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Cloud computing has emerged as a de facto approach throughout society, commercial and 

government sectors, and research/academic communities. In the last decade, many organizations 

have considered outsourcing their IT service to the cloud where the services would have better 

availability and quality. However, this requires mobile and desktop clients for different 

stakeholders, in a domain such as healthcare, to obtain information from multiple systems, that 

may be: operating with different paradigms (e.g., cloud services, programming services, web 

services); utilize alternate cloud service providers; and, employ diverse security/access control 

techniques. This raises two main problems: services integration and security policies integration.  

The services integration problem focuses on the difficulties that occur when a client is trying to 

access services that could be operating with different types of APIs.  The security policies 

integration problem occurs since the alternate cloud service providers may have different access 

control capabilities, making it difficult for the client developer to realize a cohesive security 

solution. In order to address these two problems, this dissertation presents a Framework for Secure 

and Interoperable Cloud Computing (FSICC) that provides a set of global cloud services for use 

by clients and systems with access control provided by RBAC, MAC, and DAC. The work 

presented herein involves five research areas: Architectural Blueprints for Supporting  
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FSICC that contain options for connecting clients and systems with FSICC; an Integrated RBAC, 

MAC, and DAC Model for Cloud Computing via a Unified Cloud Computing Access Control 

Model (UCCACM) that contains a set of definitions necessary for supporting the work on FSICC; 

Security Mapping/Enforcement Algorithms for Global Security Policy Generation and Global API 

Generation which includes Security Policies and Services Registration, Global Services 

Generation, and Global Security Policy Generation; a SOA-Based Security Engineering Process 

(SSEP) for FSICC that is utilized to combine security policies from different systems into one 

global security policy in which SSEP also includes a process for security enforcement code 

generation; and,  Dynamic Enforcement via Intercepting Process involves a set of programmatic 

mechanisms that are able to intercept a service call from a client to a FSICC global service to 

perform security enforcement checks. 
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Chapter 1 

Introduction 
 

Cloud computing has emerged as a de facto approach throughout society, commercial and 

government sectors, and research/academic communities. In fact, the wide usage of mobile devices 

means that average users understand the storage and synching of photos, videos, email, contacts, 

files, etc., in the cloud. In the last decade, many organizations have considered outsourcing their IT 

service to the cloud where the services would have better availability and quality. However, this 

requires mobile and desktop clients for different stakeholders, in a domain such as healthcare, to 

obtain information from multiple systems, that may be: operating with different paradigms (e.g., 

cloud services, programming services, web services); utilize alternate cloud service providers; and, 

employ diverse security/access control techniques. This raises two main problems: services 

integration and security policies integration.  The services integration problem focuses on the 

difficulties that occur when a client is trying to access services that could be operating with different 

types of application programmer interfaces (APIs).  In this case, the developer of the client will 

need to work with different paradigms such as programming language APIs or web services that 

may be constantly changing and must also be integrated in order to be successfully utilized for the 

client.  The security policies integration problem occurs since the different paradigms and alternate 

cloud service providers may all have different types of security and access control capabilities, 

making it very difficult for the developer of the client to realize a cohesive security solution. 

Currently, there is no set of technologies and/or a framework that provides solutions for the 

service integration and security policy integration problems. The notion of having a unified set of 

global cloud services is one possible solution to the services integration problem.  An approach that 

supports the combination of different security policies such as Role-Based Access Control (RBAC) 
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(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), Mandatory Access Control (MAC) 

(Bell & La Padula, 1976), or Discretionary Access Control (DAC) (Dittrich, Härtig, & Pfefferle, 

1988), from multiple sources into one global security policy is a possible solution  to the security 

policies integration. For services integration at the system level, the HL7 Fast Healthcare 

Interoperability Resources (FHIR) (Health Level 7, Fast Health Interoperable Resources list, 2016) 

provides a service integration infrastructure that can be extended to support RBAC, MAC, and/or 

DAC models in which the infrastructure can serve as an initial solution for the two problems above 

(i.e., services integration and security policies integration). 

