype of the FHIR controller interacted with
the Patient and Observation resources with a middle layer that transitions information to/from
OpenMRS. This effort is similar to our work on architectural blueprints guidelines as both works
presented steps to design and develop an integration framework in front of systems that
facilitates system interoperability. However, their effort was focus on the FHIR standard, and
as a result is limited to the healthcare domain and only highlighted the main steps of
implementing a HAPI FHIR API without providing a detailed discussion on such steps.
Furthermore, their effort presented an integration option, similar to our Radical Architecture
Blueprint, that extended OpenMRS system with FHIR API. In contrast to this effort, our
approach provided detailed steps and process of designing and implementing an integration
framework that can be applied to any integration framework of any domain including FHIR and
HAPI FHIR.

The work of (Franz, Schuler, & Kraus, 2015) presented an extension to a health monitoring
system using FHIR to enable interoperability between medical devices and HIT systems. The
health monitoring system consists of an aggregation manager module which is a mobile device

and a telehealth service center module which is a server. These two modules were extended by

143

adding components, which are implemented using FHIR, to enable their integration. The
aggregation manager module was extended with two services: FHIROBSMessageSender which
sends the measured data as Observation FHIR resource to the telehealth service center module;
and, FHIRDORMessageSender that sends DeviceObservationReport FHIR resource to the
telehealth service center module. The telehealth service center module was extended with two
services: OBSController and DORController which receive Observation and
DeviceObservationReport FHIR resources respectively from the aggregation manager module.
This effort is similar to our work on architectural blueprints guidelines as both works successfully
applied and implemented an integration framework to extend different systems and make such
systems more interoperable. However, this effort discussed only one integration option, similar to
our Alternative Architecture Blueprint, that was specific to the reported effort. In contrast, our
approach provided a generalizable integration framework that can be applied to any integration

framework of any domain including FHIR and HAPI FHIR.

144

Chapter 6
Global Security Policy Generation and Dynamic Enforcement for
FSICC

In this chapter, we discuss GSP (Global Security Policy) Generation and GAPI (Global API)
Generation and Global Security Policy and Global API Utilization and Security Enforcement which
was shown in the 4™ and 5™ horizontal boxes, respectively, in Figure 1.3 of Chapter 1. As
described earlier in Chapter 3, the global security policy of FSICC is generated by cloud
computing capability two, Local Security Policies Registration to Yield Global Security Policy, of
FSICC, that utilizes two components of FSICC: Security Policy Mapping, see the Security Policy
Mapping box of FSICC in Figure 1.1 form Chapter 1; and Global Security Policy, see the Global
Security Policy box of FSICC in Figure 1.1. Specifically, capability two of FSICC enables any
system, which corresponds to the Systems box in the Involved Parties component at the top of
Figure 1.2, to register the system’s security policy that can be any combination of RBAC, MAC,
and DAC, which corresponds to the Access Control Models component in Figure 1.2. For RBAC,
the system registers to provide: the defined roles, the defined services, the role-services
authorization list, the role hierarchy, the defined users, the user-role assignment list. For MAC,
the system registers to provide: the defined services along with a classification for each service;
and the defined users in which each user has a clearance, a read property and a write property.
Finally, for DAC, the system registers to provide: the role delegation list and the clearance
delegation list. In further support of this chapter, we utilize the Unified Cloud Computing
Access Control Model (UCCACM), from Chapter 4, which has a set of definitions for global
security policy generation and utilization (see Defns. 41-48 in Section 4.6). These definitions

ensure that such global security policy can control access to a set of global services that are

145

generated using one or more of integration architecture blueprints: Basic Architecture,
Alternative Architecture, or Radical Architecture from Chapter 5. In addition, from the
enforcement perspective to check whether applications are allowed to call particular services,
UCCACM has definitions for RBAC interceptors (see Defns. 50-52 in Section 4.7.1), MAC
interceptors (see Defns. 53-56 in Section 4.7.2), and DAC interceptors (see Defns. 57-60 in Section

4.7.3).

Based on this, this chapter has two main parts. The first part presents a set of algorithms for
generating the global security policy of FSICC; this partially addresses Contribution EC-C:
Security Mapping/Enforcement Algorithms and SSEP, from Section 1.5, by focusing on Security
Mapping/Enforcement Algorithms, this is represented by the Global Security Policy Generation
box of the GSP (Global Security Policy) Generation and GAPI (Global API) Generation horizontal
box in Figure 1.3 from Chapter 1. To support this, we present a set of algorithms to implement
the concepts of global security policy definition and mapping of services to/from mixed clients
and pure and mixed systems. These algorithms support: global RBAC generation, global MAC
generation, global DAC generation, and global policies combination. The second part introduces
and discusses three security interceptors for RBAC, MAC, and DAC (which are the
implementation of the UCCACM for the FSICC) via a number of checks and an algorithmic
approach for each interceptor; this addresses Contribution EC-D: Dynamic Enforcement via
Intercepting Process from Section 1.5, this is represented by the Security Enforcement via
Interceptors box of the GSP (Global Security Policy) and GAPI (Global API) Utilization and
Security Enforcement horizontal box in Figure 1.3. This is accomplished by presenting a set of
programmatic RBAC, MAC, and DAC interceptors, which are the implementation of the

definitions in Section 4.7 for UCCACM, that intercept any request to access FSICC’s global

146

services, that are generated using one or more of integration architecture blueprints from
Chapter 5. To support this, a number of security interceptors (i.e., RBAC Interceptor, MAC
Interceptor, and DAC Interceptor) are presented to enforce such global security policy on the

users’ access requests.

In the remainder of this chapter, we discuss Global Security Policy Generation and Dynamic
Enforcement for FSICC in three sections. In Section 6.1, a set of security policy integration
algorithms are presented and discussed for: global RBAC generation, global MAC generation,
global DAC generation, and global policies combination. In Section 6.2, we demonstrate the
realization of UCCACM of FSICC in HAPI FHIR utilizing the healthcare scenario of Section 2.4
of Chapter 2 that involves the implementation of HAPI FHIR APIs and its server interceptor to
support UCCACM checks with three different algorithms to support three different HAPI FHIR
interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. Moreover, the interceptor
discussions are supported by two access scenarios. Section 6.3 presents and discusses related work
in both security policy integration and enforcing security policies on FHIR API. Note that the

work in this chapter has been published in (Baihan, M., et al., 2017).

6.1. Security Policy Integration Algorithms

To start this discussion, Figure 6.1 shows architecture for global security policy generation and
utilization (see Defns. 37-44 of Section 4.6). The global security policy generation process consists
of four main phases: generating global RBAC, see the RBAC Integration and Review & Correct
Role Names boxes in the middle of Figure 6.1, generating global MAC, see the MAC Integration
and Building Global MAC boxes in the middle of Figure 6.1, generating global DAC, see the DAC
Integration box in the middle of Figure 6.1, and global policies combination. Pure and mixed
systems (see Defn. 7 of Section 4.2) at the bottom of Figure 6.1 and mixed clients (see Defn. 6 of

147

Section 4.2) at the top left of Figure 6.1 use the global security policy generation process to add
their security policies and services into the FSICC as indicated by the dash lines in the figure. Pure
clients and mixed servers are free to utilize the global security policy to call authorized services as
indicated by the solid lines in Figure 6.1. The generating global RBAC phase has two tasks. First,
RBAC integration takes all of the RBAC policies from pure and mixed systems and mixed clients
(dashed lines) and through the RBAC Integration box combines them into one RBAC policy.
Second, review and correct role names, which corrects and updates the name of a number of global
roles through the RBAC Integration box to the Review and Correct Role Names box. Using input
from the FSICC’s security engineer in conjunction with the two tasks, then the global RBAC
instance, the Global RBAC Instance cylinder in the middle of Figure 6.1 is generated.

The generating global MAC phase also has two tasks. First, MAC Integration requires human
interaction to map sensitivity levels of pure and mixed systems and mixed clients (dashed lines) via
the MAC Integration box in Figure 6.1 to the sensitivity levels of the global MAC. Second, global
MAC is designed and constructed, in which users and services of the system are utilized to generate
the global MAC in which users’ clearances and services’ classifications are assigned based on the
global sensitivity levels (solid line) from the MAC Integration box to the Building Global MAC
box. Using input from the FSICC’s security engineer, the global MAC instance via the Global
MAC Instance cylinder in the middle of Figure 6.1 is generated. The generating global DAC phase
has one main task. DAC integration takes all of the DAC policies from pure and mixed systems and
mixed clients (dashed lines) to the DAC Integration box in Figure 6.1 and combines them into one
DAC policy and then generates the global DAC instance via the Global DAC Instance cylinder in
the middle of Figure 6.1. Finally, in the last phase, the Combine Global Security Policies Instances

box in the middle of Figure 6.1 combines the generated global RBAC instance, global MAC

148

instance, and global DAC instance into one global security policy model instance, in which the data
updating and retrieving actions are also controlled. To complete the process, the security engineer
of FSICC insures that all of the policy requirements are define that are capable of controlling the
services of pure and mixed clients and mixed systems via the solid lines to the Global Security

Policy Model Instance cylinder in Figure 6.1.

Mixed Client Mixed Client Pure Client
Client 1 Client 2 ClientN
[reac | [reac_]
T T
[1
_______ LI R
[
- - >
RBAC Review & I GTe5ar |
== = > . [—>|Correct Role—>| opic
Integration
Names Instance
e
Combine

S

1
1

1

1

1

1

1

1

i

: l[m o
|-- MAC }—i| Security
1 Instance Policies
1 S~——

1

1

1

1

1

1

1

1

1

1

Global
Security
Policy Model
Instance

Instances

DAC
Integration

Pure System Mixed System

Legend
————— register security
__utilize security

Figure 6.1. An Architecture for Global Security Policy Generation & Utilization
The remainder of this section presents and discusses a set of algorithms and human process for

the Global Security Policy Generation in four parts. In Section 6.1.1, we discuss the way that the
global RBAC generation phase processes each RBAC policy from each pure or mixed system or
mixed client, and generates the global RBAC policy. In Section 6.1.2, the global MAC generation

phase is presented to show the way that each MAC policy from each pure or mixed system or mixed

149

client is processed to generate the global MAC policy. Section 6.1.3 explains the way that the global
DAC generation phase uses to process each DAC policy from each pure or mixed system or mixed
client and to generate the global DAC policy. Finally, in Section 6.1.4, we describe the way that the
global policies combination phase uses the global RBAC policy, global MAC policy, and global
DAC policy to build the global security policy. Note that in the rest of this section we use the term
“system” to indicate pure systems, mixed systems (Services registering part) and mixed clients
(services registering part), and the term “client” to indicate pure clients, mixed clients (services

utilization part) and mixed systems (services utilization part).

6.1.1 Global RBAC Generation
The Global RBAC (GRBAC) Generation phase is divided into two tasks, each of which consists

of one or more algorithms: RBAC Integration in Figure 6.1; and, Review and Correct Role Names
in Figure 6.1. First, the RBAC Integration task, integrates any number of systems’ RBAC policies
into one global RBAC policy that can be utilized to restrict access to services of all of the
participated systems, where the presented approach makes policy integration decisions based on
permissions similarity. Since each system may define an RBAC policy against a common set of
services (the integration layer e.g., FHIR in HITs case), the similarity between two systems’ RBAC
policies, or between a system’s RBAC policy and a global RBAC policy, can be determined based

on the similarity of the permissions. For the purposes of our examples, assume that we have two

roles Srs and Grg where Srse { Sis ,C;C } isarole of apure or mixed system or a mixed client and
Grg € GiRG is a global role. Further, assume that there are two corresponding role permission sets

Srpss € { S;pss ,C;PSC } and Grpsg € GQRPSG . For example, say Srs authorized to permissions Srpss

150

={(Patient, READ), (Patient, CREATE)}, and Grq authorized to permissions Grpss={(Patient,

READ), (Patient, CREATE), (Patient, UPDATE)}.

When comparing Srs and Grg , our focus is on comparing permissions their respective Srpss and
Grpsg ; in this case, there are common permission {(Patient, READ), (Patient, CREATE)}. Note
that, in permissions comparison, we omit the base URL from a service URI and focus only on the
Endpoint (i.e., permission name) and Method (i.e., access method), since the permission name and
access method of the service are the confidential part that need to be protected. Based on this, the
comparison between any two role permission sets (Srpss and Grpsg) have one of the five results:
(1) Srpss o Grpsg which means all of the permissions in Grpsg are in Srpss which in the above
example is false; (2) Grpsg 2> Srpss which means all of the permissions in Srpss are in Grpsg which
in the above example is true; (3) Srpss N Grpsg # @ (or Srpss and Grpsy overlap) which means both
role permission sets have common permissions but no role permission set contains the other; (4)
Srpss = Grpsg (or Srpss and Grpsg are equivalent) which means both role permission sets have the
same set of permissions; or (5) Srpss N Grpsg = @ (Srpss and Grpsg are not related) which means
there is no common permissions between Srpss and Grpsg. Based on the assumptions above, the
RBAC Integration task utilizes four algorithms: Global-RBAC, Initialize_ GRBAC,
IntegrateRBAC, and AddBasicParents. These algorithms utilize a set of primitive functions in
Table 6.1 that simplify the explanation of the aforementioned four algorithms. Table 6.1 has two
columns: Function Signature, that has a name and a set of parameters for each function; and
Description, that briefly explains each function. We highlight key functions. The first three
functions: returns the parent roles of a given role, sets a parent role, and returns permissions of a
role (i.e., Srpss or Grpsg). The next function, compareRolesPerm, does the comparison between a

system role (Srs) and a global role (Grg) using two factors of each role: role permission sets (Srpss

151

and Grpsg), and inherited role permission sets from all of the parent roles (inhSrpss and inhGrpsg).

The mapRoles function creates new entries in the global policy regarding the mapping of system

roles to global roles.

Table 6.1. Primitive Functions Utilized by the Algorithms for Global RBAC Generation

Function signature

Description

getParents(RH, r)

Returns all of the parent roles of the role r according to the given role hierarchy RH

addParent(RH, pr, r)

Defines the role pr as a parent role of the role r in the given role hierarchy RH

dirPset(r)

Returns a list of permissions directly authorized to the role r

compareRolesPerm(Grpsg
Srpss, inhGrpsg, iNhSrpss)

Returns one of the following:

- not related (if simCount(Grpsg , Srpss) is 0)

- equivalent (if simCount(Grpsy , Srpss) equals both Grpsg.size & Srpss.size and
simCount(inhGrpsg, inhSrpss) equals both inhGrpsg.size & inhSrpss.size)

- contains GR (if simCount(Grpsg , Srpss) equals Grpsg.size but less than Srpss.size and
inhGrpsg.size is 0)

- GR contains (if simCount(Grpsg , Srpss) equals Srpss.size but less than Grpsg.size and
inhSrpss.size is 0)

- overlap (if simCount(Grpsg , Srpss) is less than both Grpsg.size & Srpss.size but > 0 or
simCount(Grpsg , Srpss) equals both Grpsg.size and Srpss.size and both inhGrpsg.size and
inhSrpss.size > 0)

mapRoles(Grg, Srs)

Adds all of the users in users(Srs) into users(Grg), and

adds a new entry (Gryg, Srs, Srs.system name) to the role mapping list

users(r)

Returns all of the users assigned to role r

createGlobalRole(roleName)

Creates a new global role s.t. the role name = roleName; if roleName exists use roleName_X
(where X= number of Roles with same name +1)

comPset(rl, r2)

Returns a list of common permissions between Pset(rl) and Pset(r2)

uncomPset(r1, r2)

Returns a list of permissions exist in Pset(rl) but not in Pset(r2)

removePer(perList , r)

Removes all of the permissions in perList from Pset(r)

addPer(perList , r)

Adds all of the permissions in perList into Pset(r)

getMappedGRole(global RH,
Srs)

Returns the global role associated with the given system role Srs

AllIPset(r)

Returns a list of all of the permissions (directly and by inheritance) authorized to the role r

inherPset(RH, r)

Returns a list of by inheritance permissions authorized to the role r according to the given role
hierarchy RH

exist(Srs)

Returns true if the role mapping list contains the entry (*, Srs, Srs.system name), where * means
for any Grg

notRelatedList.add(Grg, Srs)

Add an entry (Grq, Srs) that means these two roles are unrelated

notRelatedL.ist.cleare ()

Removes all of the Entries

The Global-RBAC algorithm in Figure 6.2 is for generating the entire GRBAC policy for all of

the systems in FSICC, and takes as input a set of m systems’ RBAC policies (SRBAC1, SRBAC,,

.. SRBACn), where m is the number of the participated systems, and initializes the global RBAC

policy (GRBAC) using SRBAC;, line 1 in Figure 6.2. Note that, SRBAC: is arbitrarily chosen from

152

the set of systems RBAC policies. The Global-RBAC algorithm then iterates (lines 2-3) through
RBAC policies of the remaining systems, SRBACzto SRBACw, by integrating one system’s RBAC
policy at a time with the previously computed GRBAC. Finally, the Global-RBAC algorithm
returns the final GRBAC, combined Global RBAC policy constructed from all of the constituent
systems of FSICC, line 4 in Figure 6.2. Moreover, as Figure 6.2 shows, the Global-RBAC algorithm

utilizes the Initialize_ GRBAC and IntegrateRBAC algorithms.

Global-RBAC
Input: set of m Systems RBAC (SRBAC;, SRBAC;, .., SRBACn)
Output: Global RBAC (GRBAC)
1. GRBAC « Initialize. GRBAC(SRBAC:)
fori—2tom

2.
3. GRBAC « IntegrateRBAC(GRBAC , SRBAC;)
4. return(GRBAC)

Figure 6.2. The Global-RBAC Algorithm
The Initialize_ GRBAC algorithm in Figure 6.3 is for initializing the GRBAC policy to generate

the initial state of a global-system role mapping list, and receives SRBAC; and performs three main
steps. Step 1 (line 1) copies roles (Srs), users (Sus), permissions (Sscs), role-permission
authorizations (Srpss), user-role assignments (Surass), and role hierarchy (Srhs), see Defn. 19 of
Section 4.3, from SRBAC: to the GRBAC. Step 2 (lines 2-3) generates a global-system role
mapping list by mapping each global role with the original system role. Step 3 (lines 4-6) creates
a new global role that has no permissions or users (i.e., RootRole) to be the parent role for each

global role with no parents. Finally, the initialized GRBAC is returned in line 7.

Initialize. GRBAC

Input: System RBAC (SRBAC)

Output: Global RBAC (GRBAC)

GRBAC « {SRBACISrs, Sus, Sscs, Srpss, Surass, Srhs]}

for each Gry € GRBAC and each Srs € SRBAC
mapRoles(Grg, Srs)

RootRole < createGlobalRole(RootRole)
for each Grqg € GRBAC that has no parents

agrwdE

153

6. addParent(global RH , RootRole , Grg)
7. return(GRBAC)

Figure 6.3. The Initialize. GRBAC Algorithm

The IntegrateRBAC algorithm in Figure 6.4 is for combining the current GRBAC policy with a
new system’s RBAC (SRBAC) policy, and receives SRBAC and the current GRBAC and performs
two nested loops. The first loop in line 1 iterates through each system role (Srs) in SRBAC, starting
with each Srs with no parents, then with one parent, and so on, until each Srs reaches the bottom of
the system role hierarchy. The second loop in line 4 iterates through each global role (Grg) in
GRBAC, except the RootRole, starting with each Grgq that only has the RootRole as its parent, then
with one parent other than the RootRole, and so on, until each Grg reaches the bottom of the global
role hierarchy. Then, in line 7, each Srs and Grg are compared based on two factors of each role:
role permission sets (Srpss and Grpsg), and inherited role permission sets from all of the parent roles
(inhSrpss and inhGrpsg), utilizing the compareRolesPerm primitive function in Table 6.1 that
returns: equivalent, Grpsy 2 Srpss, Srpss © Grpsg, overlap, or not related as explained by the
compareRolesPerm function in Table 6.1. Note that simCount, which is utilized in the description
of the compareRolesPerm function in Table 6.1, is the similarity counter that is initiated to 0 and is
incremented each time a global permission and system permission are equal. There are five

comparison possibilities:

e |f the comparison result is “equivalent”, one step is performed: mapping Grg with Srs,

lines 8-9 in Figure 6.4.

e Ifthe comparison result is “Grpsg D Srpss”, six steps are performed: creating a new global
role (Grg_New); the common permissions between Grpsg and Srpss are removed from

Grg and added to Grg_New; adding Grq_New as a parent of Grg; adding one or more

154

parents to Grg_New utilizing the AddBasicParents algorithm in Figure 6.5; and, mapping

Grg_New with Srs, lines 10-16 in Figure 6.4.