 The main objective of this dissertation is to provide a solution to the service integration and 

security policy integration problems that will allow clients and systems to interact with one another 

in a framework.  Such a framework would provide the unification of services and security 

capabilities from different paradigms (e.g., cloud services, programming services, web services), 

alternate cloud service providers, and diverse security/access control (RBAC, MAC, and/or DAC); 

the main intent of the unification is to offer global services that can be available to clients and 

systems alike. Towards this main objective, this dissertation presents a Framework for Secure and 

Interoperable Cloud Computing (FSICC), shown in Figure 1.1, that provides a set of global cloud 

services for use by clients and systems with access control provided by RBAC, MAC, and/or DAC.   

To facilitate the discussion of Figure 1.1, we briefly review the following key terms: application 

programmer interface (API), web service, cloud service, system, client, and registry. An API is a 

general concept that creates a programming interface for a system that can be utilized by another 

system or application without disclosing the actual source code of that system. In this dissertation, 

API refers to the programming interface for legacy programming languages such as Java, C++, C, 

etc. A web service is a programming interface (such as REST and SOAP) that typically operates 
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over the Hypertext Transfer Protocol (HTTP). A cloud service is a web service hosted in a cloud 

environment that makes a cloud service more available and accessible than a normal web service. 

A system is a type of software that provides services that can be API, web services, or cloud services, 

where the system is intending to publish its services to FSICC. A client is a desktop, web, or mobile 

application that is built using different sets of services (API, web services, or cloud services) 

provided by systems via FSICC. A registry is a special service of FSICC that enables a system to 

register and add its services to FSICC (System Registry), and, a client to utilize services of FSICC 

(System Registry). 

 

Figure 1.1. The Framework for Secure and Interoperable Cloud Computing (FSICC). 

 

FSICC as presented in Figure 1.1 has two main actors that are interacting via FSICC to develop 

applications in the service-oriented architecture (SOA) manner (IBM, 2015). These actors are   

Clients, top of Figure 1.1, and Systems, bottom of Figure 1.1. From an overall viewpoint, each 
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system builds and publishes their cloud, programmatic, or web services, as shown at the bottom of 

Figure 1.1. Then, a developer of a mobile or desktop client, at the top of Figure 1.1, discovers such 

services and utilizes them to develop the client application. The FSICC in the middle of Figure 1.1, 

augments SOA application development with two additional layers and their interactions: Global 

Services and Global Security Policy boxes. The interactions of clients and systems with FSICC 

occurs in a number of different ways.  From a system perspective, each system creates an Integration 

Layer API in front of their API and modifies their Security Policy to be defined against the 

Integration Layer API. Each system then registers the system’s name, the Integration Layer API, 

and the Security Policy into the FSICC using the Systems Registry box in the middle of Figure 1.1.  

In support of systems, the security engineer of the FSICC creates a global resource that includes: 

a set of Global API (Services) based the integration layer APIs of each system utilizing the Services 

Mapping box; and, a Global Security Policy based on systems’ Security Policies which utilizes the 

Security Policy Mapping box in the middle of Figure 1.1.  From a client perspective, each client 

creates an Integration Layer API, top of Figure 1.1, in front of their API. Each client then registers 

the client’s name into the FSICC, using the Clients Registry box and reconfigures the client 

Integration Layer API to call the Global API. In support of clients, the security engineer of the 

FSICC performs actions that: associates each registered client with one of the registered systems; 

and, defines a Global Security Policy that enables the authorized/authenticated clients, via the 

RBAC/MAC/DAC Interceptor and Global Authentication boxes in the middle of Figure 1.1, to 

access services of the appropriate system based on the client and system names. Note that in Figure 

1.1, registered clients are first authenticated by the Global Authentication box and then authorized 

by the RBAC/MAC/DAC Interceptor box, before access to Global Services is allowed. 
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1.1 Motivation for Access Control for Cloud Computing 
 

Cloud computing provides services in the cloud to be utilized by mobile applications/users and 

businesses. The Gartner group indicated that cloud computing  represents the majority of IT funding 

by 2016 (Shetty, 2013). The International Data Corporation (Idc.com, 2015) reported that 

organizations and enterprises around the world spent approximately $70 billion to adopt cloud 

computing services in 2015 with the number of cloud-based services expected to triple by 2020. 

Cloud computing is provided by major corporations such as Amazon (Amazon.com, 2016), AT&T 

(AT&T, 2016), Dell (Dell.com, 2016), etc. Security breaches have come to the forefront (Kelion, 

2014) especially in personal cloud storage (Wingfield, 2015). Outsourced data and services are 

located on servers that belong to security domains which are different from an organization’s 

security domain, raising numerous security and privacy issues  (Takabi, Joshi, & Ahn, 2010). Other 

efforts have included: a survey of the different data/network security, authentication, authorization, 

and confidentiality issues that impact cloud computing (Subashini & Kavitha, 2011); a review of 

the available cloud computing advances in concepts, functionalities, unique features, and 

technologies (Wang, Von Laszewski, Younge, He, & Kunze, 2010); and, the characterization of 

cloud computing as the likely dominant technology for computing on the Internet (Pallis, 2010). 

Outsourcing services to the cloud has many advantages including (Skyhigh Networks., 2016): 

better availability, since most cloud providers ensure more that 90% uptime; better mobility where 

the hosted services are typically accessible from any place on earth as long as internet connection 

is available; and cost effective due to that fact that computing equipment are provided by the cloud 

provider. Such advantages attract governments and businesses to move their services to the cloud. 

However, the movement to the cloud has resulted in new attacks to illegally access a crucial and 

sensitive data, such as electronic health records of large number of patients. This is possible since 
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these cloud services are typically designed to be utilized without any type of access control. There 

is an emergent need to control who can access which cloud services at which times and under which 

conditions. The publishing of services in the cloud leads to a large number of consumers of such 

services in which controlling access to which services each consumer can utilize is not supported 

in existing paradigms (e.g., cloud services, programming services, web services), and available 

cloud service providers.     One approach is to have cloud services controlled using the three main 

aforementioned access control models, RBAC, MAC, and DAC, since they provide unique 

capabilities that can control how services are accessed by users, clients, and systems.  

RBAC provides an efficient way to manage consumers by using the concept of role in which 

each role can be authorized to access a sub-set of the available cloud services and each consumer 

is assigned one or more suitable roles. When cloud services need to access very sensitive 

information such as patient data that needs to be more strongly controlled than other parts of the 

patient data, MAC can be employed to control access to services. In this case, MAC can be utilized 

to label cloud services and their consumers using sensitivity levels which are hierarchically ordered 

from most to least secure:  Top Secret (TS) < Secret (S) < Confidential (C) < Unclassified (U). 

Using MAC, each cloud service can be assigned a sensitivity level known as a classification, and 

each consumer can be assigned a sensitivity level known as a clearance along with read and write 

properties. DAC can offer the ability of a consumer of the cloud services to enable another 

consumer to utilize all or a sub-set of its authorized cloud services (that are assigned based on a role 

or a clearance) through a delegation of authority. In this case, DAC can be utilized to keep a list of 

delegated services, along with authorized delegated users, where each consumer can delegate all or 

a subset of his/her authorized cloud services to another consumer anytime. 
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1.2 Motivation for Healthcare Systems and Applications 

 
In this dissertation, we utilize healthcare as the primary vehicle to justify and explain our work 

since it represents as a critical emergent application for cloud computing.  In the United States, the 

Center of Medicare and Medicaid Services released the Meaningful Use Stage 3 (Himss.org., 

2016) guidelines that require all health information technology (HIT) systems to have cloud 

services to access, modify, and exchange health-related data. HIT systems include electronic health 

records (EHR) such as OpenEMR (OpenEMR, 2016), OpemMRS (OpenMRS Inc., 2016), and 

Drchrono EHR (Gibraltar Dr., 2016); and personal health records (PHR) such as Google Health 

(Google Inc., 2016), Microsoft HealthVault (Microsoft Inc., 2016), and WebMD (WebMD LLC., 

2016).   In support of the interoperability and exchange of healthcare data, the international Health 

Level 7 (HL7) (Health Level 7, Health Level Seven INTERNATIONAL, 2016) organization has 

taken a leadership role for standards to allow the integration, sharing, and exchange of electronic 

healthcare data, specifically: HL7 Version 2 (Health Level 7, HL7 Version 2, 2016), HL7 Version 

3 (Health Level 7, HL7 Version 3, 2016), the Clinical Document Architecture (CDA) (Health 

Level 7, Clinical Document Architecture, 2016), and HL7 Fast Healthcare Interoperability 

Resources (HL7 FHIR) (Health Level 7, Fast Health Interoperable Resources, 2016).   