IntegrateRBAC

Input: System RBAC (SRBAC) & current Global RBAC (GRBAC)
Output: Global RBAC (GRBAC)

CoNoR~wWNE

for each Srs € SRBAC
Srpss < dirPset(Srs)
inhSrpss < inherPset(system RH, Srs)
for each Grg € GRBAC except RootRole

Grpsy <« dirPset(Grg)
inhGrpsg < inherPset(global RH, Grg)
res « compareRolesPerm(Grpss , Srpss, inhGrpsg, iNhSrpss)
If(res==equivalent)
mapRoles(Grg, Srs)
Else If(res== Grpsg D Srpss)
Grg_new= createGlobalRole(Srs.name)
removePer(comPset(Grg, Srs) , Grg)
addPer(comPset(Grg, Srs) , Grg_new)
addParent(global RH , Grg_new , Grg)
AddBasicParents(Srs, Grg_new)
mapRoles(Grg_new, Srs)
Else If(res== Srpss 2 Grpsg)
If('exist(Srs))
Grg_new= createGlobalRole(Srs.name)
addPer(uncomPset(Srs, Grg) , Grg_new)
removePer(comPset(Grg, Srs) , Srs)
addParent(global RH , Grq, Grg_new)
AddBasicParents(Srs, Grg_new)
mapRoles(Grg_new, Srs)
Else
removePer(comPset(Grg, Srs) , Grg_new)
removePer(comPset(Gryg, Srs) , Srs)
addParent(global RH , Grq, Grg_new)
Else If(res==overlap)
Grg_new_2= createGlobalRole(NEW_ROLE)
addPer(comPset(Grg, Srs) , Grg_new_2)
removePer(comPset(Grg, Srs) , Grg)
addParent(global RH , Grg_new_2, Grg)
addParent(global RH , RootRole , Grg_new_2)
If('exist(Srs))
Grg_new= createGlobalRole(Srs.name)
addPer(uncomPset(Srs, Grg) , Grg_new)
removePer(comPset(Grg, Srs) , Srs)
addParent(global RH , Grg_new_2 , Grg_new)
AddBasicParents(Srs, Grg_new)
mapRoles(Grg_new, Srs)
Else
removePer(comPset(Grg, Srs) , Grg_new)
removePer(comPset(Grg, Srs) , Srs)
addParent(global RH , Grg_new_2 , Grg_new)
Else If(res==not related)
notRelatedList.add(Grg, Srs)

If(Srs is not related to any Grg)

Grg_new = createGlobalRole(Srs.name)
addPer(Pset(Srs) , Grg_new)

155

51. AddBasicParents(Srs, Grg_new)
52. mapRoles(Grg_new, Srs)
53. return(GRBAC)

Figure 6.4. The IntegrateRBAC Algorithm

If the comparison result is “Srpss D Grpsy”, there are two cases. In the first case, Srsis
not already added to the global role hierarchy, so six steps are performed: creating a new
global role (Grg_New); the common permissions between Grpsg and Srpss are removed
from Srs; the uncommon permissions between Grpsg and Srpss are added to Grg_New;
adding Grg as a parent of Grg_New; adding one or more parents to Grg_New utilizing the
AddBasicParents algorithm in Figure 6.5; and mapping Grg_New with Srs, lines 18-24
in Figure 6.4. In the second case, Srsis already added to the global role hierarchy, so
three steps are performed: the common permissions between Grpsy and Srpss are
removed from Srsand Gry_New; and adding Grg as a parent of Grg_New, lines 25-28 in

Figure 6.4.

If the comparison result is “overlap”, the algorithm starts with five steps: creating a new
global role (Grg_New_2); the common permissions between Grpsy and Srpss are
removed from Gry and added to Grg_New 2; adding RootRole as a parent of
Grg_New_2; and adding Grg_New_2 as a parent of Grg, lines 29-34 in Figure 6.4. Then
the algorithm applies similar steps as in the “Srpss D Grpsg” case, except that Grg_New_2

(instead of Grg) is added as a parent of Grg_New, lines 35-45 in Figure 6.4.

If the result of all of the comparisons between Srpss and all of the Grpsg is “not related”,
four steps are performed: creating a new global role (Grg_New); adding the permission
set of Srs to Gryg_New; adding one or more parents to Grg New utilizing the
AddBasicParents algorithm in Figure 6.5; and mapping Gryg_New with Srs, lines 48-52

in Figure 6.4.

156

Finally, the IntegrateRBAC algorithm returns the resulted GRBAC, line 53 in Figure 6.4. Moreover,
the AddBasicParents algorithm in Figure 6.5, that is utilized extensively by the IntegrateRBAC
algorithm, is for adding a set of parent roles to a specific role, and receives a system role (Srs) and
a new global role (Grg_New). Then, if Srs has no parents, the RootRole is added as a parent of
Grg_New. However, if Srs has one or more parents, for each parent of Srs, the associated Grg is
retrieved and added as a parent of Gry_New. The Global-RBAC algorithm runs in polynomial time
and has a worst-case complexity of O(m|P|), where m is the number of the participated systems and
|P| is the total number of permissions from all of the systems RBAC’ policies. That is, the Global-
RBAC algorithm visits each RBAC of each system once in which each permission is compared

once.

AddBasicParents

Input: a system role (Srs), and a new global role (Grg_new)

1. parentList=getParents(system RH, Srs)

2. If(parentList==Null)

3 addParent(global RH , RootRole , Grg_new)
4. Else

5. for each prnt € parentList

6

7

gPrnt=getMappedGRole(global RH, prnt)
addParent(global RH , gPrnt, Grg_new)

Figure 6.5. The AddBasicParents Algorithm
The second task of the global RBAC generation phase is Review and Correct Role Names.

The main purpose of this task is to address two issues that the generated global RBAC policy may
have as a result of using the algorithms in Figures 6.2 to 6.5. Issue 1 can arise when a system role
and global role comparison is “overlap” can the automatically created new role name is not real.
Issue 2 can arise when two different Global roles are generated with very similar names but with
dramatically different permissions. Specifically, when the IntegrateRBAC algorithm compares
each global role Grq to each system role Srs, in which the comparison result is “overlap”, a new

global role named “NEW _ROLE” is created, clearly this is not a real role name (issue 1). Moreover,

157

when the IntegrateRBAC algorithm processes all of the comparison cases, except the “equivalent”
case, anew global role is created in which its name is copied from a system role Srs followed by a
number X, where X is 1 plus the number of global roles that share a similar role name with Srs.
Based on this, the IntegrateRBAC algorithm may generate a GRBAC that has two global roles that
have a similar role name but are authorized to different sets of permissions; this is not a desirable
situation (issue 2). For example, assume that the GRBAC had a global role named “Patient” that is
authorized to {(Patient, READ), (Patient, CREATE)}, and the IntegrateRBAC algorithm is about
to create a new global role named “Patient” that is authorized to {(Observation, READ),
(Observation, CREATE)}. In this case, the IntegrateRBAC algorithm will create a new global role
named “Patient_2”, note that the number 2 here came from 1+ number of global roles that share a
similar role name with “Patient” which is 1, and hence the GRBAC now has two global roles:
“Patient” with permissions {(Patient, READ), (Patient, CREATE)}, and “Patient 2” with
permissions {(Observation, READ), (Observation, CREATE)}. Our approach to solve not a real
role name (issue 1) and two global roles with similar role name and radically different permissions
(issue 2) is through the Review and Correct Role Names task, which has two steps. In the first step,
the security engineer of FSICC reviews and suggests a name for each of two conflicting global
roles, based on the authorized permission. The two new roles are generated as described in issue
1 or 2 and a name list of corrected global roles in the form of (global role ID, corrected name) is
also generated. In the second step, the security engineer of FSICC sends the name list of corrected
global roles to the Update Global Roles algorithm, as shown in Figure 6.6. The Update Global Roles
algorithm iterates through the name list of corrected global roles and for each global role Grg_U in
the list, the algorithm finds a global role Grg in GRBAC in which the id of both entries is equal.

Then, the algorithm updates the name of the global role Grg to be the name of the corrected global

158

role Grg_U and finally returns the updated global RBAC policy GRBAC, see lines 1-4 of Figure

6.6.

Update Global Roles
Input: Global Roles List (GRL) & current Global RBAC (GRBAC)
Output: Global RBAC (GRBAC)

1. foreach Grg_U € GRL

2. find Gry € GRBAC s.t. Grg.id = Grg_U.id
3. Grg.name = Grg_U.name
4. return(GRBAC)

Figure 6.6. The Update Global Roles Algorithm

6.1.2 Global MAC Generation

The Global MAC (GMAC) Generation phase is divided into two tasks in Figure 6.1: MAC
Integration and Building Global MAC. The MAC Integration task is conducted based on the
assumption that the five sensitivity levels, introduced in Section 4.4, (0-Public Information, 1-Basic
Sensitive Information, 2-Sensitive Information Summary, 3-Sensitive Information Details, and 4-
Very Sensitive Information), are available to each system to classify their data and to assign each
user a clearance. This can be useful in a complex domain such as healthcare all of the five levels
are expected to be utilized due to the fact that healthcare data is complex, while in other domain
such as education only a subset of the five sensitivity levels may be needed to classify data in that
domain. However, although all of the participating systems are using the same set of sensitivity
levels, two systems may have different semantic and usages of each sensitivity level. To overcome
this issue, the presented sensitivity levels mapping step can be utilized. That is, this step is a human
interaction between the security engineer of FSICC and the security engineers of participating
systems to map each system sensitivity levels to the global sensitivity levels so that one set of
sensitivity levels (the global sensitivity levels) can be utilized to: assign each service from each
system a classification; and assign each user from each system a clearance, as we explain in the

159

second task below. Note that the semantics of the global sensitivity levels is based on the sensitivity
levels of the first participating system. The output of this task is a sensitivity levels mapping list in
which each entry in the list has the following format {a global sensitivity level, a system sensitivity

level, system name}.

Second, based on the sensitivity levels mapping list that is generated in the MAC Integration
task, in the Building Global MAC task, the global MAC, GMAC, is generated utilizing users and
services from each participating system in which users’ clearances and services’ classifications are
assigned based on the global sensitivity levels in which the read/write properties of each user are
remain unchanged. To perform this task, the security engineer of FSICC needs to send the
sensitivity levels mapping list to the global MAC algorithm, see Figure 6.7, that utilizes a set of
primitive functions in Table 6.2 to generate the global MAC policy. These primitive functions
simplify the explanation of the global MAC algorithm. Table 6.2 has two columns: Function
Signature, that has a name and a set of parameters for each function; and Description, that briefly
explains each function. The global MAC algorithm takes as input: the sensitivity levels mapping
list (SLML) and a set of m MAC policies from each participating system. The algorithm goes
through each MAC policy of each system to add users and services of that MAC policy. First, in
lines 2-6, the first loop iterates through each user of each system MAC policy to: find the global
clearance that is associated with the user system’s clearance; retrieve the read and write properties;
and, add the user into the global MAC policy as a global user. Second, in lines 7-9, the second loop
iterates through each service of each system MAC policy to: find the global classification that is
associated with the service system’s clearance; and, add the service into the global MAC policy as

a global service. Third, the algorithm returns the GMAC. The global MAC algorithm runs in linear

160

time and has a worst-case complexity of O(m), where m is the number of the participated systems.

That is, the global MAC algorithm visits each MAC of each system once.

Global-MAC
Input: set of m Systems MAC (SMAC:, SMAC;, .., SMACn) and
sensitivity levels mapping list (SLML)
Output: Global MAC (GMAC)
1. fori—1tom
2 for each user u in SMACi[Sus]
3 u.gCLR=globalClearance(SLML, u.CLR, SMACi.Name)
4 u.gRP=u.RP
5. u.gWP=u.WP
6. addUser(GMAC, u)
7
8
9
1

for each service s in SMACi[Sscs]
s.gCLS=globalClassification(SLML, s.CLS, SMACi.Name)
addService(GMAC, s)
0. return(GMAC)

Figure 6.7. The Global-MAC Algorithm

Table 6.2. Primitive Functions Utilized by the Algorithms for Global MAC Generation

Function signature Description
globalClearance(SLML, u.CLR, SMACi.Name) Returns a global sensitivity level in SLML that is mapped to u.CLR of the
SMACi.Name system
globalClassification(SLML, s.CLS, SMACi.Name) | Returns a global sensitivity level in SLML that is mapped to s.CLS of the
SMACi.Name system
addUser(GMAC, u) Adds the user u to the global MAC
addService(GMAC, s) Adds the service s to the global MAC

6.1.3 Global DAC Generation
The Global DAC (GDAC) Generation phase has one main task and one algorithm, DAC

Integration in Figure 6.1. This task takes all of the DAC policies from each system and combines
them into one global DAC policy. The DAC Integration task is performed through the global DAC
algorithm, see Figure 6.8, that utilizes a set of primitive functions in Table 6.3 to generate the global
DAC policy. These primitive functions simplify the explanation of the global DAC algorithm. Table
6.3 has two columns: Function Signature, that has a name and a set of parameters for each function;
and Description, that briefly explains each function. The global DAC algorithm takes as input: the

global RBAC, the global MAC, and a set of m DAC policies from each participating system. The

161

algorithm iterates through each DAC policy of each system to retrieve and add role and/or clearance
delegations into the global DAC policy. First, in lines 2-4, the first loop iterates through each role
delegation rd of each system DAC policy to: find the global 1Ds of delegator user, delegated user,
and delegated role using the getGoballDs primitive function in Table 6.3; and, add a new role
delegation into the global DAC policy using the retrieved global IDs. Next, in lines 5-7, the second
loop iterates through each clearance delegation cd of each system DAC policy to: find the global
IDs of delegator user, delegated user, and delegated clearance using the getGoballDs primitive
function; and, add a new clearance delegation into the global DAC policy using the retrieved global
IDs. Finally, the algorithm returns the global DAC policy. The global DAC algorithm runs in
polynomial time and has a worst-case complexity of O(m|d[), where m is the number of the
participated systems and |d]| is the total number of all of the role and clearance delegations from all
of the systems DAC’s policies. That is, the global DAC algorithm visits each DAC of each system

once.

Global-DAC

Input: set of m Systems DAC (SDAC, SDAC,, .., SDACy),
GMAC, and GRBAC

Output: Global DAC (GDAC)

fori«— 1tom

2 for each role delegation rd in SDACI[Sdss]

3 global_rd =getGloballDs(rd)

4 addGlobalDel(GDAC, global_rd)

5. for each clearance delegation cd in SDACI[Sdss]
6

7

8

N

global_cd =getGloballDs(cd)
addGlobalDel (GDAC, global_cd)
return(GDAC)

Figure 6.8. The Global-DAC Algorithm

Table 6.3. Primitive Functions Utilized by the Algorithms for Global DAC Generation

Function signature Description
getGlobalIDs(rd/cd) Returns global IDs of delegator, delegated, and role/sensitivity level
addGlobalDel(GDAC, global _rd/cd) Adds a global role/clearance delegation to global DAC

162

6.1.4 Global Policies Combination
The results from the algorithms in Sections 6.1.1-6.1.3 serve as input to the combine global

security policies instances phase that is divided into two tasks: combining the generated global
RBAC instance, global MAC instance, and global DAC instance into one global security policy
model instance which can be utilized by any interested clients to control their own services; and,
controlling the way that data that global services can access are read and/or writtenn. The first task
generates one policy document that concatenates all of the separate policies (i.e., GRBAC, GMAC,
and GDAC) into one Global policy. The second task is intended to restrict clients at the data level.
That is, while the global RBAC, MAC and DAC policies control who can access what set of global
services, the controlling data task is intended to control what set of data, that global services can
access and what each user can read/write. To control reading data actions, there are three read data

access types that the security engineer of FSICC needs to choose from:

1. Open to All (default): This read data access type is for the case where two or more
users, from different systems, who are assigned to the same global role can read any data

that the global role can retrieve.

2. Open to Same System Users: This read data access type is for the case where a user from
system X who is assigned to a global role can only read a subset of data (only data

from system X) that the global role can retrieve.

3. Customize Data Read: This read data access type is for the case in which for each global
service, the security engineer of FSICC needs to specify which systems that their users can

read the retrieved data.

Moreover, to control writing data actions, there is one write data access type:

163

1. Open to Same System Users: This write data access type is for the case where a user from
system X who is assigned to a global role can only write data (only data from system X)

that the global role can write.

The output of the global policies combination step is a single unified security policy document that
has global RBAC, global MAC, and global DAC coupled with one read data access type and one

write data access type.

6.2 HAPI FHIR Implementation and RBAC/MAC/DAC Interceptors

In this section, we demonstrate the realization of UCCACM of FSICC via a HAPI FHIR
Implementation and the underlying RBAC/MAC/DAC Interceptors. These are represented by the
Security Enforcement via the Interceptors box of the GSP and GAPI Utilization and the Security
Enforcement horizontal box in Figure 1.3 from Chapter 1, utilizing the healthcare scenario of
Section 2.4 of Chapter 2. This leads to that the implementation of HAPI FHIR APIs and its server
interceptor to support UCCACM checks with three different algorithms to support three different
HAPI FHIR interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. This section
involves the implementation of FHIR APIs and the customization and adaptation of the HAPI
server interceptor to support UCCACM checks: Defns. 50 and 51 that determine if a service is
authorized by a user/role pair; Defn. 55 that determines if a service is authorized by a
user/clearance pair; and Defns. 57, 58, and 59 that determine if a service is authorized by a
user/(delegated_role/delegated_service /delegated clearance) pair (see Section 4.7). Three
integration layers were implemented utilizing the HAPI FHIR reference library (HAPI community,

2016), namely: Clients, top of Figure 1.1 and Involved Parties component of Figure 1.2; Systems,

164

bottom of Figure 1.1 and Involved Parties component of Figure 1.2; and FSICC, the Global
Services in the middle of Figure 1.1.

The remainder of this section has five subsections. Section 6.2.1 provides a more detailed
discussion than Section 2.3 of Chapter 2 on HAPI-FHIR Concepts and Background. Using this as
a basis, Sections 6.2.2, 6.2.3, and 6.2.4 review and explain, respectively, the RBAC interceptor,
MAC interceptor, and DAC interceptor. Finally, Section 6.2.5 presents two usage scenarios

utilizing the global security policy sample from Sections 6.2.2, 6.2.3, and 6.2.4.

6.2.1 HAPI-FHIR Concepts and Background

As discussed in Section 2.3, the HAPI-FHIR library provides a general HAPI server interceptor
(University Health Network, 2016) which is a programmatic approach that allows a developer to
examine each incoming HTTP request to add useful features to the HAPI ResfulServer such as
authentication, authorization, auditing, logging, etc. This is accomplished by implementing a
number of methods: incomingRequestPreProcessed that is invoked before performing any action
to the request; incomingRequestPostProcessed that is invoked after determining the request type
by classifying the request; incomingRequestPreHandled which is invoked before sending the
request to the Resource Provider; and, outgoingResponse which is invoked after the request is
handled by the appropriate Resource Provider. To implement each of these HAPI FHIR APIs, the
HAPI RestfulServer and HAPI IResourceProvider classes were utilized.

To support cloud computing capability 3 (Global Registration, Authentication, Authorization,
and Service Discover for Consumers) of FSICC (see Section 3.2), the Clients Registry, Systems
Registry, and Global Security Policy components in Figure 1.1 are developed as simple RESTful

APIs, which were implemented using the JAX-RS Java library (Hadley & Sandoz, 2009). The

165

Clients Registry and Systems Registry components supports adding systems/clients HAPI-FHIR
APIs and discovering corresponding FHIR APIs, while the Global Security Policy component
enables the security engineer of FSICC to add/modify the global policy in Section 4.6 of Chapter
4 (see Defn. 39 of UCCACM). In addition, the RBAC, MAC, and DAC interceptors presented in
Section 4.7 of Chapter 4 (see Defns. 52, 56, and 60 of UCCACM respectively - middle of Figure
1.1), were implemented by extending the HAPI InterceptorAdapter class to retrieve the global
security policy from the Global Security Policy component and then extract the appropriate part
(i.e., global RBAC for the RBAC Interceptor, global MAC for the MAC Interceptor, and global
DAC for the DAC Interceptor) in order to performing enforcement check on each access request
at runtime. Although each of the RBAC interceptor, MAC interceptor, and DAC interceptor is
designed to enforce the appropriate global security policy separately, the handleRequest method
of the RestfulServer class works as a monitor that makes sure each part of the global security
policy (RBAC, MAC, and DAC) is checked and enforced, via the three interceptors, before

allowing any access request.

6.2.2 RBAC Interceptor

To support security requirement 2 of FSICC, Control Access to Cloud Services Using RBAC,
in this section, we present and explain the pseudo-code of the RBAC interceptor (see Defn. 52 of
UCCACM) that is utilized at runtime to check security permissions (see Defns. 50 and 51 of
UCCACM) of all of the calls to global services. To facilitate our explanation on the RBAC
interceptor, Figure 6.9 presents a global RBAC policy example in JSON format that consists of:
USERS, ROLES, RESOURCES, USER_ROLE_ASSIGNMENTS,
ROLE_RESOURCE_AUTHORIZATIONS, ROLE_HIERARCHY, & ROLES_MAPPINGS.