In support of this dissertation, we strongly leverage the Healthcare Interoperability Resources 

(FHIR) which provides a RESTful Application Program Interface (API) to share data in a common 

format. FHIR conceptualizes and abstracts information for HL7 into 119 currently defined (and 

always increasing) Resources that effectively decompose HL7 into logical components to track a 

patient’s clinical findings, problems, allergies, adverse events, history, suggested physician orders, 

care planning, etc.  The intent is to allow a unified access to FHIR’s RESTful health-related data 

sharing APIs so that applications can be easily built to uniformly utilize multiple HIT systems.  
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Concurrent with these activities has been an explosion of mobile health (mHealth) applications for 

both patients and medical providers (Aitken, 2013). These mHealth applications also require 

access to health data via cloud services from multiple HIT systems to ensure that all of the 

necessary information is collected for patient care. Each of these HIT systems may operate with 

different paradigms (e.g., cloud, API, web services) and employ different security/access control 

techniques.  Thus, mHealth applications would need to work with a heterogeneous collection of 

paradigms and security protocols, with the strongly likelihood that set of information sources may 

grow or shrink over time.  This makes it problematic to develop mHealth applications that are 

easily maintained and evolved.    

The main issue for healthcare is to ensure that the available services of these HIT systems are 

carefully authorized to control which mHealth application can utilize which service at which time; 

this is specifically what FHIR has been defined to provide.  For example, an HIT system for a 

pharmacy would have cloud services for: a physician to submit a prescription (Rx) electronically 

to the pharmacy (service S1); a pharmacist to be able to fill the Rx and reduce the number of refills 

(service S2); the pharmacist to send notification via text/phone to the patient that the Rx is available 

(service S3); the insurance company to access the information on the Rx for approval and payment 

(service S4); the physician to have the Rx inserted into his/her EHR (serviceS5); the patient to access 

medications in the PHR (service S6); and, so on. Access control for cloud services of an HIT system 

can ensure that the mHealth application and its authorized users are restricted to particular services. 

The problem is that there is currently no solution that allows cloud services to be controlled on 

this basis, complicated by the fact that cloud services are available from different cloud suppliers 

that may not be compatible with one another. For example, the cloud services S1 to S6 listed above 

can be controlled by the three access control models, RBAC, MAC, and DAC. For RBAC, four 
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roles can be created: physician (authorized to access services S1 and S5), pharmacist (authorized 

to access services S2 and S3), insurance company (authorized to access service S4), and patient 

(authorized to access service S6). In this case, a user that has been authorized to a given role would 

be limited to only invoke those Services of the role through the client application. For MAC, each 

cloud service can be assigned a classification level: (S1, C); (S2, S); (S3, U); (S4, S); (S5, C); and 

(S6, TS). In this case, the user that has been authorized to a clearance level, say, S, would be limited 

to invoke those services whose classification levels are less than or equal to the clearance of the 

user, namely S, C, and U. For DAC, each cloud service can be delegated from one consumer to 

another by delegating role or clearance that is authorized to each authorized cloud service.   

 

1.3 Motivation of Security Requirements and Cloud Computing 

Capabilities for FSICC 

 
As  discussed  in Section 1.2, the healthcare domain is an emergent application for cloud 

computing, in which the Meaningful Use Stage 3 guidelines recommend health information 

technology (HIT) systems to provide cloud services that enable health-related data owners to access, 

modify, and exchange data. This requires mobile and desktop applications for patients and medical 

providers to obtain healthcare data from multiple HITs, that may be operating with different 

paradigms (e.g., cloud services, programming services, web services), use different cloud service 

providers, and employ different security/access control techniques. To address these issues, we have 

identified four of security requirements and three cloud computing capabilities that will need to 

underlie and support FSICC. These four security requirements and three cloud computing 

capabilities for FSICC simplifies and enables client access via global resources using standardized 

system APIs.  
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The four security requirements of FSICC are: Numerous and Varied Access Control Models, 

Control Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, 

and Control Access to Cloud Services Using MAC; each are briefly reviewed. The Numerous and 

Varied Access Control Models security requirement  is intended to support a wide range of access 

control such as RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), MAC (Bell & 

La Padula, 1976),    DAC (Dittrich, Härtig, & Pfefferle, 1988), Attribute-based Access Control 

(ABAC) (Yuan, E. & Tong, J. , 2005), Usage Access Control (UCON) (Sandhu, R. & Park, J. , 

2003), etc.; this is since each system may utilize any access control model.  The Control Access to 

Cloud Services Using RBAC security requirement dictates that access to cloud services will be 

realized by enhancing RBAC by extending permissions from objects to services.  The Control 

Access to Cloud Services Using MAC security requirement dictates that access to cloud services 

will be realized by enhancing MAC by extending the labeling of objects with classifications to 

services with classifications.  Lastly, the Support Delegation of Cloud Services Using DAC security 

requirement dictates that access to cloud services will be realized by enhancing DAC by providing 

the ability to delegate services on a user by user basis. 

The three cloud computing capabilities of FSICC are: Local Service Registration and Mapping 

to Global Services, Local Security Policies Registration to Yield Global Security Policy, and Global 

Registration, Authentication, Authorization, and Service Discovery for Consumers; each are briefly 

reviewed. The Local Service Registration and Mapping to Global Service cloud computing 

capability is for systems to register their local services which are then mapped to a global set.  The 

Local Security Policies Registration to Yield Global Security Policy cloud computing capability is 

for systems to register their local security policy that is utilized to generate a global security policy.  

The Global Registration, Authentication, Authorization, and Service Discovery for Consumers 
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cloud computing capability is to support the process of a consumer (mobile, web, or desktop app) 

to register within FSICC to discover and be authenticated and then authorized to utilize services.  

 

1.4 A High-Level View of Presented Approach 

 
In this dissertation, the architecture view of our presented Framework of Secure and 

Interoperable Cloud Computing (FSICC) in Figure 1.1 can be complemented with a component 

view as given in Figure 1.2. Specifically, in Figure 1.2, there are six main components outlined 

boxes.   The first component Involved Parties, topmost component in Figure 1.2, refers to clients 

and systems and their APIs previously shown in the top and bottom of Figure 1.1, and consists of: 

a Clients box that includes an API; and, multiple Systems boxes that includes an API and a security 

Policy. As the first step toward creating a global security policy and services, clients and systems 

may utilize two separate components: the Security Policy Mapping component which refers to the 

process and algorithms that can be utilized to generate the global security policy that was shown 

in the middle of Figure 1.1; and, the Architectural Blueprint component which refers to the process 

and steps that can be followed to create different integration layers for clients and systems.  

An integration layer is a standard API (e.g., FHIR API for a healthcare case as discussed in 

Section 2.4 of Chapter 2) that converts the data format of a system or client from/to a common 

data format. Such a common data format can be utilized by other systems and clients, in addition 

to the FSICC, to easily exchange data. An integration layer exists with an integration framework 

(IFMWK) which is a set of standards and associated technologies that allow different systems to 

interact with one another utilizing one common data representation. The associated technologies 

allow integration servers to be designed and implemented to facilitate the exchange of information 

using the common data representation via a set of shared unified services via an integration 

layer.  The FHIR standard is one example of an integration framework which has a set of resources 
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in XML, JSON, RDF, and Turtle that are a common data representation with associated services 

for CRUD and searching.   

In FSICC, all security policies (that can be any combination of RBAC, MAC, and/or DAC) of 

each system go through two main phases: the Policies Combining phase (RBAC integration, MAC 

integration, and DAC integration) that creates one set of policy (global security policy) that has all 

policies from different systems; and, the Policies Updating phase (only for RBAC and MAC) that 

is needed to update role names (for RBAC) and update global MAC with users and services form 

systems based on the global sensitivity levels (for MAC). In addition, there are a number of 

different Application Integration Options to allow an application to send/receive data with multiple 

mixed clients and pure or mixed systems, via FSICC, by the creation of an integration layer API 

in front of their API (services) by utilizing one of the Architectural Blueprint options.  An 