Each user is represented by three fields: id, name, and system_name. Each role is represented by

166

two fields: id and name. Each resource is represented by three fields: id, name, and method. Each
user_role_assignment is represented by two fields: user_id and role_id. Each
role_resource_authorization is represented by two fields: role_id and resource id. Each
role_hierarchy relationship is represented by two fields: role_id and parent_id. Finally, each
role_mapping is represented by three fields: global_role_id, system role_id, and system_name.
As shown in Figure 6.9, the global SECURITY_POLICY is based on the healthcare scenario
example from Section 2.4 of Chapter 2. Notice that there are users, Defn. 14, defined for the
systems OpenEMR and MyGoogle and the client app SMH. Likewise, there are roles, Defn. 8,
that include roles from OpenEMR and MyGoogle systems, roles form the SMH client app, and
new roles generated as during combining roles of OpenEMR and MyGoogle systems, and SMH
client app. The Global RBAC example, Figure 6.9, also has a set of resources, Defn. 2, that are
created from OpenEMR and MyGoogle systems, and SMH client app. The user role assignment
set, Defn. 16, in the Global RBAC example is generated based on user role assignment sets from
OpenEMR and MyGoogle systems, and SMH client app. Similarly, the role resource authorization
set, Defn. 13, in the Global RBAC example is compiled based on role resource authorization sets
from OpenEMR and MyGoogle systems, and SMH client app. The role hierarchy, Defn. 19, in the
figure describes how roles in the Global RBAC example relate to each other using the parent-child
relationship. Finally, the role mapping, Defn. 45, in the figure shows how each role in the Global
RBAC example is mapped to the original role in OpenEMR or MyGoogle systems, or SMH client
app.

In the Global RBAC example, 5 different global users are shown, three from systems (John,
Sara, ShareMyHealth) and two from clients (Sarah and Nasser). There have been 11 global roles

created, that have different origins: Physician with role id 1 was an original role of OpenEMR,

167

Patient_2 with role id 4 was an original role of CT?, and RootRole with role id 3 was created as a
parent role for all of the root roles from each system and client. Note that a root role in a system
or client is the role that has no parents but has at least one child. The Global RBAC example also
has 5 global resources: Observation with resource id 1 and GET method name; Patient with
resource id 2 and PUT method name; Observation with resource id 3 and PUT method name;
Patient with resource id 4 and GET method name; and Person with resource id 5 and PUT method
name. Each user is assigned a role based on their ids. For example, the user with id 1 is assigned
the role with id 1, the user with id 3 is assigned the role with id 4, and the user with id 5 is assigned
the role with id 10. Likewise, some roles are authorized to access some resources based on their
id. For example, the role with id 6 is authorized to access the resource with id 1, the role with id 8
is authorized to access the resource with id 2, and the role with id 11 is authorized to access the
resource with id 5. Based on the role hierarchy presented in Figure 6.9: the role with id 3 is a parent
of roles with id 6, 7, 8, 9 and 11; the role with id 9 is a parent of roles with id 2, 4, and 10; and, the
role with id 11 is a parent of roles with id 4, and 10. Finally, the role mapping in the Figure 6.9
shows that: the global role with id 1 is originated from the OpenEMR’s system role with id 1; the
global role with id 4 is originated from the SMH’s client role with id 1; and, the global role with

id 10 is originated from the MyGoogle’s system role with id 1.

168

"SECURITY_POLICY™: [

{
I
{

-

Figure

“POLICY_TYPE": “RBAC"

"USERS": [

e

"ROLES™: [{ "role: { "id"™:
{ "role™: {7
{ "role™:
{ "role”:
{ "role™:
{ "role":
{ "role”:
{ "role™:
{ "role”:
{ "role":
{ "role":

"RESOURCES": [{ "

{ "resource™:
{ "resource™:

"USER_ROLE_ASSIGMMENTS": [

"assignme
"sssignment

"ROLE_RESOURCE_AUTHORIZATIONS": [{ “autt
i "a

"ROLE_HIERARCHY": [

i i i i e i i e e e e e e e

{ “relsticnship": {

"ROLES_MAPPING" : [{ "mepping” :
{ "mapping” : { "gl
{ "mapping" : {
{ "mapping" :
{ "mapping” : {

: { "role
: { "role_id"
¢ { "role_ig"
: { "role_id"
: { "role_id"
: { "role_id"
: { "role_id"
¢ { "role_ig"
HIE

"OpenEMR" } },
nEMR™ } 1,
"SMHT } 3,

T
"t "MyGoogle" T}]

"1 { "role_ig": "g"
: { "role_id
: { "role_id"
{ "role_id"
{ "role_i

role_id
“role_id": "1@", “parent_:
1", "system_rol : "1", "system_name" : "OpenEMR"™ } },
z : "OpenEMR™ } },
"1 "SMH" } 1,
system_n Yo: "SMH" } 3,
", "system_name" : "MyGoogls" })]

Figure 6.9. A Global RBAC Policy Example in JSON

6.10 presents the RBAC enforcement code realized within the

incomingRequestPostProcessed method of the RBAC Interceptor as introduced in Section 6.2.1,

which is an extension of the HAPI InterceptorAdapter class, which is registered in the

RestfulServer class. This method starts by retrieving a secure Token (line 3) from a HTTP header

(Authorization) of the request parameter, that is then passed to the extractUser function that can

obtain the user credentials (user Id, see Defn. 15v2, and role Id, Defn. 9v2) from the Token (line

169

5). Next, the Global Policy (see Defn. 39), which is in JSON format, is retrieved by calling the
Global Policy URL (line 7). The global RBAC policy example in Figure 6.9, is then extracted from
the Global Policy through the extract RBAC function (line 8). Then, the details of the requested
resource (resource name, see Defn. 2, and HTTP method, see Defn. 4) are obtained from the
requestDetails and request parameters, respectively, and passed along with the RBAC policy to
the getResourceld function that returns the Id of the requested resource (lines 9 to 11). In line 14,
the user credentials and the RBAC policy are passed to the checkCredentials function (see Defn.
50) to determine whether the user has the claimed role (see Defn. 9v2). If the check fails, the value
of the accessDecision variable becomes false (lines 27-30). If the user passes the check, the
associated role Id, the resource Id, and the RBAC policy are passed to the checkPerm function (see
Defn. 51 - line 19) that returns true if the user with such a role can access the requested resource
or false otherwise. Note that the checkPerm function works by retrieving a list of parent roles of
the user role (passed) based on the global role hierarchy, part of RBAC policy, in which the user
can access all of the resources that are authorized to the user role of any of its parents. Based on
the result of the checkPerm function, the variable accessDecision is assigned (true or false) and

returned as the result of the incomingRequestPostProcessed method (lines 20-25 and 31).

170

1 //Serves as Access Control Interceptor function

2 public boolean incomingRequestPostProcessed(requestDetails, request, response) {
3 secToken = request.getHeader (“Authorization”);

4 // Retrieves the user id and role id of the current user

5 [userId,roleId] = extractUser (secToken) ;

6 // Retrieves the RBAC policy from the Global Policy URL

7 Global Policy= HttpGet (Global Policy URL);

8 RBAC_Policy= extract RBAC(Global Policy) ;

9 resourceName = requestDetails.getResourceName () ;

10 httpMethod = request.getMethod() ;

11 resourceld = getResourceld(httpMethod, resourceName, RBAC_Policy);

12 // check if the user has the claimed role

13 verifiedUser=false;

14 verifiedUser=checkCredintals (userId, roleld, RBAC Policy); // true or false
15 // check if the user (role) can access the requested resource and method
16 verifiedPerm=false;

17 accessDecision=false;

18 if (verifiedUser==true) {

19 verifiedPerm=checkPerm(roleId, resourceld, RBAC Policy); // true or false
20 if (verifiedPerm==true) {

21 accessDecision=true; // allow user request

22 }

23 else {

24 accessDecision=false; // deny user request

25 }

26 }

27 else{

28 // Error Message: User could not be verified

29 accessDecision=false; // deny user request

30 }

31 Return accessDecision;

32 }

Figure 6.10. RBAC Interceptor Pseudo Code.
6.2.3 MAC Interceptor

To support security requirement 4 of FSICC, Control Access to Cloud Services Using MAC,
in this section we present and explain the pseudo-code of the MAC interceptor (see Defn. 56 of
UCCACM) that is utilized at runtime to check security permissions (see Defn. 55 of UCCACM)
of all of the calls to global services. To facilitate our explanation, Figure 6.11 presents a global
MAC policy example in JSON format that consists of three parts: USERS, RESOURCES, and
SENSITIVITY_LEVELS_MAPPING_LIST. Each user is represented by six fields: id, name,
clearance, read property, write property, and system_name. Each resource is represented by four
fields: id, name, method, and classification. Finally, each sensitivity level mapping is represented
by four fields: id, global_level, system_level, and system_name. Notice that there are users, Defn.
10, defined for the systems OpenEMR and MyGoogle and the client app SMH. The Global MAC
example, Figure 6.11, also has a set of resources, Defn. 2, that are created from OpenEMR and

MyGoogle systems, and SMH client app. Finally, the sensitivity levels, Defn. 10, mapping list in

171

the figure shows how each sensitivity level in the Global MAC example is mapped to the original
sensitivity level in OpenEMR or MyGoogle systems, or SMH client app.

In the Global MAC example, 5 different global users are shown, three from systems (John,
Sara, ShareMyHealth) and two from clients (Sarah and Nasser). Moreover, the user John has: level
3 or Sensitive Information Details clearance; SS read property; and SI write property. The user
Sara has level 2 or Sensitive Information Summary clearance; SS read property; and Sl write
property. The user Sarah has level 4 or Very Sensitive Information clearance; SS read property;
and Sl write property. In addition, each of users Nasser and ShareMyHealth has level 3 or Sensitive
Information Details clearance; SS read property; and L* write property. There are 5 global
resources: Observation with resource id 1 and GET method name; Patient with resource id 2 and
PUT method name; Observation with resource id 3 and PUT method name; Patient with resource
id 4 and GET method name; and Person with resource id 5 and PUT method name. Note that all
resources have level 1 or Basic Sensitive Information clearance. Finally, the sensitivity levels
mapping list in the Figure 6.11 shows that: global level 0 (Public Information) is mapped to level
0 (Public Information) of OpenEMR; SMH; and MyGoogle. Global level 3 (Sensitive
Information Details) is mapped to: level 3 (Sensitive Information Details) of OpenEMR; level 2
(Sensitive Information Summary) of SMH and level 4 (Very Sensitive Information) of MyGoogle.
Global level 4 (Very Sensitive Information) is mapped to level 4 (Very Sensitive Information) of

OpenEMR and SMH but is not mapped to any level of MyGoogle.

172

"SECURITY_POLICY": [
{

ts

"POLICY_TYPE": "MAC"

"USERS™: [": "OpenEMR" T I,
"OpenEMR" } 3,
SMH" } 3,
3 L | POUSMHT T 3,
¢ "5", "name": "ShareMyHealth", "clearance": "3", "RP": "S53", “WP": "L*", “system_name": "MyGoogle" } }]

e ey e ey

{
i
£
P
£

user”:

"RESOURCES": [{ "resource™:
"resource™:

1

{
"resource™: {

[

{

, "name": "Observation", “method™: "PUT", "classification": "1"
, "nmame": "Observation"™, “method™: "GET", "

, 'name":
. "name": P
, "name": "Person®, "

"resource™:
"resource™:

Rt

"SENSTITIVITY_LEVELS_MAPPING_LIST": [

rstem_level®
rstem_level”
rstem_level’
rstem_level®
"system_lewvel": "
'y "system_lewvel™: "-", "system_name": "MyGoogle”

Figure 6.11. A Global MAC Policy Example in JSON

Figure 6.12 has the MAC enforcement code realized within the incomingRequestPostProcessed
method of the MAC Interceptor, which is an extension of the HAPI InterceptorAdapter class,
which is registered in the RestfulServer class. This method starts by retrieving a secure Token (line
3) from a HTTP header (Authorization) of the request parameter, that is passed to the extractUser
function that can obtain the user credentials (user Id, see Defn. 15v3) from the Token (line 5).
Then, the Global Policy (see Defn. 39), which is in the JSON format, is retrieved by calling the
Global Policy URL (line 7). The MAC policy, see the global MAC policy example in Figure 6.11,
is then extracted from the Global Policy through the extract. MAC function (line 8). Next, in line
10, the user Id and MAC policy are passed to the getUserDetails function that returns the user
details (i.e., user clearance, Read property, and Write property). Then, the details of the requested
resource (resource name, see Defn. 2, and HTTP method, see Defn. 4) are obtained from the
requestDetails and request parameters, respectively, and passes along with the MAC policy to the

getResourceld function that returns the Id of the requested resource (lines 11 to 13). In line 15, the

173

resource Id and MAC policy are passed to the getResourceCLS function to find the resource
classification level. Then, using the user details and the requested resource details, the
accessDecision variable is set to true, if the user clearance satisfies the user’s predefined read or
write properties on the requested resource and method, or false, otherwise (lines 17 to 41). Finally,
in line 42, the value of the accessDecision variable is returned as the result of the

incomingRequestPostProcessed method.

1 //Serves as Access Control Interceptor function

2 public boolean incomingRequestPostProcessed (requestDetails, request, response) {
3 secToken = request.getHeader (“Authorization”);

4 // Retrieves the user id of the current user

5 userIld = extractUser (secToken) ;

6 // Retrieves the MAC policy from the Global Policy URL

7 Global Policy= HttpGet(Global Policy URL);

8 MAC_Policy= extract_MAC(Global Policy) ;

9 // Retrieves the Clearance level, Read, and Write properties of the current user
10 [UserCLR, RP, WP] = getUserDetails(userId , MAC Policy);

11 resourceName = requestDetails.getResourceName () ;

12 httpMethod = request.getMethod() ;

13 resourceIld = getResourceld(httpMethod, resourceName, MAC_Policy);
14 // Retrieves the classification level of the requested resource
15 ResourceCLS = getResourceCLS (resourceId , MAC Policy);

16 // check if user with a CLR, Read, & Write properties can access requested resource and method
17 accessDecision=false;

18 if (httpMethod=="GET") {

19 if (RP=="88") {

20 if (UserCLR < ResourceCLS) { accessDecision=false; }

21 else{ accessDecision=true; }

22 }

23 else if (RP==“SSR”) {

24 if (UserCLR != ResourceCLS) { accessDecision=false; }
25 else{ accessDecision=true; }

26 }

27 }

28 elseif (httpMethod=="POST” || httpMethod=="PUT” || httpMethod==“DELETE"”) {
29 if (RP=="SI") {

30 if (UserCLR < ResourceCLS) { accessDecision=false; }

31 else{ accessDecision=true; }

32 }

33 else if (RP=="LS") {

34 if (UserCLR > ResourceCLS) { accessDecision=false; }

35 else{ accessDecision=true; }

36 }

37 else if (RP=="SSW”) {

38 if (UserCLR !'= ResourceCLS) { accessDecision=false; }
39 else{ accessDecision=true; }

40 }

41 }

42 Return accessDecision;

43 }

Figure 6.12. MAC Interceptor Pseudo Code.
6.2.4 DAC Interceptor

To support security requirement 3 of FSICC, Support Delegation of Cloud Services Using
DAC, in this section, we present and explain the pseudo-code of the DAC interceptor (see Defn.
60 of UCCACM) that is utilized at runtime to check security permissions (see Defns. 57, 58, and
59 of UCCACM) of all of the calls to global services. To facilitate the explanation, Figure 6.13

174

presents a global DAC policy example in JSON format that consists of one main part,
PERMISSION_DELEGATION, that can have role delegation, or clearance delegation. Each role
delegation is represented by three fields: delegator _id, delegated _id, and role_id. Each clearance
delegation is represented by three fields: delegator_id, delegated id, and clearance. Notice that the
role delegation set, Defn. 25, in Figure 6.13 is based on a set of role delegations from OpenEMR
and MyGoogle systems, and SMH client app. Likewise, the clearance delegation set, Defn. 24, in
the figure is based on a set of clearance delegations from OpenEMR and MyGoogle systems, and
SMH client app. For example, the first permission delegation in the Global DAC example, is a
role delegation in which the user with id 2, see Figure 6.9, passed on the authorization of the role

(Patient) with id 2 to the user with id 1.

"SECURITY_POLICY™: [

"POLICY_TYPE™: “"DAC™
b
- "PERMISSION_DELEGATION": [{ "role_delegstion”: { "delegator_id": "2", "delegated_id": "1", "role_id": "2" } }]
3
- "PERMISSION_DELEGATION": [{ "role_delegation”: { "delegator_id": "3", "delegated_id": "4", "role_id": "4" } }]
T
- "PERMISSION_DELEGATION": [{ "clearance_delegation™: { "delegator_id": "1", "delegated_id": "2", "clearance™: "3" } }]

Figure 6.13. A Global DAC Policy Example in JSON

Figure 6.14 has the DAC enforcement code realized within the incomingRequestPostProcessed
method of the DAC Interceptor, which is an extension of the HAPI InterceptorAdapter class, which
is registered in the RestfulServer class. Basically, the DAC enforcement code is a combination of
both the RBAC enforcement code, lines 3-11 and line 19, and the MAC enforcement code, lines
21-22, 24-25, and 27-50, with role delegation and clearance delegation checks. This method starts
by retrieving a secure Token from a HTTP header (Authorization) of the request parameter, that is

passed to the extractUser function that can obtain the user credentials (i.e., user 1d, see Defn. 15v2,

175

and role 1d, see Defn. 9v2) from the Token (line 4). Then, the Global Policy (see Defn. 39), which
is in JSON format, is retrieved by calling the Global Policy URL (line 5). The global RBAC policy
example in Figure 6.9 is then extracted from the Global Policy through the extract RBAC function
(line 6). Next, the details of the requested resource (resource name, see Defn. 2, and HTTP method,
see Defn. 4) are obtained from the requestDetails and request parameters, respectively, and are
passed along with the RBAC policy to the getResourceld function that returns the Id of the
requested resource (lines 7 to 9). In line 11, the user credentials and the RBAC policy are passed
to the checkCredentials function (see Defn. 50) to determine whether the user has the claimed role
(see Defn. 9v2). Then, the global DAC policy example in Figure 6.13 is extracted from the Global
Policy through the extract DAC function (line 12). If the checkCredentials check fails, another
check (lines 13-15) is performed to determine whether such a role is delegated to the current user
by another user. This is done by passing the user Id, the claimed role Id, and the DAC policy to
the checkRoleDelegation function that returns true if the entry delegated_id(user Id)/claimed role
exists or false otherwise to the verifiedRoleDelegation variable.

If both checks fail (line 18), the value of the accessDecision variable becomes false (lines 57-
59). However, if the user passed at least one of these checks, the associated role Id, the resource
Id, and the RBAC policy are passed to the checkPerm function (see Defn. 51 - line 19) that returns
true if the user with such role (or delegated role) can access the requested resource or false
otherwise. Note that the checkPerm function first retrieves a list of parent roles of the user role
(passed) based on the global role hierarchy, part of RBAC policy, in which the user can access all
of the resources that are authorized to the user role of any of its parents. If the checkPerm function
returns false, then the variable accessDecision is set to false (lines 53-54). However, if the

checkPerm function returns true, then the global MAC policy example in Figure 6.11 is extracted

176

from the Global Policy through the extract. MAC function (line 21). Then, in line 22, the user Id
and MAC policy are passed to the getUserDetails function that returns the user details (i.e., user
clearance, Read property, and Write property). Next, a user clearances list is created to include the
user clearance, from the previous step, and a set of delegated clearances to the current user that is
obtained from the getUserDelegatedCLR function that takes as inputs the user id and the DAC
policy (line 23). Then, in line 24, the resource Id and MAC policy are passed to the
getResourceCLS function to find the resource classification level. After that, for each user
clearance in the user clearances list, the following procedure is performed: utilizing the user details
and the requested resource details the accessDecision variable is set to true if the user clearance
satisfies the user’s predefined read or write properties on the requested resource and method, or
false, otherwise (lines 26 to 51). Finally, in line 61, the value of the accessDecision variable is

returned as the result of the incomingRequestPostProcessed method.

177

61
62

//Serves as Access Control Interceptor function
public boolean incomingRequestPostProcessed(requestDetails, request, response) {

secToken = request.getHeader (“Authorization”);

[userId,roleId] = extractUser (secToken) ;

Global Policy= HttpGet (Global Policy URL);

RBAC_Policy= extract_ RBAC(Global_Policy) ;

resourceName = requestDetails.getResourceName () ;

httpMethod = request.getMethod() ;

resourceld = getResourceld(httpMethod, resourceName, RBAC Policy) ;

verifiedUser=false;

verifiedUser=checkCredintals (userId, rolelId, RBAC_Policy); // true or false

DAC_Policy= extract_DAC(Global_ Policy) ;

if (verifiedUser==false) {

verifiedRoleDelegation=checkRoleDelegation (userId, roleId, DAC Policy); // true or false

}

verifiedPerm=false;

accessDecision=false;

if (verifiedUser==true || verifiedRoleDelegation==true) {

verifiedPerm=checkPerm(roleId, resourceld, RBAC Policy); // true or false
if (verifiedPerm==true) {

MAC_Policy: extract_MAC(Global_Policy);
[UserCLR, RP, WP] = getUserDetails(userId , MAC Policy);
UserCLRList = getUserDelegatedCLR (userId , DAC Policy) + UserCLR;
ResourceCLS = getResourceCLS (resourceIld , MAC_Policy);
accessDecision=false;
for each UserCLR in UserCLRList {
if (httpMethod=="GET") {

if (RP=="88") {
if (UserCLR < ResourceCLS) { accessDecision=false; }
else{ accessDecision=true; }
}
else if (RP=="SSR”) {
if (UserCLR != ResourceCLS) { accessDecision=false; }
else{ accessDecision=true; }
}
}
else if (httpMethod=="POST” || httpMethod=="PUT” || httpMethod=="DELETE”) {
if (RP=="SI") {
if (UserCLR < ResourceCLS) { accessDecision=false; }
else{ accessDecision=true; }
}
else if (RP=="LS"”) {
if (UserCLR > ResourceCLS) { accessDecision=false; }
else{ accessDecision=true; }
}
else if (RP=="SSW”) {
if (UserCLR != ResourceCLS) { accessDecision=false; }
else{ accessDecision=true; }
}
}
}
}
else {

accessDecision=false; // deny user request
}

}

else({

// Error Message: User could not be verified
accessDecision=false; // deny user request

}

Return accessDecision;

}

Figure 6.14. DAC Interceptor Pseudo Code.

6.2.5 Two Usage Scenarios

This section presents two access scenarios, to access global services of FSICC, of usage that
can be initiated by ShareMyHealth and MyGoogle, from Section 2.4, in order to demonstrate the
way that the three interceptors operate. The FSICC allows or rejects requests from ShareMyHealth
and MyGoogle to access the global services based on the enforcement codes that are generated by:

the RBAC Interceptor (Figure 6.10), the MAC Interceptor (Figure 6.12), and the DAC Interceptor

(Figure 6.14) that use the defined global security policy (see Defn. 39 - Figures 6.9 with global
RBAC, 6.11 with global MAC, and 6.13 with global DAC). That is, FSICC receives each request
which is forwarded to all three interceptors for RBAC, MAC, and DAC in which each interceptor
retrieves the appropriate security policy and returns a reject or allow decision to FSICC based on
that security policy. Note that the two requests were made with the Postman tool (Postman, 2013)
instead of directly made them from ShareMyHealth and MyGoogle in order to present a clear view
of the response the requests can have in different scenarios. In the first scenario, Figure 6.15,
FSICC rejects a request from the user (Sarah) via the ShareMyHealth (SMH) app to access the
global service (PUT Encounter). This is since the user (SSincs) with user Id (3) is assigned a role
(Patient_2) with role Id (4) that is authorized to access global services 1-5, see global RBAC in
Figure 6.9 what does not have access to the global service (PUT Encounter). Also, the access will

also fail since the user (Sarah) has no delegated roles, see global DAC in Figure 6.13.

PUT hezp://localhos:8085/UCONN-FHIR/Encounter/1 Params send v

tatus”:)
rorMessage”: "User does not have permission to access the requested resource.”

Figure 6.15. Access Scenario One (Rejected).

In the second scenario, Figure 6.16, the request from the user (ShareMyHealth) with id (5) via
MyGoogle to access the global service (GET Patient), would be allowed by FSICC. This is since
the user (ShareMyHealth) with user Id (5) is assigned a role (SMH) with role Id (10) that is

authorized to access global services 1-5 that includes (GET Patient), as was shown in the global

179

RBAC in Figure 6.9. in summary, the three interceptors are utilized in conjunction to dynamically
check each time a user tries to invoke a global Service. All of the conditions must be satisfied in
terms of permissions against the global RBAC, MAC or DAC in order for the service to be

invoked.

GET http:/flocalhost:8085/UCONN-FHIR/Patient/118 Params send v EEE

Key Value Description
Content-Type application/json

Authorization ey]hbGeiOiIUzI 1Ni|9.ey)qd GkiDilxli...

Prety

Fb

Figure 6.16. Access Scenario Two (Allowed).

6.3. Related work in Security Policy Integration and Enforcement

In this section, we present related work in two areas: security policy integration and security
policies enforcement on FHIR API. For the first area, we review five related works on security
policy integration comparing and contrasting their work to our security policy integration approach.
The first effort (Shafiq, B, Joshi, B, Bertino, E, & Ghafoor, A, 2005) proposed a set of mapping

algorithms that can be utilized to combine RBAC policies from different sources into a conflict-

180

free global policy. This work is similar to our RBAC integration approach by providing an RBAC
integration solution. However, this work assumes that all of the RBAC policies from different
systems are defined and stored using the same format which is an unrealistic assumption, while in

our approach we require each system to provide an RBAC policy using a specific format in JSON.

The second effort (Gouglidis, A, loannis, M, & Vincent, C, 2014) extended NIST-RBAC
to define a checking technique that can be utilized as a management service/tool for the verification
of multi-domain cloud policies. This technique is capable of detecting whether a user with a role
from one domain can access an object from another domain. This effort, unlike our approach, does
not define a complete global RBAC policy for all of the integrated systems and performs an on-the-

fly authorization query for every object access request that generates an undesirable overhead.

The third effort (Bonatti, P, Maria, L, & Subrahmanian, V, 1997) focused on the issue of
integrating sensitivity levels of different systems under the assumption that one sensitivity level in
one system may have a different semantic interpretation of the same sensitivity level in another
system. To solve this issue, this effort proposed to map each sensitivity level of each system with a
sensitivity level that has similar semantics but not the same name in another system. This effort is
similar to our MAC integration approach in the way they map a number of sensitivity levels of
different systems which is similar to our mapping of classification levels. However, the way users
and objects of each system assigned clearance and classification, respectively, in the presence of

the global sensitivity levels, is not clearly articulated.

The fourth effort (Dawson, S, Shelly, Q, & Pierangela, S, 2000) proposed an approach for MAC-
based polices integration by introducing two main concepts: the wrapper and the mediator. A
wrapper is a mechanism that is associated with each system to provide a uniform data interface and

a mapping between the system’s sensitivity levels and sensitivity levels of other systems in order

181

to generate a global MAC policy. The mediator is an enforcement technique that processes global
access requests based on the generated global MAC policy. This work is similar to our MAC
integration approach as they provide a MAC integration solution and also provide a technique to
enforce the global MAC policy. However, their work assumes that each user of each system can
only be assigned to one specific read property (SS) and one specific write property (SI), unlike our
approach where any user may be assigned to any of the read properties (SS, S* read) and to any of

the write properties (SI, L*, S* write).

The last effort (Joshi, BD & Elisa, B, 2006) proposed a solution for defining RBAC-based
delegation in an integrated environment. Specifically, in this work a delegation framework is
proposed that provides two types of delegation, role delegation and permissions (sub-set of
permissions of a role) delegation, that can be user-to-user, user-to-role, role-to-role or role-to-user.
This work is similar to our DAC integration approach as they also provide a DAC integration
solution. However, their work is limited to a specific type of RBAC (i.e., GTRBAC), unlike our
approach for RBAC-based delegation. Also, their work does not support the integration of MAC-
based delegation in which our approach provides it. Note that all of the above five efforts try to
integrate policies that are defined against objects (traditional) and just target one access control
model, while our security policy integration approach provides solutions to integrate policies which
are defined against services that access objects in which such policies can be any combination of

RBAC, MAC, and DAC.

For the second area, we review four related works on the topic of security enforcement that
utilizes FHIR. The first effort, SMART on FHIR (SMART on FHIR, 2015), proposed a standard
for authentication and authorization that controls Apps access to FHIR resources based on the

OAuth2 authentication protocol (Cook, 2012). Each App is given a cryptographic Token that has a

182

number of claims. A claim can be a scope (each App may have one or more scopes) or patient ID,
and the information in the Token is encrypted using the JWT library (JWT Team, 2012). A scope,
such as (scope=user/Patient.read), defines what type of FHIR APl an App can access which allows
an App to retrieve all of the Patient data and can be further restricted to only return the Patient
record that matches the patient ID in the App's Token. This effort is similar to our approach for
enforcing security policies since they support security interceptors that perform authentication and
authorization against each request to access services. However, the authorization interceptor
presented by this effort is different from our approach since the authorization interceptor cannot be
used to enforce advanced security policies to control access to FHIR resources using roles (RBAC),

sensitivity levels (MAC), and roles/sensitivity levels delegations (DAC).

The second effort, Vonk (Simplifier.net, 2018), is an extension of the access control approach
of SMART on FHIR, an implementation of SMART on FHIR standard in which the default
processes for Apps authentication and authorization is based on SMART on FHIR standard.
However, in Vonk, the authentication implementation can be changed from the default OAuth2
authentication protocol to any other authentication implementations and the authorization process
of SMART on FHIR can be replaced with any other authorization implementations. This effort is
similar to our approach for enforcing security policies as their approach provide authentication and
authorization capabilities. However, the authorization process of this effort is different from our
approach as it does not support advanced security requirements to control access to FHIR resources

using roles (RBAC), sensitivity levels (MAC), and roles/sensitivity levels delegations (DAC).

The third effort, SecFHIR (Altamimi, 2016), proposed a security standard that may be adopted
to extend the FHIR standard with access control specifications. Specifically, SecFHIR suggested to

define permissions on FHIR resources as an XML schema so that the defined XML schema can be

183

integrated into the XML schemas of different FHIR resources. In this way, the permissions defined
in each FHIR resource’s XML schemas can be utilized by any access control mechanism to enforce
such permissions. Clearly this approach is different from our approach since SecFHIR does not
provide any authentication capabilities that can be utilized to verify the identity of Apps. Also,
SecFHIR doesn’t provide any mechanisms to support enforcing security policies on Apps’ access

requests for important access control models such as RBAC, MAC, and DAC.

Finally, the fourth effort, HAPI FHIR reference implementation (HAPI community, 2017),
provides two security mechanisms: one to verify Apps identity using an authentication interceptor;
and another one to enforce security policies using the rule-based access control model using the
authorization interceptor. The authentication interceptor utilizes the HTTP Basic Auth protocol for
Apps authentication purposes. In addition, the rule-based access control model defines a set of rules
within the interceptor and utilizes if/else statements in order to whitelist/blacklist Apps access
requests to FHIR resources. This approach is similar to our approach for enforcing security policies
as their approach provides authentication and authorization capabilities, via the authentication and
authorization interceptors. However, the authorization interceptor of their approach is different
from our approach as they do not support advanced security requirements to control access to FHIR
resources using roles (RBAC), sensitivity levels (MAC), and roles/sensitivity levels delegations

(DAC).

184

Chapter 7
SOA-based Security Engineering for FSICC

This chapter presents and explains an SOA-based security engineering and global security policy
generation process for FSICC that involves all of the horizontal boxes in Figure 1.3 that contain the
main research foci of this dissertation: Architectural Blueprints as reviewed in Chapter 5; Unified
Cloud Computing Access Control Model as presented in Chapter 4; Access Control Models in
Section 1.3 of Chapter 1 and Section 2.2 of Chapter 2; and, GSP (Global Security Policy)
Generation and GAPI (Global API) Generation and Global Security Policy and Global API
Utilization and Security Enforcement in Chapter 6. GSP (Global Security Policy) Generation and
GAPI (Global API1) Generation is for generating the security policy from multiple systems to make
global APIs available to clients what’s showing in the lower portion of Figure 1.2 of Chapter 1.
Global Security Policy and Global API Utilization and Security Enforcement that utilizes security
interceptors that was shown in the bottom of Figure 1.2 to allow/deny clients from access global
services of FSICC. A SOA-based security engineering process (SSEP) for FSICC is intended to
assist security engineers of systems and clients and security engineers of FSICC with a
structured process to define and maintain secure interoperable services for RBAC, MAC, and

DAC.

To support SSEP, the Unified Cloud Computing Access Control Model (UCCACM), from
Chapter 4, has a set of definitions for global security policy generation and utilization (see Defns.
41-48 of Section 4.6). This set of definitions ensure that such global security policy can control
access to a set of global services that are generated using one or more of integration architecture

blueprints: Basic Architecture, Alternative Architecture, or Radical Architecture from Chapter

185

5. Based on this, this chapter introduces and discusses a SOA-based security engineering and
global security policy generation process for FSICC; this addresses Contribution EC-C: Security
Mapping/Enforcement Algorithms and SSEP from Section 1.5, this is represented by the left
vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 from Chapter 1 that spans all
of the five horizontal boxes: Architectural Blueprints, Unified Cloud Computing Access Control
Model, Access Control Models, Global Security Policy and Global APl Generation, and Global

Security Policy and Global API Utilization and Security Enforcement.

In the remainder of this chapter, a SOA-based security engineering and global security policy
generation process for FSICC is presented in three main sections. In Section 7.1, a Pre-Process
Step briefly describes what each system and client need to do before joining the FSICC. In Section
7.2, a SOA-based security engineering process (SSEP) for FSICC is presented that is intended to
assist security engineers of systems and clients and security engineers of FSICC with a structured
process to define and maintain secure interoperable services for RBAC, MAC, and DAC. In Section
7.3, a complete and detailed example that illustrates the SOA-based security engineering process
of Section 7.2 is provided to demonstrate the phases and tasks of SSEP coupled with security policy
integration algorithms of Section 6.2 of Chapter 6 that can be utilized to establish and utilize security

for interoperable services via FSICC.

7.1. A Pre-Process Step for Joining FSICC

As discussed in Chapter 3, one key feature of the FSICC is to enable multiple systems to provide
their services, which can be web-based, cloud-based, or traditional API, via registering into FSICC.
This was introduced in Section 3.2 as cloud computing capability 1: Local Service Registration and

Mapping to Global Services. These web-based, cloud-based, or traditional API that are provided by

186

a system are transitioned to a set of equivalent and unified into a set of global services, via FSICC,
by utilizing cloud computing capability 1. However, as discussed in Chapter 5, each system that
provides services needs to perform a pre-process step before joining the FSICC which is creating
an integration layer utilizing a standard integration framework (IFMWK), such as FHIR API for
the healthcare domain, which is a standard API that converts system’s data from/to the integration
layer format. Such an integration layer is specified and utilized by the FCICC. To support this step,
Section 5.3 provided a specific set of instructions using the HIT IFMWK Blueprint that a system

may utilize to build its own integration layer.

From a client perspective, FSICC provides the unified Global Services so that clients can easily
create application functionality without the need to consider heterogeneous types of systems’
services. This was introduced in Section 3.2 as cloud computing capability 3: Global registration,
authentication, authorization, and service discover for Consumers. These mobile, web, or desktop
client apps then can be developed using a subset of the available unified global services, via FSICC,
by utilizing cloud computing capability 3. However, as discussed in Chapter 5, each client that is
interested in utilizing such global services may need to perform a pre-process step before joining
the FSICC to create an integration layer which is a standard API that converts a client’s data
from/to the integration layer format. To support this step, Section 5.3 provided three sets of
instructions via three architectural blueprint options that a client may utilize to build its own
integration layer: the Basic Architecture Blueprint, the Alternative Architecture Blueprint, and the

Radical Architecture Blueprint).

7.2. An SOA-based Security Engineering Process (SSEP) for FSICC

187

The SOA-based security engineering process (SSEP) is intended to help security engineers of
systems and clients, on one side, and the security engineer of FSICC, on the other side, to establish
and maintain secure interoperable services via RBAC, MAC, and DAC per security requirements
2, 4, and 3 of Section 3.1, respectively, as shown in Figure 7.1. This occurs via four main phases
(i.e., L.a, 1.b, 2.3, and 2.b) in which the phases 2.a, and 2.b are further explained in Figures 7.2 and
7.3, respectively. This allows SSEP to enable the security engineer: of each participating system to
integrate its services into FSICC (see cloud computing capability 1 of Section 3.2) in which the
system’s security policy is enforced; of each interested client to enable the client’s users to leverage
a set of global services and global security policy (see cloud computing capability 3 of Section 3.2);
and of the FSICC to integrate all of the security policies from all of systems that are to be defined
against the global services (see cloud computing capability 2 of Section 3.2) and to control the way
that interested clients utilize the services. In the remainder of this section, we explore SSEP in
Figure 7.1, along with Figures 7.2 and 7.3, utilizing Figure 6.1 from Chapter 6 that showed the
architecture for global security policy generation and utilization, and explaining the tasks for
security engineers of systems, clients, and FSICC.

To begin, the SSEP, in Figure 7.1, is divided into four phases. In Section 7.2.1, we present the
Constructing Systems Requests phase, labeled (1.a) in the top left of Figure 7.1, that needs to be
performed by security engineers of systems. In Section 7.2.2, we describe the Constructing Clients
Requests phase, labeled (1.b) in the top right of Figure 7.1, that needs to be performed by security
engineers of clients. In Section 7.2.3, we present the Registering Requests Processing phase, labeled
(2.a) in the bottom left of Figure 7.1, that needs to be performed by the security engineers of FSICC
in which the specific tasks of this phase are depicted in Figure 7.2. In Section 7.2.4, we discuss the

Usage Requests Processing phase, labeled (2.b) in the bottom right of Figure 7.1, that needs to be

188

performed by the security engineers of FSICC in which the specific tasks of this phase are depicted
in Figure 7.3. Note that in the rest of this section, the term “system” indicates a pure system, mixed
system (services registering part) or mixed client (services registering part), and the term “client”

indicates a pure client, mixed client (services utilization part) or mixed systems (services utilization

part).

7.2.1 Constructing Systems Requests Phase

The Constructing Systems Requests phase labeled (1.a) in Figure 7.1 allows security engineers
of pure or mixed systems to provide their services via FSICC and for mixed systems to request
services. From a registering perspective, security engineers of both pure and mixed systems can
select to Register System’s Integration Layer and Security Policy, labeled (1.a.1) which utilizes the
cloud computing capabilities of FSICC to provide the system’s integration layer and security policy
that enables FSICC to recognize and integrate: a system’s integration layer with the global services;
and, a system’s security policy with the global security policy. This is indicated by the dashed line
from the Constructing Systems Requests box to the Registering Requests Processing box labeled
(2.a) at the bottom left of Figure 7.1. As part of this process, the system’s integration layer (e.g.,
FHIR for HITs) can be designed by utilizing the HIT IFMWK Blueprint from Section 5.3, as
described in Section 7.1. In addition, the system’s security policy is defined by the system’s security
engineer to control access to the system’s integration layer via one or more access control models
such as RBAC, MAC, and/or DAC that specify which services (of the system’s integration layer)
each user in that system may access. This is indicated by the RBAC Integration and Review &
Correct Role Names, the MAC Integration and Building Global MAC, and the DAC Integration

boxes of pure and mixed systems at the bottom of Figure 6.1 from Chapter 6.

189

From a usage perspective, security engineers of mixed systems can select to Utilize GSP &

GAPI labeled (1.a.3) and since they are interested in using the Global Services in order to

accomplish some of the functionalities, they need to go through a number of tasks based on the

answers to two questions:

Question 1: Does the mixed system need to utilize a subset of the global services (i.e.,
global API) and a subset of the global security policies, labeled (1.a.q1)? If yes, then ask
Question 2.

Question 2: Does the mixed system need to customize a subset of the global security
policies, labeled (1.a.92)? That is, a security engineer of the system has found a global
security policy that has too few/many permissions than needed, thereby needing a
customization.

> If the answer to Question 2 was yes, then the security engineer of the system
would need to have human intervention with the security engineer of FSICC,
labeled (1.a.2), to customize a subset of the global security policy in which both
parties discuss and agree about adding a new customized security policy, the
global security policy is updated after this task, or to use an existing security
policy.

» If the answer to Question 2 was no, the security engineer of the system would
use some capabilities of FSICC to send a global security policy and global
services utilization request to FSICC, labeled (1.a.3) as indicated by the solid
line from the Constructing Systems Requests box to the Usage Requests

Processing box at the bottom of Figure 7.1.

190

(1.a) Constructing Systems Requests (1.b) Constructing Clients Requests
[PURE SYSTEM] [MIXED SYSTEM] [MIXED CLIENT] [PURE CLIENT]

{1.b.q1) Defined
Security Poli

[NO]

(1.a.1) Register System’s
Integration Layer &
Security Policy

(1.b.1) Register Client’s
Integration Layer &
Security Policy

(1.b.2) Human Intervention
with FSICC’s Security
Engineer to Map Client’s
Security Policy with FSICC’s
Global Security Policy

1.b.q2) Needs
to Utilize
SP & GAP

{1.b.q3) Need:
o Customize

(1.b.3) Human Intervention
with FSICC’s Security
Engineer to Customize
Some of GSP

(1.a.2) Human Intervention
with FSICC’s Security Engineer
to Customize Some of GSP

(1.b.4) Utilize
GSP & GAPI

1
1
1

3

4
4
/(Z.a) Registering Requests Processing \ r (2.b) Usage Requests Processing \

A Set of Algorithms and Human Processes for
Integrating RBAC, MAC, & DAC of Systems and
Clients that Provide Services

A Set of Human Processes to Enable Clients
and Systems that Utilize Services to Use Global
Services and Global Security Policy

Legend
----- register security & API ___ utilize security & API GSP Global Security Policy GAPI Global API(Services)

Figure 7.1. A High-Level View of SOA-Based Security Engineering Process for FSICC.