Architectural Blueprint option is a guideline that defines the way of placing and creating an 

integration layer for a systems or client to allow such them to exchange data with other systems 

and clients in one common data format. There are three Architectural Blueprints options as shown 

in Figure 1.2: a Basic Architecture that includes an IFMWK server that works directly with the 

App repository and IFMWK servers of different HIT systems; an Alternative Architecture that 

includes a IFMWK server that works directly with the App RESTful API and IFMWK servers of 

different HIT systems; and, a Radical Architecture that removes the repository and has IFMWK 

servers for the App API and a number of HIT systems.  
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Figure 1.2. A Component-Level View of the presented FSICC. 

 

The selection of an  architectural blueprints option is determined based on four factors that 

describe the situation of a client or system: the overall architecture of the application (i.e., one-

tier, two-tier, and three-tier architecture); the involved technologies that can be used to develop the 

application (i.e., RESTful APIs, programmatic APIs, database API); the source code availability 

of the application, APIs, server code, or database; and, the allowable access to system sources 

(RESTful APIs, programmatic APIs). Based on the output of the Architectural Blueprints 

component and after a system has registered at the Integration Layer, the security engineer of 

FSICC can establish the global API (services) in a two-step process.  First, the security engineer 

creates a set of common services from the integration layer API, utilizing the Services Mapping 

process using the Generation of Global Policy and Services component in Figure 1.2, where each 
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system in the global API is configured to send/receive requests to/from the integration layer API 

of the appropriate system. Second, each client can configure its integration layer API to 

send/receive requests to/from the Global API. Based on the output of the Security Policy Mapping 

component, the security engineer utilizes the Access Control Models component to define the 

security policies of systems that was shown at the bottom of Figure 1.1 and in the process to 

establish the global security policy that was shown in the middle of Figure 1.1.  The security 

engineer can develop the global security policy by: creating global roles in which each global role 

can be authorized to a subset of the global services and creating new users (from clients) in which 

each global user can be assigned to one or more global roles (RBAC); assigning classification for 

each global service, and assigning clearance for each global user with read and write properties 

(MAC); and, enabling role or service delegation from one to another global users (DAC).  

The resulting global services (API) and global security policy comprise the Generation of 

Global Policy and Services component, shown in the middle of Figure 1.2. After establishing the 

global security policy, a number of security interceptors can be created to enforce the global 

security policy on the users’ access requests, after such users have been authenticated. A security 

interceptor can be defined as a programmatic mechanism that is able to intercept a service call 

from a client application to an API (service) in order to perform appropriate security enforcement 

checks. The Global Policy Enforcement component shown at the bottom of Figure 1.2 refers to 

the RBAC/MAC/DAC interceptors box that was shown in the middle of Figure 1.1, consists of 

four boxes. The Global Authentication box is utilized to verify the claimed credentials, ID and 

security token, that a user (client) provided is correct or not. The RBAC Interceptor box provides 

the ability to allow/deny a global user with a global role from accessing a specific global service. 

The MAC Interceptor box provides the ability to allow/deny a global user with a clearance from 
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accessing a specific global service. The DAC Interceptor box provides the ability to allow/deny a 

global user (with a delegated global role, global service, or global clearance) from accessing a 

specific global service.  Collectively, FSICC as presented in Figure 1.2, represents a set of 

interacting components that allows from a transition to isolated clients and systems being able to 

join and utilize a global environment that provides a single common way to access services. 

 

1.5 Research Objectives and Expected Contribution 
 

In this section, we discuss the research objectives and expected contributions of this 

dissertation.  Since the component-level view of the presented FSICC in Figure 1.2 does not 

provide an adequate representation of the underlying models, concepts, and research of FSICC for 

the dissertation, we supplement Figure 1.2 with Figure 1.3 which provides a high-level view of the 

research of FSICC as discussed in Section 1.4, organizing and grouping the components of Figure 

1.2 into a perspective that identifies the research areas and foci of the dissertation. Figure 1.3 has 

horizontal boxes that contain the main research foci of this dissertation and vertical boxes that span 

across multiple foci.   