7.2.2 Constructing Clients Requests Phase

The Constructing Clients Requests phase labeled (1.b) in Figure 7.1 allows security engineers
of mixed clients to provide their services via FSICC and for pure and mixed clients to request
services. From a registering perspective, security engineers of mixed clients can select to Register
System’s Integration Layer and Security Policy, labeled (1.b.1) which utilizes the cloud computing
capabilities of FSICC to provide the client’s integration layer and security policy that enables
FSICC to recognize and integrate: a system’s integration layer with the global services; and, a

system’s security policy with the global security policy. This is indicated by the dashed line from

191

the Constructing Clients Requests box to the Registering Requests Processing box at the bottom of
Figure 7.1. As part of this process, the client’s integration layer (e.g., FHIR for HITs) can be
designed by utilizing the HIT IFMWK Blueprint from Section 5.3, as described in Section 7.1.
Moreover, the client’s integration layer (e.g., FHIR for HITs) can be designed by utilizing one of
the three integration options: Basic Architecture, Alternative Architecture, or Radical Architecture
as discussed in Section 5.2, as described in Section 7.1. In addition, the client’s security policy is
defined by the client’s security engineer to control access to the client’s integration layer via one or
more access control models such as RBAC, MAC, and/or DAC that specify which services (of the
client’s integration layer) each user in that client may access, this is indicated by the RBAC
Integration and Review & Correct Role Names, the MAC Integration and Building Global MAC,
and the DAC Integration boxes of mixed clients at the top of Figure 6.1.

From a usage perspective, security engineers of pure and mixed clients that are interested in
utilizing the FSICC’s global services and global security policy in order to accomplish some of the
functionalities, need to go through a number of tasks based on the answers to three questions.

e Question 1: Does the client have a defined security policy that the client’s security
engineer prefers to use instead of the global security policy (1.b.q1)?
> If the answer to Question 1 was yes, then the security engineer of the client has
human intervention with the security engineer of FSICC to map the client’s security
policy to the global security policy labeled (1.b.2) in which both parties discuss and
agree about a way to map the client’s security policy to the global security policy
which is updated after this task.
» If the answer to Question 1 was no, the client’s security engineer needs to answer

Question 2.

192

e Question 2: Does the client need to utilize a subset of the global services (i.e., global
API) and a subset of the global security policies, labeled (1.b.q2)? If the answer to
Question 2 was no, the client’s security engineer needs to answer Question 3.
e Question 3: Does the client need to customize a subset of the global security policies,
labeled (1.b.g3)? That is, a security engineer of a client has found a global security
policy that has too few/many permissions than needed, thereby needing a customization.
> If the answer to Question 3 was yes, then the security engineer of the client would
need to have human intervention with the security engineer of FSICC to customize
a subset of the global security policy, labeled (1.b.3), in which both parties discuss
and agree about adding a new customized security policy, the global security policy
is updated after this task, or to use an existing security policy.

> If the answer to Question 3 was no, the security engineer of the client would use
some capabilities of FSICC to send a global security policy and global services
utilization request to FSICC, labeled (1.b.4) indicated by the solid line from the
Constructing Clients Requests box to the Usage Requests Processing box at the

bottom of Figure 7.1.

7.2.3 Registering Requests Processing Phase

The Registering Requests Processing phase labeled (2.a) in Figure 7.1 needs to be performed
by the security engineers of FSICC to achieve two main objectives. First, to build the global
services, which is primarily a human-based process, based on the integration layer of each system.
Second, to construct the global security policy, which is mostly an algorithm-based process, based
on security policy of each system. The Registering Requests Processing phase has three tasks and

executed for each system that is being integrated into the global policy:

193

Task 1: The first task is to configure the global services (global API), labeled (2.a.1) at

the top of Figure 7.2, in which the FSICC’s security engineer is required to configure

each global service of the FSICC so that CRUD methods of the services can send and
receive data to/from each system’s integration layers. This is based on integration layers

provided by different systems in the phases 1.a and 1.b of Figure 7.1.

Task 2: In the second task, the FSICC’s security engineer has three task options to

perform RBAC, MAC, and/or DAC integration on each system, which may have no

access control, only one access control, any combination of two access controls, or all
three access controls:

» The first task option, labeled (2.a.2) in Figure 7.2, is to send each RBAC policy of
each system to the RBAC integration algorithm. This task option is performed if
there is a system’s RBAC policy that needs to be integrated with the global security
policy. As part of this process, the generated RBAC policy is submitted to Review
and Correct Role Names Algorithm labeled (2.a.2.a) with any other required input.

» The second task option, labeled (2.a.3) in Figure 7.2, is to send each MAC policy of
each system to the MAC integration algorithm. This task option is performed if there
is a system’s MAC policy that needs to be integrated with the global security policy.
As part of this process, the generated Sensitivity Levels Mapping List is submitted
to the Building Global MAC Algorithm with any other required inputs, labeled
(2.a.3.9).

» The third task option, labeled (2.a.4) in Figure 7.2, is to send each DAC policy of
each system to the DAC integration algorithm. This task option is performed if there

is a system’s DAC policy that needs to be integrated with the global security policy.

194

Task 3: In third task, labeled (2.a.5) at the bottom of Figure 7.2, the FSICC’s security
engineer needs to send the resulted global RBAC policy from (2.a.2), global MAC
policy from (2.a.3), and global DAC policy from (2.a.4) to Combine Updated Global
RBAC, Global MAC, and Global DAC and Control Data algorithm that concatenates
all of the three global polices to generate one global security policy. The FSICC’s
security engineer also needs to specify one read data access type, as described in Section
6.1.4 of Chapter 6, to control the way that data are read. Note that there is one write data
access type that is used by default to control the way that data are written. The third task
marks the final part of the Registering Requests Processing phase in which the global
services and global security policy are ready to be utilized by FSICC’s clients.
Moreover, at this point the complete details of the generated global security policy and
global services, such as the way to utilize the global services and global security policy

and what is the exact web location, will not be published to public.

195

(2.a) Registering Requests Processing

4

(2.a.1) Configure Global API

[NOT DONE]

[DONE]

[ves]

NEEDS RBAC
INTEGRATION

(2.a.2) Send RBAC of System to ol
RBAC Integration Algorithm

[NOT DONE]

[DONE] [VES]

> NEEDS MAC
INTEGRATION

{2.a.2.a) Send Global RBAC to Review &
Correct Role Names Algorithm (with
needed input)

[NOT DONE])\
[ves]

[DONE] NEEDS DAC <
INTEGRATION

ol (2.a.3) Send MAC of System to MAC
Integration Algorithm

[NOT DONE]

[DONE]

(2.a.3.a) Send the Sensitivity Levels
Mapping List to Building Global MAC
Algorithm (with needed input)

[No)

(2.a.4) Send DAC of System to DAC
Integration Algorithm

[NOT DONE]

[DONE]

[DONE]

[NOT DONE]

(2.a.5) Combine Updated Global
RBAC, Global MAC and Global DAC
& Control Data to Generate Global
Security Policy

[DONE]

[NEEDS REVISION]

Figure 7.2. A Detailed View of Phase 2.a of the SSEP
7.2.4 Usage Requests Processing Phase
The Usage Requests Processing phase labeled (2.b) in Figure 7.1 is performed by the security
engineers of FSICC to enable clients to leverage available global services and the corresponding
global security policy, which are built based on the tasks of the Registering Requests Processing
phase and is a human-based process. The FSICC’s security engineer has four tasks to perform the

Usage Requests Processing phase:

196

Task 1: In the first task, the FSICC’s security engineer has three task options to process

clients’ requests:

>

The left task option, labeled (2.b.1) in Figure 7.3, is to check the Global Security
Policy (GSP) to Find Permissions Similar to Client Security Policy (CSP). This task
option is performed if there is a client that requests to map its security policy with
the global security policy.

The center task option, labeled (2.b.2) in Figure 7.3, is to assign an 1D and Token to
a Client which is needed for authentication and authorization purposes. This task
option is performed if there is a client (basically all of the clients) that requests to
utilize a subset of the global security policy and global services.

The right task option, labeled (2.b.3) in Figure 7.3, is to Add needed Customized
Policy to GSP as a New Policy. This task option is performed if there is a client that

requests to customize a subset of the global security policy.

Task 2: In the second task, the FSICC’s security engineer also has three task options:

>

The left task option, labeled (2.b.1.a) in Figure 7.3, is to map the Client Security
Policy (CSP) and Global Security Policy (GSP). This task option is performed if the
output of the task option (2.b.1) was yes, which means that the Global Security
Policy (GSP) has permissions similar to Client Security Policy (CSP).

The center task option, labeled (2.b.1.b) in Figure 7.3, is to add the Client Security
Policy (CSP) to Global Security Policy (GSP). This task option is performed if the
output of the task option (2.b.1) was no, which means that the Global Security Policy

(GSP) does not have permissions similar to Client Security Policy (CSP).

197

» The right task option, labeled (2.b.2.a) in Figure 7.3, is to Find One Suitable System
for a Client as a Repository. This can be done by finding a registered system that
provides services similar to the set of global services the client is interested in.

Task 3: In the third task, labeled (2.b.4) in Figure 7.3, the FSICC’s security engineer

should update the Global Security Policy (GSP,) that may have been changed as a result

of performing the tasks (2.b.1.a), (2.b.1.b) and/or (2.b.3).

Task 4: In the fourth task, labeled (2.b.5) in Figure 7.3, the FSICC’s security engineer

can Send to the client: the Client’s ID, the Client’s Security Token, the available Global

API (services), the available Global Security Policy (GSP), and instructions on the way

to utilize such global services and global security policy. This allows the client to begin

building an App utilizing the retrieved global services and global security policy.

198

(2.b) Usage Requests Processing

¢

[CLIENT REQUEST TO UTILIZE GSP & Global API] ‘1'

[CLIENT REQUEST TO MAP CSP WITH GSP]

(2.b.1) Check GSP to Find
Permissions Similar to CSP

[CLIENT REQUEST TO CUSTOMIZE GSP]

(2.b.3) Add Needed Customized

(2.b.2) Assign ID & Token to a Client Policy to GSP as a New Policy

[YES] l'

(2.b.1.a) Map CSP and (2.b.1.b) Add CSP to GSP (2.b.2.a) Find One Suitable System
GSP o for a Client as Repository

(2.b.4) Update GSP if Needed

(2.b.5) Send: Client ‘s ID & Token,

the Available Global API, and the
Available GSP to a Client

[NOT DONE]

[DONE]

[NEEDS REVISION]

Legend
CSP Client Security Policy GSP Global Security Policy

Figure 7.3. A Detailed View of Phase 2.b of the SSEP

7.3. Demonstrating the SOA-based Security Engineering Process

To provide a hands-on experiment on the SOA-based security engineering process (SSEP), this
section presents a complete and detailed example that demonstrates: the way that each phase and
task of SSEP from Section 7.2 in applied, as was shown in Figures 7.1, 7.2, and 7.3; the usage of
the security policy integration algorithms from Section 6.1 from Chapter 6, see Figures 6.1-6.8;
and, the establishment and utilization of security for interoperable services via FSICC. In the
remainder of this section, our healthcare scenario from Section 2.4 is used for explaining all of the
phases and tasks of SSEP, where we assume that the CT? client does not provide services or a
security policy. Based on this assumption, we can categorize: CT?> App as a pure client that only

utilizes services from OpenEMR system; SMH App as a mixed client that utilizes services from

199

MyGoogle system and provides a number of services; OpenEMR as a pure system that only
provides services; and, MyGoogle as a mixed system that provides services and utilizes services

from OpenEMR.

Using this setting, we apply the SSEP’s phases and tasks of Section 7.2 in the following order.
First, the Constructing Systems Requests phase, labeled (1.a) in the top left of Figure 7.1, is applied
to OpenEMR system, MyGoogle system, and SMH client App, since each of them has services and
security policy to register. Second, the Registering Requests Processing phase, labeled (2.a) in the
bottom left of Figure 7.1, is applied to OpenEMR system, MyGoogle system, and SMH client App,
since each of them has sent services and security policy registering requests to FSICC. Third, the
Constructing Clients Requests phase, labeled (1.b) in the top right of Figure 7.1, is applied to
MyGoogle system, SMH, and CT? client Apps, since each of them is interested in utilizing the
global services and the global security policy. Finally, the Usage Requests Processing phase, labeled
(2.b) in the bottom right of Figure 7.1, is applied to MyGoogle system, SMH, and CT? client Apps,
since each of them has sent global services and global security policy utilization requests to FSICC.
Note that in the remainder of this section, only a subset of actual services and security policies of
each system and client is used, since these subsets are enough for explaining all of the phases and

tasks of SSEP.

The remainder of this section is organized into four subsections. In Section 7.3.1, we explain the
way that the three systems OpenEMR, MyGoogle, and SMH can utilize the Constructing Systems
Requests phase from Section 7.2. In Section 7.3.2, we apply the Registering Requests Processing
phase from Section 7.2 to the three requests from OpenEMR, MyGoogle, and SMH systems. In
Section 7.3.3, we explain the way that three clients: MyGoogle, SMH, and CT? can utilize the

Constructing Clients Requests phase from Section 7.2. Finally, in Section 7.3.4, we apply the Usage

200

Requests Processing phase from Section 7.2 to the three requests from MyGoogle, SMH, and CT?

clients.

7.3.1 Applying the Constructing Systems Requests Phase on OpenEMR, MyGoogle, and SMH
In this section, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1,

to the OpenEMR and MyGoogle systems and the SMH client. Since OpenEMR is a pure system,
the security engineer of OpenEMR must register: OpenEMR’s integration layer which are
OpenEMR’s FHIR services in Table 2.5 of Section 2.4 and Example 4.4 with Figure 4.1 in Section
4.4; and, OpenEMR’s security policy which are OpenEMR’s RBAC, MAC, and DAC in Table 2.6
of Section 2.4 and Example 4.4 with Figure 4.1 in Section 4.4. Note that the security engineer of
the OpenEMR system designed the OpenEMR’s integration layer by utilizing the HIT IFMWK
Blueprint in Section 5.4.1. This can be achieved by constructing three JSON documents, one for
OpenEMR’s FHIR services from Figure 7.4, one for OpenEMR’s RBAC/DAC from Figure 7.5,
and one for OpenEMR’s MAC/DAC from Figure 7.6, and then sending them to the System Registry

component of FSICC in Figure 7.22.

"INTEGRATION_LAYER": [

"SYSTEM_NAME": "OpenEMR™

": "Observation™, "method™: "PUT" } 3},
: "Dbservation”, "method™: "GET" } I,
: "Patient”, "method": "PUT" } 1,

": "Patient”, "method™: "GET" } } 1]

e

Figure 7.4. OpenEMR’s FHIR services in JSON

201

"SECURITY_POLICY™: [

"SYSTEM_NAME": "OpenEMR"
b
"POLICY_TYPE": "RBAC/DAC"
i
| "USERST: [{ "user": { "id": "1", "name": " John" } },
'user™: { "id": "2", "name": "Sara" } } 1
5
: "ROLES": [{ "role" 1", "name": "Physicion" } },
{ "role" "2", "name": "Patient” } }]
i
i "RESOURCES": [{ "resource": ", "name": "Observation", "method": "GET" } },
{ "resource": ", "name": "Patient", "method": "PUT" } },
{ "resource": ", "name": "Observation", "method": "PUT" T
{ "resource": ", "name": "Patient”, "method”: "GET" } }]
I
" "USER_ROLE_ASSIGNMENTS": [{ "assignment": { "user_id 1", "role_id 1" 3}
{ "assignment": { "user_id 2 role_id 2" ¥ 11
h
" "ROLE_RESOURCE_AUTHORIZATIONS®: [{ “authorization” , "resource_i "M 1Y,
{ "authorizatio N esource_id 2"} }.
{ "authorizatio esource_id": "3" } I,
{ "authorizatio ", "resource_id": "4" } } 1
I
 "ROLE_HIERARCHY": [{ "relationship”: { "role_id": "2", "parent_id": "1" } } 1
I
" "PERMISSION_DELEGATION": [{ "role_delegation”: { "delegator_id": "2", "delegated_id": "1", "role_id": "2" } }]
¥

Figure 7.5. OpenEMR’s RBAC/DAC policy in JSON

"SECURITY_POLICY": [

"SYSTEM_NAME": "OpenEMR"
Ts
- "POLICY_TYPE": "MAC/DAC"
I
"USERS": [{ "use "John", "clearance”: "3", "RP": "55",
7 oruze "Sara”, "clearance”: "2, "RP": "S3",
Ts
- "RESOURCES": [{ "resource®: { "i » "name": "Observation”, "method": "GET", "classification": "1" } },
{ "resource": { " ", "name": "Pstient", "method": "PUT", "classification": "1" } },
{ "resource”: { " , "name": "Observation", "method®: "PUT", "classification™: "1" } },
{ "resource”: { "i ", "name": "Patient", "method": "GET", "classification”: "1" } }]
Ts
- "PERMISSION_DELEGATION": [{ "clearance_delegstion": { "delegator_id": "1", "delegated_id": "2", "clearance”: "3" } } 1]
¥

1
i

Figure 7.6. OpenEMR’s MAC/DAC policy in JSON
Second, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, to the
MyGoogle system. Since MyGoogle is a mixed system, the security engineer of MyGoogle, must
register: MyGoogle’s integration layer which are the MyGoogle’s FHIR services in Table 2.7 of
Section 2.4 and Example 4.4 with Figure 4.1 in Section 4.4; and MyGoogle’s security policy which

are the MyGoogle’s RBAC and MAC in Table 2.8 of Section 2.4 and Example 4.4 with Figure 4.1

202

in Section 4.4. Note that the security engineer of the MyGoogle system designed the MyGoogle’s
integration layer by utilizing the HIT IFMWK Blueprint in Section 5.4.1. This can be achieved by
constructing three JSON documents, one for MyGoogle’s FHIR services from Figure 7.7, one for
MyGoogle’s RBAC from Figure 7.8, and one for MyGoogle’s MAC from Figure 7.9, and then

sending them to System Registry component of FSICC see Figure 7.22.

"INTEGRATION_LAYER": [

i
"SYSTEM_NAME": "MyGoogle"
Is
i
"SERVICES": ["Observation”, "method": "PUT" } 1},
Observation”, " "GET" } 1,
Patient”, "n PUT™ 3 1,
Patient”, "met GET" 3 1,
Person', "method": Ut » ¥ 1
}

Figure 7.7. MyGoogle’s FHIR services in JSON

"SECURITY_POLICY™: [

"SYSTEM_NAME™: "MyGoogle™

1
- "POLICY_TYPE™: "RBAC"
1
- "USERS™: [{ "user": { "id": "1", "name": "ShareMyHealth" } } 1
1
) "ROLES™: [{ "role": { i "1, "name”: "SMH" ¥ 1]
1
) "RESQURCES"™: [{ "resource™: { " ", "name": "Observation”, "method": "PUT" } },
{ "resource": { " ", "name": "Observation”, "method": "GET" } },
{ "resource"”: { " ", "name": "Patient”, "method": "PUT" } },
{ "resource™: { " ", "name": "Patient”, "method™: "GET" } },
{ "resource": { " ", "name": "Person", "method": "PUT" } }]
}_J
" "USER_ROLE_ASSIGMMENTS": [{ "assignment”: { "user_id": "1", "role_id": "1" } }]
}_J
 "ROLE_RESOURCE_AUTHORIZATIONS™: [{ "authorization®: { "role id": 1", "resource_id": "1" } I,
{ "authorization": { "role_id": "1", "resource_i 2" T),
{ "authorization": { "role_id": "1", "resource_i 3T T,
{ "authorization™: { "role_id": "1", "resource_id": "4" } },
{ "authorization": { "role_id": "1", "resource_id": "5" } }]
3

Figure 7.8. MyGoogle’s RBAC policy in JSON

203

"SECURITY_POLICY": [

"SYSTEM_NAME": "MyGoogle”
I
- "POLICY_TYPE": "MACY
L
- "USERS™: [{ "user™: { "id": "1", "name": "ShareMyHsalth", "clearance": "4", "RP": "S5", "WP": "L=" } }]
b
"RESOURCES": [{ "r R , "name": "Observation”, "method": "PUT", "
i { » "name”: tion”, "method": "GET",
" { 'y "method™: "PUT", "c
" { " : ', "method": "GET", "¢ an™:
i "t { i » "name": "Person”, "method": "PUT", "classification”: "1" } }
h

Figure 7.9. MyGoogle’s MAC policy in JSON

Finally, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, to the
SMH client App. Since SMH is a mixed client, the security engineer of SMH must register: SMH’s
integration layer which are SMH’s FHIR services see Table 2.3 in Section 2.4 and Example 4.5
with Figure 4.2 in Section 4.4; and, SMH’s security policy which are SMH’s RBAC, MAC, and
DAC see Table 2.4 in Section 2.4 and Example 4.5 with Figure 4.2 in Section 4.4. Note that the
security engineer of the SMH designed the SMH’s integration layer by utilizing the Basic
Architecture Blueprint in Section 5.4.1. This can be achieved by constructing three JSON
documents, one for SMH’s FHIR services from Figure 7.10, one for SMH’s RBAC/DAC from
Figure 7.11, and one for SMH’s MAC from Figure 7.12, and then sending them to the System

Registry component of FSICC see Figure 7.22.

"INTEGRATION_LAYER": [

"SYSTEM_NAME™: “SMH"

ts
{
"SERVICES": [{ "serwvice": , "namz": "Cbservation", “method": "BUT" } I,
{ "service": , "nams": "Observation", "method": "GET" } 1},
{ "service": 3", "npame": "Patient", "metheod": "PUT" } }
{ "service": » "name": "Patient", "methc GET" T T
{ "service": 5 "name": "Person”, "method": "PUT" } } 1
b

Figure 7.10. SMH’s FHIR services in JSON

204

"SECURITY_POLICY": [

"SYSTEM_MAME™: "SHM"

I
- "POLICY_TYPE™: "RBAC/DAC"
I
) "USERS™: [{ " "1", "name": "Sarah" } },
"2", "name": "Nasser" } }]
h
- "ROLES™: [{ "role™: { "id": "1", "name": "Patient" } },
{ "role": { "id": "2", "name": "Physician" } }]
ts
- "RESOURCES": [{ "resource™: { "i 1", "name": "Observation”, "method": "PUT" } I,
{ "resource™: { " 2", "name": "Observation”, "method": "GET" } I,
{ "resource™: { " "3", "name": "Patient”, "method”: "PUT" } },
{ "resource”: { " "4", "name": “"Patient”, "method": "GET" } },
{ "resource": { " 5", "name": "Person", "method": "PUT" } } 1
I
- "USER_ROLE_ASSIGNMENTS": [{ "assignment”: { "user_id": "1", "role_id": "1" } },
{ "assignment": { "user_id": "2", “"role_id": "2" } }]
I
" "ROLE_RESDURCE_AUTHORIZATIONS": [{ “authorization® role_id": "1", "resource_id": "1" } },
{ "authorizatiol i 1", "resourc 3"+ 1,
{ "authorizatio 1", "resourc 5" T T,
{ "authorization": "2", "resource_: 2" T 1,
{ "authorization”: { "role_id": "2", "resource_i AN |
I
- "ROLE_HIERARCHY": [{ "relatiocnship”: { "role_id": "1", "parent_id": "2" } } 1
I
" "PERMISSION_DELEGATION": [{ "role_delegation”: { "delegator_id": "1, "delegated_id": "2", "role_id": "1" } }]
¥
1
i
. . . .
Figure 7.11. SMH’s RBAC/DAC policy in JSON
"SECURITY_POLICY": [
"SYSTEM_MAME™: "SHM"
¥s
- "POLICY_TYPE": "MAC"
¥s
| "USERS": [{ "user "id": "1", "name": "Sarah", "clearance": "4", "RP": "S5", "WP": "SI" } },
'user "id": "2", "name": "Nasser", "clearance": "2", "RP": "S5", "WP": "L*" } }]
A
’ "RESOURCES": [{ "resource”: { "i "name": "Observation™, "method": "PUT", "classification”
{ "resource": { " "name": "Observation”, "method": "GET", "classification”
{ "resource”: { "i "name”: "Patient”, "method": "PUT", "classification”: "1
{ "resource": { " "name”: "Patient”, "method": "GET", "classification®: "1"
{ "resource™: { ", "name": "Person”, "method": "GET", "classification™: "1" } }
h
1
h

Figure 7.12. SMH’s MAC policy in JSON

7.3.2 Applying the Registering Requests Processing Phase on OpenEMR, MyGoogle, and
SMH

In this section, we apply the Registering Requests Processing Phase, labeled (2.a) in Figure 7.1,
to the OpenEMR, MyGoogle systems and the SMH client. In Section 7.3.1, OpenEMR, MyGoogle,
and SMH were constructed and sent a registering request in JSON format to the FSICC, see Figures

7.4,7.7,and 7.10 respectively. In this phase, the security engineer of FSICC, as described in Section

205

7.2.3 and Figure 7.2, processes each of these registering requests through the three tasks as

described in Section 7.2.3.

In task 1, the security engineer of FSICC needs to configure each global service of the FSICC
so that CRUD methods of the global services can send and receive data to/from the integration
layers of OpenEMR, MyGoogle, and SMH. In this task, the security engineer of FSICC reads the
JSON documents that include the registering requests of OpenEMR, MyGoogle, and SMH and
initializes the global services of FSICC with five services as presented in Table 7.1. For example,
the service (gs2) is a global service (Observation[GET]) that whenever triggered calls the mapped
services Is; of OpenEMR, Is; of MyGoogle, and Is; of SMH. Similarly, the services (gs1, gss, gSa,
gss) are created and configured as described in Table 7.1. Note that for each created global service,
only the specified CRUD methods of the mapped service are implemented. For example, only PUT

and GET methods are implemented for the first global service (gs:) but not POST or DELETE

methods.
Table 7.1. Initial Set of FSICC’s Global Services
Service ID Service Name Method Name Mapped to
gs1 FSICC/Observation PUT Is1 (OpenEMR), Is1 (MyGoogle), and Is: (SMH)
gs2 FSICC/Observation GET Is2 (OpenEMR), Is2 (MyGoogle), and Isz (SMH)
gss FSICC/Patient PUT Is3 (OpenEMR), Is3 (MyGoogle), and Iss (SMH)
gs4 FSICC/Patient GET Is4 (OpenEMR), Is4 (MyGoogle), and Iss (SMH)
gss FSICC/Person PUT Iss (MyGoogle), and Iss (SMH)

In task 2, to establish the global security policy the security engineer of FSICC needs to send the
registered security policy of OpenEMR, MyGoogle, and SMH to the appropriate task 2 option based
on the type of the registered security policy (RBAC, MAC, or DAC). First, as described in the first
task option of task 2 labeled 2.a.2 in Section 7.2.3, the security engineer of FSICC sends the
OpenEMR’s RBAC policy, Figure 7.5, MyGoogle’s RBAC policy, Figure 7.8, and SMH’s RBAC

policy, Figure 7.11, to the RBAC integration algorithm that generates the initial global RBAC

206

policy as shown in Figure 7.14. Moreover, Table 7.2 has some information that the Global-RBAC

algorithm uses to generate the initial global RBAC policy given in Figure 7.14. First, the algorithm

uses the RBAC policy of OpenEMR to initialize the global RBAC policy so that OpenEMR’s roles,

Physician and Patient, are added as the first two global roles. Then, the RBAC policy of SMH is

integrated to the global RBAC policy so that six global roles, Physician_2, Patient_2, New_Role_1,

New_Role 2, New_Role 3 and New_Role_4, are added (see the first four comparisons in Table

7.2). Finally, the RBAC policy of MyGoogle is integrated to the global RBAC policy so that two

global roles, SMH and New_Role_5, are added (see the last eight comparisons in Table 7.2). Note

that roles New_Role 1, New_Role 2, New _Role_3, New_Role 4 and New_Role_5 are abstract

roles in which no users are assigned to them. Figure 7.13 provides a clear view of the role hierarchy

of the global RBAC policy.

Table 7.2. Comparisons Information of the RBAC Integration Step

ID | System Role | Global Role Direct Common Comparison Created Global Roles
Permissions Result

1 Physician Physician Observation [GET] Overlap Physician 2, New Role 1

2 Physician Patient Patient [GET] Overlap New Role 2

3 Patient Physician Patient [PUT] Overlap Patient 2, New Role 3

4 Patient Patient Observation [PUT] Overlap New Role 4

5 SMH New Role 1 Observation [GET] SR contains GR SMH

6 SMH New Role 2 Patient [GET] SR contains GR Nothing

7 SMH New Role 3 Patient [PUT] SR contains GR Nothing

8 SMH New Role 4 Observation [PUT] SR contains GR Nothing

9 SMH Physician Nothing Not related Nothing

10 SMH Physician 2 Nothing Not related Nothing

11 SMH Patient Nothing Not related Nothing

12 SMH Patient_2 Person [PUT] Overlap New_Role 5

207

RootRole

NewRole_4 NewRole_3 NewRole_5 NewRole_1 NewRole_2

Physicia hysiciap 2

Patient_2
Patient

SMH
Figure 7.13. The Role Hierarchy of the Global RBAC Policy

208

“SECURITY_POLICY": [
{

"Nasser", y
"ShareMyHealth",

"Physician™ } I,
"Patient” } 1,
"RootRole” } T,
"Patient_2" } I,
"Physician_2" } 1,

enEMR" 3 3,

nEMR™ 1 3,
"SHH } 3,
"SMH"'} 1,

system_name":

"POLICY_TYPE™: "RBAC"
1.
{
"USERS™: [{
{
{
{
o
I
{
"ROLES™: [{ “role™: {
{ "role {
{ "role {
{ "role {
{ "role {
{ "role": {
{ "role {
{ "role {
{ "role": {
{ "role {
{ "role {
1.
{
"RESOURCES™: [{ "resource™:
{ "resource™:
{ "resource”:
{ "resource™:
{ "resource™:
I
{
"USER_ROLE_ASSIGMMENTS™: [{ "
{
i
{ "ass
{ "assizn
I
{
"ROLE_RESOURCE_AUTHORIZATIONS": [{
{
1
{
1
¥s
{

"ROLE_HIERARCHY™:

¥s
{ "ROLES_MAPPING" : [

[

L R

ey

"relationship™:
"relationship™:
"relationship™:
"relationship™:
"relationship™:
"relationship”:
"relationship™:
"relationship™:
"relationship™:
"relationship™:
"relationship”:
"relationship™:
"relationship™:
"relationship™:
"relationship™:
"relationship”:
"relationship™:
"relationship™:
"relationship™:
"relationship™:
"relationship™:

"mapping" :
"mapping" :
"mapping" :
"mapping" :
"mapping"

"MyGoogle

trrl

"1", "name": "
"2", "names =
3", "name ‘Observation”, "method” Th
"nams atient”, " "GET" }),
, "name": "Person”, " PUT" 3+ 1

ment" :

"authorization™:
"authorization™:
"authorization™:
"authorization™:

s g,
ngm

{ "role_id": "&"
{ "role_id"
{ "role_id"
{ "role_id"

, “"resource_id":
, "resource_ig"
s

"guthorization™: { "role_id": "11", "resource_id
{ "role_id": "6", "parent_id"”
{ 7", "parent_id"
{ » "parent_id"
: .

{ "role_id" B

{ "role_id" ", "parent_id"
{ "role_id" » "parent_id"
{ "role_id" y "parent_id"
{ "role_id" , "parent_id"
{ "role_id" » "parent_id"
{ "role_id": "1", "parent_id"
{ "role_id": "4", "parent_id"
{ "role_id" » "parent_id"
{ "role_id" , "parent_id"
{ "role_id" "parent_id"
{ "role_id" ", "parent_i
{ "role_id" » "parent_id"
{ "role_id" » "parent_id"
{ "role_id" ", "parent_id"
{ "role_id": , "parent_id"
{ "role_id": "18", “"parent_id":

"global_role_id"
"global_role_id"
"global_role_id"
"global_role_id"

"global_role_id" :

'1m,

2

, "system_role_id"
, "system_role_id" :

"1t 3 T,
AT T
Tl
Tl
11

"system_name"
"system_name" :
"system_name" :
"system_name™ :
» "system_name" :

"OpenEMA" } }
"OpenEMR” } },

Figure 7.14. The Initial Global RBAC Policy in JSON

Second, as described in the second task option of task 2 labeled (2.a.3) in Section 7.2.3, the

security engineer of FSICC and each of the security engineers of OpenEMR, SMH, and MyGoogle

systems have a discussion in order to understand the semantic and usages of each sensitivity level

of each system. In this case, the assumption is that all of the security engineers of systems and

209

FSICC have agreed to use different semantics of sensitivity levels, see Section 4.4 of Chapter 4,
and thus generate a Sensitivity Levels Mapping List as described in Table 7.3. Note that in this
example, the OpenEMR’s sensitivity levels set is used as an initial global sensitivity levels set. In
this sensitivity levels mapping list, we can describe the differences in sensitivity levels as follows:
ShareMyHealth’s sensitivity level SIS is mapped to global sensitivity level SID; while MyGoogle’s
sensitivity level VSI is mapped to global sensitivity level SID. Note that global sensitivity levels
SIS and VSI have no corresponding levels in ShareMyHealth and MyGoogle sensitivity levels,

respectively.

Table 7.3. An Example of a Sensitivity Levels Mapping List

ID | Global Sensitivity Level (OpenEMR) System Sensitivity Level System Name
1 Pl Pl ShareMyHealth
2 BSI BSI ShareMyHealth
3 SIS - ShareMyHealth
4 SID SIS ShareMyHealth
5 VSI VSI ShareMyHealth
6 Pl Pl MyGoogle

7 BSI BSI MyGoogle

8 SIS SIS MyGoogle

9 SID VSI MyGoogle
10 VSI - MyGoogle

Third, as described in the third task option of task 2 labeled (2.a.4) in Section 7.2.3, the security
engineer of FSICC is required to send the DAC policy of OpenEMR, Figures 7.5 and 7.6, and DAC
policy of SMH, Figure 7.11, to the DAC Integration algorithm that generates the global DAC policy
as shown in Figure 7.15. Note that MyGoogle has no DAC policy. The generated global DAC
policy has two role delegations (one from OpenEMR and one from SMH), and one clearance
delegation from OpenEMR. Note that the Global DAC algorithm changed the role Ids, clearance,

and user Ids to the global equivalents.

210

"SECURITY_POLICY™: [
{

POLICY_TYRE™: "DAC™

s
{

"PERMISSION_DELEGATION": [{ "role_delegstion™: { “"delegator_id": "2", "delegated_id": "1", "role_id": "2" } }]
s
{

"PERMISSION_DELEGATION": [{ "role_delegation”: { "delegator_id": "3", "delegated_id": "4", "role_id": "4" } }]
s
{

"PERMISSION_DELEGATION": [{ "clearance_delegation™: { "delegator_id": "1", “"delegated_id": 2", "clearance™: "3" } }]
b

Figure 7.15. The Global DAC Policy in JSON

In task 2, to finalize the generation of the global RBAC policy and global MAC policy the
security engineer of FSICC also needs to send the output of the first task option, labeled (2.a.2), of
task 2 and the second task option, labeled (2.a.3), of task 2 to the appropriate remaining part of each
task option, labeled (2.a.2.a) and (2.a.3.a) in Figure 7.2 respectively, based on the type of the
registered security policy (RBAC or MAC). First, after generating the initial global RBAC labeled
(2.a.2), Figure 7.14, that has some global roles with undesirable names such as New_Role 1 -
New_Role_5, the security engineer of FSICC may wish to rename such roles via the step labeled
(2.a.2.a) in Figure 7.2. To do this, the security engineer of FSICC first can review the names of all
of the global roles, Figure 7.14, and suggest a new name for a subset of the global roles, e.g., based
on the authorized permissions, as a corrected global roles list. In this case, the security engineer of
FSICC would keep the role names New_Role 1 - New_Role 5 and change the role names
Physician, Patient, Physician_2, and Patient 2 to Attending_Physician, General_Patient,
Research_Physician, and Fitness_Patient, respectively, as described in Table 7.4. Then, the security
engineer of FSICC, as described in the first task option of task 2 in Section 7.2.3, needs to send the
corrected global roles list to the Review and Correct Role Names algorithm labeled 2.a.2.a which

updates the global RBAC policy with the new role names as required.

Table 7.4. An Example of a Corrected Global Roles List
Global Role ID (Old Name) | New Name |

211

1 (Physician) Attending_Physician
2 (Patient) General _Patient
5 (Physician_2) Research_Physician
4 (Patient_2) Fitness Patient

Second, as described in the second task option of task 2 labeled (2.a.3) in Section 7.2.3, the
security engineer of FSICC needs to Send the generated Sensitivity Levels Mapping List (Table
7.3) to the Building Global MAC algorithm, labeled (2.a.3.a). This step composes the global MAC
policy, Figure 7.16, utilizing users and services from MAC policy of OpenEMR, Figure 7.6,
MyGoogle, Figure 7.9, and SMH, Figure 7.12, in which users clearances and services classifications
are assigned based on the global sensitivity levels in which the read/write properties of each user

are remain unchanged.

"SECURITY_POLICY": [

i
"POLICY_TYPE™: "MAC™
Iy
i
"USERS™: : { i { "3 ', “clearance™: " ", " e _", i " tsy
{ { ", "clearance™:
{ { ', "clearance":
{ { ", "clearance": "3" | »
{ "user”: { "i 1 "ShareMyHealth", “clearance": "3", "RP": "55", "WP ", "system_name": “"MyGoogle" } }]
Is
{
"RESOURCES": [{ "resource™; { "id": "1", “name": "Observation", "
" cer { man H bservation™, ™
" ce™ { atient”, "m
{ "resource": { Patient”, "me
1 "resource": { "Person", "
Is
i
USENSITIVITY_LEVELS_MAPPING_LIST": [{ "
[
1
E
[
1
i
{
{
[
{
{
i
{
" ystem_name": "MyGoogle"
¥

Figure 7.16. The Global MAC Policy in JSON

212

In task 3 labeled (2.a.5) in Section 7.2.3, the global RBAC policy, Figure 7.14, the global MAC
policy, Figure 7.16, and the global DAC policy, Figure 7.15, are simply combined, utilizing the
Combine Updated Global RBAC, Global MAC, and Global DAC and Control Data algorithm, in
one JSON document that serves as the global security policy. Also, the security engineer of FSICC
augments the global security policy with two pieces of information: one of the three read data access
types, and the write data access type (i.e., Open to Same System Users) as described in Section
6.1.4 of Chapter 6. In this case, the assumption is that the security engineer of FSICC chosen to use
the default read data access type (type 1 Open to All). Based on these settings: any user from
OpenEMR, MyGoogle, or SMH who are assigned to the same global role, can read any data that
the global role can retrieve; and, a user from a specific system, OpenEMR for example, who
is assigned to a global role can only write data (only data of OpenEMR) that the global role can

write.

In summary, at this point of the example and the process, the complete details of the generated
global security policy and global services (such as the way that to utilize the global services and

global security policy) are not as yet published to the public.

7.3.3 Applying the Constructing Clients Requests Phase on MyGoogle, SMH, and CT?
We start by applying the Constructing Clients Requests phase, labeled (1.b) in Figure 7.1, to

MyGoogle system. Since MyGoogle is a mixed system, the security engineer of MyGoogle, from
a usage perspective, needs to answer the three main questions, as discussed in Section 7.2, see
Figure 7.1, after visiting the available global services and global security policy webpage. In this
case, it is assumed that the security engineer of MyGoogle has the following answers: the client has
no defined security policy (again from usage perspective); the client would utilize a subset of the

available global services and global security policy; and, the client does not need to customize any

213

subset of the global security policies. Based on these answers, the security engineer of MyGoogle
should construct a JSON document for MyGoogle utilization request that specifies in detail the
subset of global services (see Table 7.1) and global security policy, see Figures 7.14, 7.15, and 7.16,
that MyGoogle has interests in utilizing, as shown in Figure 7.17, in which MyGoogle would be
assumed to utilize: the global services: 2, 3, and 4; and the global role 2. Finally, the security
engineer of MyGoogle needs to send the JSON document to the Client Registry component of

FSICC in Figure 7.22.

"UTILIZATION_REQUEST™: [

"CLIENT_NAME": "MyGoogle™, "CSP_to_GSP": "no", "CUSTOMIZE_GSP": "no"
:!.‘
) "GLOBAL_SERVICES": [{ "service_IDs": "2,3,4" }]
:!.‘
) "GLOBAL_POLICY"™: [{ "role_IDs": "2" }]

3
1
h

Figure 7.17. MyGoogle Utilization Request in JSON

Second, we apply the Constructing Clients Requests to the SMH client App. Since SMH is a
mixed client, the security engineer of SMH, from a usage perspective, needs to answer the same
three main questions: SMH client has a defined security policy (again from usage perspective);
SMH client would utilize a subset of the available global services but not interested in the global
security policy; and, the client does not need to customize any subset of the global security policies.
Based on these answers, the security engineer of SMH should construct two JSON documents. The
first one (Policy Mapping Request) is to specify the defined security policy against the global
services, as shown in Figure 7.18, in which one role (i.e., Parent with id 12) is defined that is
authorized to access global services 4 and 5. This first JSON document needs to be sent to the

security engineer of FSICC who needs to process and update the global security policy. Based on

214

the updated global security policy, the second JSON document can be constructed for SMH
utilization request that specifies in details the subset of global services (see Table 7.1) that SMH
interests in, as shown in Figure 7.19, in which SMH would be assumed to utilize: the global
services: 4 and 5; and the global role 12 which was added into the global security policy as a result
of human intervention with the security engineer of FSICC. Finally, the security engineer of SMH
needs to send the second JSON document to the Client Registry component of FSICC in Figure

1.22.

"DEFIMED_POLICY": [

{
"CLIENT_MNAME™: “SMH™
1,
{
"POLICY_TYPE": “RBAC"
Is
{
"GLOBAL_POLICY": [
"ROLES": [{ "role": { "id": "12", "name": “"Parent” } }]
T
i

"ROLE_RESOURCE_AUTHORIZATIONS": [{ "authorization": {
{ "authorization": {

1 "12t, “resource_igt: 4t o,

“role_id"
"role_id": "12", "resource_id": "5" } } 1]

Figure 7.18. SMH Policy Mapping Request in JSON.

"UTILIZATION_REQUEST": [

{
“CLIENT_MAME™: “SMH*, "CSP_to_GSP": “yes", "CUSTOMIZE_GSP": "no"

}J
{

“GLOBAL_SERVICES": [{ "service IDs": "4,5" }]
}J
{

"GLOBAL_POLICY": [{ "role_IDs": "12" }]
L

Figure 7.19. SMH Utilization Request in JSON

Finally, we apply the Constructing Clients Requests phase to the CT? client App. Since CT?is a
pure client, the security engineer of CT? needs to answer the three main questions: CT? client has
no defined security policy; CT? client would utilize a subset of the available global services and

global security policy; and the client needs to customize a subset of the global security policies.

215

Based on these answers, the security engineer of CT? should construct two JSON documents. The
first one (Policy Customize Request) is to specify the customize security policy, as shown in Figure
7.20, in which the Physician role (id 1) of the global RBAC policy is customized to be also
authorized to access the global service 3. This first JSON document needs to be sent to the security
engineer of FSICC who needs to process it and update the global security policy. Based on the
updated global security policy, the second JSON document can be constructed for CT? utilization
request that specifies in details the subset of global services (see Table 7.1) that CT? interests in, as
shown in Figure 7.21, in which CT? would be assumed to utilize: the global services: 1, 2, and 3;
and the global role 1 which can access the global service 3 as a result of human intervention with
the security engineer of FSICC). Finally, the security engineer of CT? needs to send the second

JSON document to the Client Registry component of FSICC see Figure 7.22.

"CUSTOMIZED_POLICY™": [

"CLIENT_NAME": "CT2"

"POLICY_TYPE": "RBAC™

P ema e

"GLOBAL_POLICY": [

"ROLES": [{ "role™: { "id": "13", "name": "Visiting_Physician™ } }

"ROLE_RESOURCE_AUTHORIZATIONS™: [{ “authorizstion": { "role_id": "13", "resource_id": "3" } }]

Figure 7.20. CT? Policy Customize Request in JSON

"UTILIZATION_REQUEST™: [

"CLIEMT_NAME™: "CT2", "CS5P_to_G5P": "no", "CUSTOMIZE_GSP™: "yes™
}J
{
"GLOBAL_SERVICES": [{ "service_IDs": "1,2,3" } 1]
}J
{
"GLOBAL_POLICY": [{ "role_IDs™: "13" }]

Figure 7.21. CT? Utilization Request in JSON

216

7.3.4 Applying the Usage Requests Processing Phase on MyGoogle, SMH, and CT?
As explained in Section 7.3.3, the MyGoogle system, and the SMH and CT? client Apps are

constructed and sent a utilization request and/or policy customize request and/or policy mapping
request in JSON format, see Figures 7.17, 7.18, 7.19, 7.20, and 7.21, to the FSICC. In this section,
we describe the way that the security engineer of FSICC, as described in Section 7.2.4, in Figure

7.3, process each of these requests through the four tasks as described in Section 7.2.4.

In task 1, the security engineer of FSICC needs to perform the appropriate task 1 option based
on request type of the clients (policy mapping, utilization, or policy customization). First, as
described in the left task option of task 1 labeled (2.b.1) in Section 7.2.4, the security engineer of
FSICC needs to process the SMH’s policy mapping request, Figure 7.18. Since the SMH’s policy
mapping request is RBAC-based, the security engineer of FSICC checks the global RBAC policy,
Figure 7.14, and finds that the role (i.e., Parent with id 12) in the SMH’s policy mapping request is

not similar to existing roles.

Second, as described in the center task option of task 1 labeled (2.b.2) in Section 7.2.4, the
security engineer of FSICC needs to process MyGoogle’s utilization requests, Figure 7.17, SMH’s
utilization requests, Figure 7.19, and CT?’s utilization requests, Figure 7.21, by assigning an ID and

generating a security Token for each client.

Finally, as described in the right task option of task 1 labeled (2.b.3) in Section 7.2.4, the security
engineer of FSICC needs to process CT?’s policy customize request, Figure 7.20. Since the CT?’s
policy customize request is RBAC-based, the security engineer of FSICC checks the global RBAC
policy, Figure 7.14, to locate the requested global role (i.e., Physician with id 1) and add a new
global role (i.e., Visiting_Physician with id 13) and limit it to only access the specified global

service (with id 3).

217

In task 2, the security engineer of FSICC needs to perform the appropriate task 2 option based
on the outputs of task 1. First, as described in the center task option of task 2 labeled (2.b.1.b) in
Section 7.2.4, the security engineer of FSICC adds a new global role (i.e., Parent with id 12), from
the SMH’s policy mapping request, along with its permissions, to the global RBAC policy. This is
because in the left task option of task 1 the security engineer of FSICC did not find a similar role in
the global RBAC policy. Note that, in this case, the security engineer of FSICC will not perform

the left task option of task 2 in Section 7.2.4 as no similar role was found.

Second, as described in the right task option of task 2 labeled (2.b.2.a) in Section 7.2.4, the
security engineer of FSICC needs to find one suitable system as repository for each of MyGoogle,
SMH, and CT? clients as follow. The OpenEMR system is chosen as a repository for MyGoogle,
since the requested global services (2, 3, and 4) can be mapped to OpenEMR’s services. Then, the
MyGoogle system is chosen as a repository for SMH, since the requested global services (4 and 5)
can be mapped to MyGoogle’s services. Then, the OpenEMR system is chosen as a repository for

CT?, since the requested global services (1, 2, and 3) can be mapped to OpenEMR s services.

In task 3, labeled (2.b.4) in Figure 7.3, the security engineer of FSICC needs to update the global
security policy based on the outputs of the tasks 1 and 2 as follow. The security engineer of FSICC
will add a new global role (i.e., Visiting_Physician with id 13) to the global security policy and
limit it to only access the specified global service (with id 3), from the left task option of task 1.
The security engineer of FSICC will also add a new global role (i.e., Parent with id 12) to the global

security policy, from the center task option of task 2.

In task 4, labeled (2.b.5) in Figure 7.3, the security engineer of FSICC needs to send separate

JSON documents to each of MyGoogle, SMH, and CT? clients that include: client’s ID, client’s

218

security token, the available global services, the available global security policy, and instructions
on the way to utilize such global services and global security policy.

To give an overall view of the final output of applying all of the SSEP phases and tasks that
described in Sections 7.3.1, 7.3.2, 7.3.3, and 7.3.4, we refine Figure 5.12 (from Section 5.4.2 of
Chapter 5) to show the overall architecture of interactions: between OpenEMR and MyGoogle with

FSICC; and between CT?and SMH with FSICC, as Figure 7.22 shows.

SMH CT?

Repository RESTful API

Person Patient
Resource Resource

‘ LOAD |—'| FHIR Controller |<—>| STORE |

T SMH FHIR Server

Clients Registry

RBAC/MAC/DAC

Interceptors [¢=———>| FHIR Controller
I ‘ o i ‘

Global Security Resource

FSICC FHIR Server

Patient
Resource

Person
Resource

Policy
Systems Registry
MyGoogle FHIR Server T\, OpenEMR FHIR Server

FHIR Controller FHIR Controller
Person Patient Observation Patient
Resource Resource Resource | ¢ | | Resource Resource

API API
MyGoogle OpenEMR

Figure 7.22. Overall Architecture of the Interactions for Clients and Systems with FSICC.

219

Chapter 8
Conclusion

This dissertation presented and explained a Framework for Secure and Interoperable Cloud
Computing (FSICC) with RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), MAC
(Bell & La Padula, 1976), and DAC (Dittrich, Hartig, & Pfefferle, 1988) that allows clients and
systems to interact with one another. The FSICC provided the unification of services and security
capabilities from different paradigms (e.g., cloud services, programming services, web services),
alternate cloud service providers, and diverse security/access control (RBAC, MAC, and/or DAC).
From an overall viewpoint, each system may build and publish their cloud, programmatic, or web
services into FSICC that combined such services into a unified set of global services in the cloud.
Then, a developer of a mobile, web, or desktop client can discover such global services and utilize
them to develop the client application. The five main research focus of the dissertation presented:
Architectural Blueprints for Supporting FSICC that contained different options for connecting
clients and systems with FSICC; an Integrated RBAC, MAC, and DAC Model for Cloud
Computing via a Unified Cloud Computing Access Control Model (UCCACM) that contained a
set of definitions necessary for supporting our work on FSICC including Schema Definitions,
Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting Definitions;
Security Mapping/Enforcement Algorithms for GSP (Global Security Policy) Generation and GAPI
(Global API) Generation which included Security Policies and Services Registration, Global
Services Generation, and Global Security Policy Generation; a SOA-Based Security Engineering
Process (SSEP) for FSICC that was utilized to combine security policies from different systems
into one global security policy in which SSEP also included a process for security enforcement code

generation; and, Dynamic Enforcement via Intercepting Process involved a set of programmatic

220

mechanisms that were able to intercept a service call from a client app to a global service in FSICC

in order to perform appropriate security enforcement checks.

The reminder of this conclusion is organized as follows. Section 8.1 summarizes the dissertation,
highlighting the attainment of the five research foci in detail. Using this as a basis, Section 8.2
discusses the research contributions of this dissertation, primarily in the areas of: Architectural
Blueprints for Supporting FSICC; an Integrated RBAC, MAC, and DAC Model for Cloud
Computing; Security Mapping/Enforcement Algorithms and SSEP; and, Dynamic Enforcement via
Intercepting Process. Finally, Section 8.3 details the ongoing and future research directions that
include, but are not limited to: extending UCCACM of FSICC with Modern Access Control
Models; implementing remaining components of the FSICC; providing a more fine-grained access

control approach; and demonstrating the Architectural Blueprints on one or more different domains.

8.1 Summary

This dissertation presented a Framework for Secure and Interoperable Cloud Computing
(FSICC) that provides a set of global cloud services for use by clients and systems with access
control provided by RBAC, MAC, and/or DAC models. The main objective of this dissertation was
two-fold: to provide a solution to the service integration problem, which was the difficulties that
occur when a client is trying to access services that could be operating with different types of
application programmer interfaces (APIs); and to provide a solution to be security policy integration
problem, that occurred since the different paradigms and alternate cloud service providers may all
have different types of security and access control capabilities, that will allow clients and systems
to interact with one another in a framework. Such a framework would provide the unification of

services and security capabilities from different paradigms (e.g., cloud services, programming

221

services, web services), alternate cloud service providers, and diverse security/access control
(RBAC, MAC, and/or DAC). In support of our objective, the discussion in this dissertation was

presented throughout seven chapters.

Chapter 1 introduced the main areas for our research and a high-level view of the presented
Framework for Secure and Interoperable Cloud Computing. Section 1.1 discussed the motivation
of restricting access to a unified set of global cloud services utilizing access control models as our
main area of interest. Section 1.2 explored the motivation of the work in the healthcare domain as
an appropriate context to present the work of the dissertation since healthcare represents as a critical
emergent application for cloud computing. Section 1.3 provided a set of security requirements and
cloud computing capabilities that the FSICC needs to support. Based on this, Section 1.4 presented
and explained the Framework for Secure and Interoperable Cloud Computing with RBAC, MAC,
and DAC of this dissertation. Section 1.5 provided a list of the research objectives and expected
contributions for the dissertation. Section 1.6 discussed the work that has been published by us in
order to support the work presented in the dissertation. Finally, Section 1.7 presented an outline of

the dissertation.

Chapter 2 presented background material on the main concepts and topics that supported our
discussion and explanation of this dissertation. Section 2.1 discussed the cloud computing
concept and underlined application programming interfaces (APIs), and presented the main
technologies behind cloud computing with an emphasis on the service-oriented architecture
(SOA) technology that emphasized the cloud service model. Section 2.2 reviewed the three main
access control approaches: role-based access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn,
& Chandramouli, 2001), discretionary access control (DAC) (Dittrich, Hartig, & Pfefferle, 1988),

and mandatory access control (MAC) (Bell & La Padula, 1976). Section 2.3 introduced and

222

explained the Fast Health Interoperable Resources (FHIR) standard with an emphasis on the FHIR
Resources and reviewed the HL7 Application Programming Interface FHIR (HAPI-FHIR) which
is one popular reference implementation of the FHIR standard. Section 2.4 presented a sample

healthcare scenario utilized throughout this dissertation.

Chapter 3 presented the four Security Requirements and the three Cloud Computing Capabilities
that underlined and supported FSICC. Section 3.1 defined and explained the four security
requirements for FSICC: Numerous and Varied Access Control Models, Control Access to Cloud
Services Using RBAC, Support Delegation of Cloud Services Using DAC, and Control Access to
Cloud Services Using MAC. Section 3.2 detailed the three cloud computing capabilities with
associated components of the FSICC: Local Service Registration and Mapping to Global Services;
Local Security Policies Registration to Yield Global Security Policy; and, Global Registration,
Authentication, Authorization, and Service Discover for Consumers. Section 3.3 discussed related

research in cloud computing as compared with FSICC.

Chapter 4 provided formal definitions of UCCACM in eight sections. Section 4.1 presented
a set of core definitions on schemas to support authorizing users to a set of schemas based on
roles and/or sensitivity levels. Section 4.2 provided core definitions on enterprise application
that included definitions for clients, systems, and types of clients and systems as part of the
enterprise application. Section 4.3 discussed core definitions on RBAC, MAC, and DAC
models that described the way that such access control models can be modified to support the
four security requirements of FSICC. Section 4.4 described advanced definitions on enterprise
applications in which the security aspects of RBAC, MAC, and DAC models were introduced
into clients and systems of any enterprise application. Section 4.5 had core definitions on global

resources and permissions by API in which definitions that described what were global services

223

and the way that such global services were controlled via means of RBAC, MAC, and DAC
were provided. Section 4.6 presented advanced definitions on FSICC that described the way
that services and security policies of different systems were mapped. Section 4.7 discussed core
definitions on security interceptors for RBAC, MAC, and DAC along with enforcement checks
that each security interceptor utilized. Section 4.8 presented related work on access control for
cloud computing. Throughout the entire presentation of UCCACM, detailed examples were

provided utilizing the healthcare scenario of section 2.4 Chapter 2.

Chapter 5 presented a set of Architectural Blueprints which were guidelines that defined the
way of placing and creating an integration layer for a systems or client. In Section 5.1, we
explored four issues that must be understood for an application of FSICC to support a discussion
of the options and blueprints: the overall architecture of the application; the involved technologies
that can be used to develop the application; the source code availability of the application, APlIs,
server code, or database; and, the allowable access to system sources. In Section 5.2, we examined
the three different Architectural Blueprint options, namely, Basic, Alternative, and Radical, for
integrating an application to multiple HIT systems via FSICC, utilizing FHIR. In Section 5.3,
we provided an Architectural Blueprints for each of the three options that illustrated the way that
the options can be realized using FHIR including the various phases and steps that are required.
In Section 5.4, we presented a complex example that utilized the Alternative and Radical
Architectural Blueprint options applied to the healthcare scenario from Section 2.4 of Chapter
2. In Section 5.5, we discussed two related works in the literature that explained alternative
ways that FHIR can be implemented to integrate healthcare systems and/or applications in

different settings.

224

Chapter 6 presented Global Security Policy Generation process and Dynamic Enforcement
implementation for FSICC in three sections. In Section 6.1, a set of security policy integration
algorithms were presented and discussed for: global RBAC generation, global MAC generation,
global DAC generation, and global policies combination. In Section 6.2, we demonstrated the
realization of UCCACM of FSICC in HAPI FHIR utilizing the healthcare scenario of Section 2.4
of Chapter 2 that involved the implementation of HAPI FHIR APIs and its server interceptor to
support UCCACM checks with three different algorithms to support three different HAPI FHIR
interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. Moreover, the interceptor
discussions were supported by two access scenarios. Section 6.3 presented and discussed related

work in both security policy integration and enforcing security policies on FHIR API.

Chapter 7 presented a SOA-based security engineering and global security policy generation
process for FSICC in three main sections. In Section 7.1, we briefly discussed a Pre-Process Step
that described what each system and client needed to do before joining the FSICC. In Section 7.2,
a SOA-based security engineering process (SSEP) for FSICC was presented that was intended to
assist security engineers of systems and clients and security engineers of FSICC with a structured
process to define and maintain secure interoperable services for RBAC, MAC, and DAC. In Section
7.3, a complete and detailed example that illustrated the SOA-based security engineering process
of Section 7.2 was provided to demonstrate the steps and sub-steps of SSEP coupled with security
policy integration algorithms of Section 6.1 of Chapter 6 that can be utilized to establish and utilize

security for interoperable services via FSICC.

8.2 Research Contribution

225

This section revisits the expected research contributions given in Section 1.5 of Chapter 1 and
provides insight of their attainment across the chapters of the dissertation. The Framework for
Secure and Interoperable Cloud Computing (FSICC) with RBAC, MAC, and DAC has the

following contributions:

EC-A. Architectural Blueprints for Supporting FSICC: This contribution enabled the
interoperability and information exchange of clients and systems and defined and explained
a collection of three architectural blueprints (i.e., Basic Architecture, Alternative
Architecture, and Radical Architecture) for the design and development of integration
framework (IFMWK) servers utilizing a standard integration framework (e.g., FHIR in the
healthcare domain) that facilitate the integration between HIT systems with applications.
This was shown in the upper half (left) of Figure 1.2. The architectural blueprints were
represented as the first horizontal box Architectural Blueprints in Figure 1.3 and included
three main boxes for: Interoperability Issues, Integration Options, and Integration
Blueprints. Each blueprint was based on the location that IFMWK servers can be placed
with respect to the components of the application (Ul, API, Server) or a HIT system in
order to define and design the required infrastructure to enable the exchange of information
via IFMWK. In support of this contribution, Chapter 5 provided details of four
interoperability issues, three integration Options, and associated integration blueprints.
Chapter 4 also supported this contribution by providing four UCCACM definitions (Defns.
41 to 44 from Chapter 4) that described: the mapping of clients and systems, the set of all
global resources, mapping clients and systems services to the global services of FSICC,

and the set of all global APIs for all clients and systems, respectively.

226

EC-B. An Integrated RBAC, MAC, and DAC Model for Cloud Computing: This
contribution presented and explained a Unified Cloud Computing Access Control model
(UCCACM) for the FSICC that provided a single view of global services to applications
(i.e., clients) and enabled those global services to be authorized according to RBAC, MAC,
and DAC policies. The UCCAC model was represented by the second horizontal box
Unified Cloud Computing Access Control Model in Figure 1.3 that included five main
boxes for: Schema Definitions, Enterprise Definitions, Policy Definitions, FSICC
Definitions, and Intercepting Definitions. The contribution involved a set of formal
definitions for RBAC, MAC, and DAC access control models that specified, in detail, the
way that: each system can register its services and security policies; and, a security engineer
can define a set of global RBAC, MAC, and/or DAC policies on a unified set of global
cloud services. The UCCAC model basically suggested formal definitions for the main
components of Figure 1.2. In support of this contribution, Chapter 4 provided the Unified
Cloud Computing Access Control model (UCCACM) for the FSICC that is an access
control model that utilized three main access control models (RBAC, MAC, and DAC)
and had a set of 60 definitions distributed in seven main groups: core definitions on
schemas, core definitions on enterprise application, core definitions on RBAC, MAC,
and DAC models, advanced definitions on enterprise applications, core definitions on
global resources and permissions by API, advanced definitions on FSICC, and core
definitions on security interceptors for RBAC, MAC, and DAC. Chapter 3 also
supported this contribution by motivating the UCCACM by the four main security

requirements of FSICC (i.e., Numerous and Varied Access Control Models, Control

227

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using

DAC, and Control Access to Cloud Services Using MAC) as presented in Section 3.1.

EC-C. Security Mapping/Enforcement Algorithms and SSEP: This contribution
included Security Mapping/Enforcement Algorithms realized within the horizontal box
near the bottom of Figure 1.3, labeled GSP (Global Security Policy) Generation and GAPI
(Global API) Generation which included Security Policies and Services Registration,
Global Services Generation, and Global Security Policy Generation. In support of this
contribution, Chapter 6 presented: a pre-process step for joining FSICC, a SOA-based
security engineering process (SSEP) for FSICC, a set of security policy integration
algorithms, and a detailed example that illustrated the steps and sub-steps of SSEP along
with the security policy integration algorithms. Chapter 4 also supported this contribution
by providing eight UCCACM definitions (Defns. 41 to 48 from Chapter 4) which ensured
that the global security policy can control access to a set of global services of FSICC.
Moreover, Chapter 3 supported this contribution by motivating the cloud computing
capability 2 of FSICC, i.e., Local Security Policies Registration to Yield Global Security
Policy, from Section 3.2. This contribution also included a SOA-based security engineering
process (SSEP) that couples Security Mapping/Enforcement Algorithms with EC-A
Architectural Blueprints for Supporting FSICC via and EC-B An Integrated RBAC, MAC,
and DAC Model for Cloud Computing into an for FSICC that can be used to combine
security policies (that can be RBAC, MAC or DAC) from different systems into one global
security policy for security enforcement code generation. This was shown in the upper right

half of Figure 1.2. A portion of the SSEP was human assisted in order to resolve naming

228

issues of roles, mapping sensitivity levels, etc., that were combined from multiple clients
and systems. Once the policies were successfully integrated, all of the security enforcement
code can be automatically generated by algorithms. The SSEP for FSICC was represented
by the left vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 that
spanned all of the five horizontal boxes: Architectural Blueprints, Unified Cloud
Computing Access Control Model, Access Control Models, Global Security Policy and
Global API Generation, and Global Security Policy and Global APl Utilization and
Security Enforcement. The Security Mapping/Enforcement Algorithms aspect of this
contribution was realized within the horizontal box near the bottom of Figure 1.3, labeled
GSP (Global Security Policy) Generation and GAPI (Global API) Generation which
included Security Policies and Services Registration, Global Services Generation, and
Global Security Policy Generation. In support of this contribution, Chapter 6 presented: a
pre-process step for joining FSICC, a SOA-based security engineering process (SSEP) for
FSICC, a set of security policy integration algorithms, and a detailed example that
illustrated the steps and sub-steps of SSEP along with the security policy integration
algorithms. Chapter 4 also supported this contribution by providing eight UCCACM
definitions (Defns. 41 to 48 from Chapter 4) which ensured that the global security policy
can control access to a set of global services of FSICC. Moreover, Chapter 3 supported
this contribution by motivating the cloud computing capability 2 of FSICC, i.e., Local

Security Policies Registration to Yield Global Security Policy, from Section 3.2.

EC-D. Dynamic Enforcement via Intercepting Process: This contribution provided a set

of programmatic mechanisms that were able to intercept a service call from a client app to

229

an APl in order to perform appropriate security enforcement checks. This was shown in
the bottom of Figure 1.2. In Figure 1.3, these security interceptors were represented within
the last horizontal box Global Security Policy and Global API Utilization and Security
Enforcement in Figure 1.3, and the Security Enforcement via Interceptors box in Figure
1.2. Interceptors included: a RBAC Interceptor that was able to determine at runtime if the
requested API call on a global service can be executed for a specific user with a specific
role; a MAC Interceptor that was able to determine at runtime if the requested API call on
a global service can be executed for a user with a clearance and limited by if the services
was read or write; and a DAC Interceptor that was able to determine at runtime if the
requested API call on a global service can be executed for a specific user with a delegated
role/service/clearance. In support of this contribution, Chapter 7 presented an
implementation of HAPI FHIR APIs and its server interceptor that supported UCCACM
checks with three different algorithms to support three different HAPI FHIR interceptors:
RBAC interceptor, MAC interceptor, and DAC interceptor. Chapter 4 also supported this
contribution by providing 11 UCCACM definitions (Defns. 50-60 from Chapter 4) that
discussed concepts of Interceptor, RBAC Interceptor, MAC Interceptor, and DAC
Interceptor. Moreover, Chapter 3 supported this contribution by motivating the cloud
computing capability 3 of FSICC, i.e., Global Registration, Authentication, Authorization,

and Service Discover for Consumers, from Section 3.2.

8.3 Ongoing and Future Work

The work presented in this dissertation can serve as a foundation for further enhancements and

extensions. A list of ongoing and future topics includes: extending UCCACM of FSICC with

230

Modern Access Control Models; implementing remaining components of the FSICC; providing a
more fine-grained access control approach to enable controlling data based on time period and data
subset; and applying the Architectural Blueprints on one or more different domains using a standard

integration framework and one of its implementations in that domain.

Extending UCCACM of FSICC with Modern Access Control Models: As we presented in
this dissertation, the Unified Cloud Computing Access Control Model (UCCACM) of the
Framework of Secure and Interoperable Cloud Computing (FSICC) provides capabilities to register
three type of access control models, namely RBAC, MAC, and DAC. As part of future work, we
are interested in extending the UCCACM with modern access control models such as Attribute-
based Access Control (ABAC) (Yuan, E. & Tong, J. , 2005), Usage Control Access Control
(UCON) (Sandhu, R. & Park, J. , 2003), History-Based Access Control (HBAC) (Banerjee, A. &
Naumann, D., 2005), Identity-Based Access Control (IBAC) (Saxena, N., Tsudik, G., & Yi, J.,
2004), Organization-Based Access control (OrBAC) (Kalam, A., et al., 2003), and Rule-Based
Access Control (RAC) (Carminati, B., Ferrari, E., & Perego, A., 2006). This way systems may
define and register their ABAC/UCON/HBAC/IBAC/OrBAC/RAC-based security policies into
FSICC that in turn combines: different ABAC/UCON/HBAC/IBAC/OrBAC/RAC-based security
policies from multiple systems to generate a global ABAC/UCON/HBAC/IBAC/OrBAC/RAC
security policy. The generated global ABAC/UCON/HBAC/IBAC/OrBAC/RAC security policies
can be then enforced against each request to access global services of FSICC using a corresponding

security interceptor.

231

Implementing Remaining Components of the FSICC: Currently, four components of the
Framework of Secure and Interoperable Cloud Computing (FSICC), see Figure 1.1 from Chapter
1, are already implemented in this dissertation. These components are: Global Authentication,
RBAC/MAC/DAC Interceptors, Global Services, and Global Security Policy. Moreover, in this
dissertation we described the login and purpose of the remaining components of FSICC (i.e., Client
Registry, System Registry, Services Mapping, and Security Policy Mapping). As part of future
work, we are planning to convert the login of the remaining components of FSICC into an actual
implementation as RESTful APIs that can be implemented using the JAX-RS Java library (Hadley
& Sandoz, 2009). The implementation of these four FSICC components will enable the interested

systems and clients to utilize all features of FSICC that we presented in this dissertation.

Providing a More Fine-Grained Access Control Approach: Presently, the global RBAC
policy, global MAC policy, and global DAC policy that are used in the FSICC as a global security
mechanism are defined to control who can access what set of global services. Moreover, the global
security mechanism also controls what set of data, that global services can access and what each
user can read/write using three read data access types and one write data access type. As part of
future work, we are contemplating to further control accessing data based on time period and data
subset to support the FSICC with a more fine-grained access control approach. That is, time period
feature will enable the global security mechanism of FSICC to specify: a start and end time (time
period) in which a user is allowed to access a global service. The data subset feature will enable the
global security mechanism of FSICC to specify what parts (fields) of data record, that is accessible

via global services, each user is allowed to access.

232

Demonstrating the Architectural Blueprints on Different Domains: Recall that in Chapter 5,
we presented a complex example that utilized the Alternative and Radical Architectural Blueprint
options prototype applied to the healthcare scenario from Section 2.4 of Chapter 2 utilizing the
FHIR standard and HAPI FHIR (FHIR reference implementation) as a standard Integration
Framework (IFMWAK) in the healthcare domain. As part of future work, we are looking for
applying a subset of our Architectural Blueprints from Chapter 5 to integrate systems and clients in
domains other than the healthcare domain. This is to prove that our Architectural Blueprints can be
utilized by any stakeholders in any domain who are interested in integrating systems and clients via
FSICC. To do this, we may utilize one or more standard Integration Frameworks and their
implementations (one IFMWK for each domain such as the financial domain) that are openly

available.

233

References

Aitken, M. (2013). Patient apps for improved healthcare: from novelty to mainstream. Retrieved from
http://www.imshealth.com/en/thought-leadership/ims-institute/reports/patient-apps-for-improved-
healthcare

Amato, A., & Venticinque, S. (2013). Multi-objective decision support for bro-kering of cloud sla. In
27th International Conference on Advanced Infor-mation Networking and Applications
Workshops (WAINA), (pp. 1241-1246).

Amato, A., Di Martino, B., & Venticinque, S. (2012). Evaluation and brokering of service level
agreements for negotiation of cloud infrastructures. In Interna-tional Conference on Internet
Technology and Secured Transactions, (pp. 144-149).

Amazon.com. (2016). Cloud products. Retrieved from https://aws.amazon.com/products/?nc1=f cc

AT&T. (2016). Cloud services. Retrieved from
http://www.business.att.com/enterprise/Portfolio/cloud/#fbid=FIPXyoa3SmP

Baihan, M., & Demurjian, S. (2017). An Access Control Framework for Secure and Interoperable Cloud
Computing Applied to the Healthcare Domain. In S. C. (ed.), In Research Advances in Cloud
Computing, (pp. 393-429). Springer.

Baihan, M., Demurjian, S., Rivera Sanchez, Y., Toris, A., Franzis, A., Onofrio, A., ... Agresta, T.
(2017). Role-Based Access Control for Cloud Computing Realized within HAPI FHIR.
Proceedings of 16th International Conference on WWW/INTERNET, (pp. 3-14).

Baihan, M., Sanchez, Y., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. (2018). A Blueprint for
Designing and Developing M-Health Applications for Diverse Stakeholders Utilizing FHIR. In R.
R. (Ed.), In Contemporary Applications of Mobile Computing in Healthcare Settings (pp. pp. 85-
124). Hershey, PA: IGI Global.

Banerjee, A., & Naumann, D. (2005). History-Based Access Control and Secure Information Flow. In
Barthe, G., Burdy, L., Huisman, M., Lanet, JL., & Muntea, T., In Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices. Springer.

Bell, D. E., & La Padula, L. (1976). Secure computer system: unified exposition and multics
interpretation.

Bonatti, P, Maria, L, & Subrahmanian, V. (1997). Merging heterogeneous security orderings. Journal of
Computer Security, 3-29.

Buyya, R., Ranjan, R., & Calheiros, R. (2010). Intercloud: Utility-oriented federa-tion of cloud
computing environments for scaling of application services. In International Conference on
Algorithms and Architectures for Parallel Pro-cessing, (pp. 13-31).

Carminati, B., Ferrari, E., & Perego, A. (2006). Rule-based access control for social networks. . In OTM
Confederated International Conferences"” On the Move to Meaningful Internet Systems" (pp. pp.
1734-1744). Springer.

Dawson, S, Shelly, Q, & Pierangela, S. (2000). Providing security and interoperation of heterogeneous
systems. Security of Data and Transaction Processing, 119-145.

234

De La Rosa Algarin, A. (2014). An RBAC, LBAC and DAC Security Framework for Tree-Structured
Documents. Doctoral dissertation. Storrs: University of Connecticut.

De La Rosa Algarin, A., Ziminski, T., Demurjian, S., & Rivera Sanchez, Y. K. (2014). Generating
XACML Enforcement Policies for Role-Based Access Control of XML Documents. Web
Information Systems and Technologies, Revised Selected Papers, Lecture Notes in Business
Information Processing, Springer-Verlag, Vol. 189 (pp. 21-36). Springer.

Dell.com. (2016). Cloud computing. Retrieved from http://www.dell.com/en-us/work/learn/dell-cloud-
computing

Demurjian, S., Sanzi, E., Agresta, T., & Yasnoff, W. (2018). Multi-Level Security in Healthcare using a
Lattice-Based Access Control Model. Submitted to the International Journal of Privacy and
Health Information Management (IJPHIM), 1GI Global.

Dittrich, K., Hartig, M., & Pfefferle, H. (1988). Discretionary Access Control in Structurally Object-
Oriented Da-tabase Systems. DBSec, (pp. 105-121).

Feng, X., Guoyan, L., Hao, H., & Li, X. (2004). Role-based access control system for web services . In
The 4th International Conference on Computer and Information Technology (CIT) (pp. pp. 357-
362). IEEE.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., & Chandramouli, R. (2001). Proposed NIST standard for
role-based access control. ACM Transactions on Information and System Security (TISSEC) 4(3),
224-274.

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures.
Doctoral dissertation. Irvine: University of California.

Franz, B., Schuler, A., & Kraus, O. (2015). Applying FHIR in an Integrated Health Monitoring System.
EJBI .

Gibraltar Dr. (2016). drchrono EHR. Retrieved from
https://www.drchrono.com/?referrer=adwords&ad=sem&utm_source=adwords&utm_medium=p
aid_search&utm_term=drchrono%?20ehr&utm_campaign=BrandExact&gclid=EAlalQobChMIso
T29cKS2wIVBr7AChOpbgOoEAAYASAAEgLssvD BwE

Google. (2017). Google Fit Overview. Retrieved from https://developers.google.com/fit/overview
Google Inc. (2016). Google Health. Retrieved from https://www.google.com/intl/en_us/health/about/

Gouglidis, A, loannis, M, & Vincent, C. (2014). Security policy verification for multi-domains in cloud
systems. International Journal of Information Security, 97-111.

Hadley, M., & Sandoz, P. (2009). JAX-RS: Java™ API for RESTful Web Services. Retrieved from Java
Specification Request (JSR): http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-spec/jsr339-
jaxrs-2.0-final-spec.pdf?AuthParam=1500742971_85cc8h9e2b4f49ddac51a09d52d44ca7

HAPI community. (2016). About HAPI. Retrieved March 23, 2016, from http://hl7api.sourceforge.net/

Health Level 7. (2016). Clinical Document Architecture. Retrieved from
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7

235

Health Level 7. (2016). Fast Health Interoperable Resources. Retrieved March 16, 2016, from
http://www.hl7.org/implement/standards/fhir/

Health Level 7. (2016). Fast Health Interoperable Resources list. Retrieved February 12, 2016, from
https://www.hl7.org/fhir/resourcelist.html

Health Level 7. (2016). Health Level Seven INTERNATIONAL. Retrieved from
http://www.hl7.org/index.cfm?ref=nav

Health Level 7. (2016). HL7 Version 2. Retrieved from
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

Health Level 7. (2016). HL7 Version 3. Retrieved from
https://www.hl7.org/implement/standards/product_brief.cfm?product_id=186

Health Level 7. (2014). HL7 Version 3 Standard: Privacy, Access and Security Services; Security
Labeling Service, Release 1. Retrieved from https://www.oasis-
open.org/committees/download.php/54331/V3_SECURITY_LABELSRV_R1 2014JUN.pdf

Health Level 7. (2014). HL7 Version 3 Standard: Privacy, Access and Security Services; Security
Labeling Service, Release 1. Retrieved from https://www.oasis-
open.org/committees/download.php/54331/V3_SECURITY_LABELSRV_R1 2014JUN.pdf

Himss.org. (2016). Meaningful use stage 2 Overview. Retrieved from https://www.cms.gov/regulations-
and-guidance/legislation/ehrincentiveprograms/downloads/stage2overview_tipsheet.pdf

Himss.org. (2016). Meaningful use stage 3 final rule. Retrieved from
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ltemNumber=44987

Himss.org. (2016). Meaningful use stage 3 final rule. Retrieved from
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ltemNumber=44987

IBM. (2015). Service-oriented architecture. Retrieved from
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pe
gl_serv_overview.html

Idc.com. (2015). Public cloud computing to reach nearly $70 billion in 2015 worldwide. Retrieved from
https://www.idc.com/getdoc.jsp?containerld=prUuS25797415

Jamcracker. (2016). Jamcracker. Retrieved from Jamcracker Platform: http://www.jamcracker.com/

Joshi, BD, & Elisa, B. (2006). Fine-grained role-based delegation in presence of the hybrid role hierarchy.
Proceedings of the eleventh ACM symposium on Access control models and technologies. ACM .

Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., & Trouessin, G. (2003).
Organization based access control. In Policies for Distributed Systems and Networks. IEEE.

Kasthurirathne, S. N., Mamlin, B., Kumara, H., Grieve, G., & Biondich, P. (2015). Enabling Better
Interoperability for HealthCare: Lessons in Developing a Standards Based Application
Programing Interface for Electronic Medical Record Systems. Journal of medical systems, 1-8.

Kelion, L. (2014). Apple toughens icloud security after celebrity breach. Retrieved from
http://www.bbc.com/news/technology-29237469

236

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Retrieved January 20, 2016, from
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

Microsoft Inc. (2016). About MS HealthVault. Retrieved from https://www.healthvault.com/en-us/

Microsoft Inc. (2016). Understanding SOAP. Retrieved from https://msdn.microsoft.com/en-
us/library/ms995800.aspx

Microsoft.com. (2016). Service oriented architecture. Retrieved May 7, 2016, from
https://msdn.microsoft.com/en-us/library/bb833022.aspx

MTBC. (2016). MTBC PHR. Retrieved March 18, 2016, from https://phr.mtbc.com/

Nair, S., Porwal, S., Dimitrakos, T., Ferrer, A., & Tordsson, J. (2010). Towards secure cloud bursting,
brokerage and aggregation. In IEEE 8th Eu-ropean Conference on Web services (ECOWS), (pp.
189-196).

National Archives. (1982). Executive Orders. Retrieved April 21, 2016, from
https://www.archives.gov/federal-register/codification/executive-order/12356.html

OpenEMR. (2016). What Is OpenEMR. Retrieved from http://www.open-emr.org/
OpenlD. (2016). What is HEART WG. Retrieved from http://openid.net/wg/heart
OpenMRS Inc. (2016). OpenMRS. Retrieved from https://openmrs.org/

Pallis, G. (2010). Cloud computing: the new frontier of internet computing. IEEE Internet Computing,
(5): 70-73.

Postman. (2013). Postman. Retrieved from About Postman: http://www.getpostman.com/

Rouse, M. (2014). REST (representational state transfer). Retrieved January 17, 2016, from
http://searchsoa.techtarget.com/definition/REST

Sandhu, R., & Park, J. . (2003). Usage control: a vision for next generation access control. Computer
network security, Springer Berlin Heidelberg, pp. 17-31.

Saxena, N., Tsudik, G., & Yi, J. (2004). Identity-based access control for ad hoc groups. In International
Conference on Information Security and Cryptology (pp. pp. 362-379). Springer.

Shafiq, B, Joshi, B, Bertino, E, & Ghafoor, A. (2005). Secure interoperation in a multidomain
environment employing RBAC policies. EEE transactions on knowledge and data engineering,
1557-1577.

Shetty, S. (2013). Gartner says cloud computing will become the bulk of new IT spend by 2016. Retrieved
from http://www.gartner.com/newsroom/id/2613015

Sirisha, A., & Kumari, G. (2010). API access control in cloud using the role based access control model .
In Trendz in Information Sciences & Computing (TISC) (pp. pp. 135-137). IEEE.

Skyhigh Networks. (2016). Advantages of Cloud Computing and How Your Business Can Benefit From
Them. Retrieved from https://www.skyhighnetworks.com/cloud-security-blog/11-advantages-of-
cloud-computing-and-how-your-business-can-benefit-from-them/

237

Subashini, S., & Kavitha, V. (2011). A survey on security issues in service deliv-ery models of cloud
computing. Journal of network and computer applications, 34(1): 1-11.

Takabi, H., Joshi, J., & Ahn, G. (2010). Securecloud: Towards a comprehensive security framework for
cloud computing environments. In 34th Annual Computer Software and Applications Conference
Workshops (COMPSACW) (pp. pp. 393-398). IEEE.

Takabi, H., Joshi, J., & Ahn, G. (2010). Security and privacy challenges in cloud computing
environments. |IEEE Security & Privacy, (6): 24-31.

Tang, Z., Wei, J., Sallam, A., Li, K., & Li, R. (2012). A new RBAC based access control model for cloud
computing. In International Conference on Grid and Pervasive Computing (pp. pp. 279-288).
Springer Berlin Heidelberg.

The Direct Project. (2016). Direct Project Overview. Retrieved from
http://directproject.org/content.php?key=overview

Tordsson, J., Montero, R., Moreno-Vozmediano, R., & Llor, 1. (2012). Cloud brokering mechanisms for
optimized placement of virtual machines across multiple providers. Future Generation Computer
Systems 28(2), 358-367.

University Health Network. (2016). HAPI Server Interceptors. Retrieved March 15, 2017, from
http://hapifhir.io/doc_rest_server_interceptor.html

Vordel. (2016). Vordel Products. Retrieved from Vordel: http://www.vordel.com/solutions/cloud-
servicebroker.html

Wang, L., Von Laszewski, G., Younge, A., He, X., & Kunze, M. (2010). Cloud computing: a perspective
study. New Generation Computing, 28(2): 137-146.

Wang, Z. (2011). Security and privacy issues within the Cloud Computing. In International Conference
on Computational and Information Sciences (ICCIS) (pp. pp. 175-178). IEEE.

WebMD LLC. (2016). About WebMD. Retrieved from https://www.webmd.com/

Wingfield, E. (2015). Personal cloud will be a $90 billion a year business by 2020. Retrieved from
http://www.cloudwedge.com/personal-cloud-will-be-a-90-billion-a-year-business-by-2020

Wonohoesodo, R., & Tari, Z. (2004). A role based access control for web services . In International
Conference on Services Computing (SCC) (pp. pp. 49-56). IEEE.

Yuan, E., & Tong, J. . (2005). Attributed based access control (ABAC) for web services. IEEE
International Conference on in Web Services. IEEE.

Zhang, L., Ahn, J., & Chu, T. (2001). A rule-based framework for role based delegation. In Proceedings
of the sixth ACM symposium on Access control models and technologies (pp. pp. 153-162). ACM.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges.
In Journal of internet services and applications, 1(1), 7-18.

Ziminski, T., Demurjian, S., Sanzi, E., Baihan, M., & Agresta, T. (2017). An Architectural Solution for
Health Information Exchange. . In International Journal of User-Driven Healthcare (IJUDH),
6(1), 65-103.

238

239