The five horizontal boxes are: Architectural Blueprints that contain the different options for 

architectural option for  connecting clients and systems with FSICC that was shown in the upper 

left portion of Figure 1.2; Unified Cloud Computing Access Control Model with boxes for Schema 

Definitions, Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting 

Definitions; Access Control Models for the ability to control services via RBAC, MAC, and DAC 

as discussed for FSICC's security requirements in Section 1.3 and that was shown in the middle of 

Figure 1.2; GSP  (Global Security Policy) Generation and GAPI (Global API) Generation for 

generating the security policy from multiple systems to make global APIs available to clients 
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what’s showing in the lower portion of Figure 1.2; and, Global Security Policy and Global API 

Utilization and Security Enforcement that utilizes security interceptors that was shown in the 

bottom of Figure 1.2 to allow/deny clients from access global services of FSICC. The security 

requirements introduced in Section 1.3 are represented by the upper right vertical box SECURITY 

REQUIREMENTS in Figure 1.3 that spans two horizontal boxes: Unified Cloud Computing 

Access Control Model and Access Control Models. The cloud computing capabilities introduced 

in Section 1.3 are represented by the lower right vertical box CLOUD COMPUTING 

CAPABILITIES in Figure 1.3 that spans two horizontal boxes: Global Security Policy and Global 

API Generation and Global Security Policy and Global API Utilization and Security Enforcement. 

From a research perspective, the presented Framework for Secure and Interoperable Cloud 

Computing that was shown in Figure 1.2 has the following four expected contributions (EC-A, 

EC-B, EC-C, and EC-D) which are presented and discussed using the security requirements and 

cloud computing capabilities of Section 1.3 and Figures 1.2 and 1.3. The expected contributions 

are also highlighted in the horizontal and vertical boxes of Figure 1.3. 

EC-A: Architectural Blueprints for Supporting FSICC: This contribution facilitates the 

interoperability and information exchange of clients and systems and presents a collection 

of three architectural blueprints (i.e., Basic Architecture, Alternative Architecture, and 

Radical Architecture) for the design and development of integration framework (IFMWK) 

servers utilizing a standard integration framework (e.g., FHIR in the healthcare domain) 

that enable the integration between systems with applications. This was shown in the upper 

half (left) of Figure 1.2.   The architectural blueprints are represented as the first horizontal 

box Architectural Blueprints in Figure 1.3 and includes three main boxes for: 

Interoperability Issues, Integration Options, and Integration Blueprints.  Each blueprint is 
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based on the location that IFMWK servers can be placed with respect to the components 

of the application (UI, API, Server) or a HIT system in order to define and design the 

necessary infrastructure to facilitate the exchange of information via IFMWK.  

 

EC-B:  An Integrated RBAC, MAC, and DAC Model for Cloud Computing: This 

contribution involves a Unified Cloud Computing Access Control model (UCCACM) for 

the FSICC that provides a single view of global services to applications (i.e., clients) and 

allows those global services to be authorized according to RBAC, MAC, and DAC policies. 

The UCCAC model is represented by the second horizontal box Unified Cloud Computing 

Access Control Model in Figure 1.3 that includes five main boxes for: Schema Definitions, 

Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting 

Definitions. The contribution will include a set of formal definitions for RBAC, MAC, and 

DAC access control models that specifies, in detail, the way that: each system can register 

its services and security policies; and, a security engineer can define a set of global RBAC, 

MAC, and/or DAC policies on a unified set of global cloud services. The UCCAC model 

basically provides formal definitions for the main components of Figure 1.2.  

 

EC-C:  Security Mapping/Enforcement Algorithms and SSEP: The Security 

Mapping/Enforcement Algorithms aspect of this expected contribution is realized within 

the horizontal box near the bottom of Figure 1.3, labeled GSP (Global Security Policy) 

Generation and GAPI (Global API) Generation which includes Security Policies and 

Services Registration, Global Services Generation, and Global Security Policy Generation. 

This SOA-based security engineering process (SSEP) aspect of this expected contribution 
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for FSICC that can be utilized to combine security policies (that can be RBAC, MAC or 

DAC) from different systems into one global security policy, in which SSEP also includes 

a process for security enforcement code generation. This was shown in the upper right half 

of Figure 1.2. A portion of the SSEP is human assisted in order to reconcile naming issues 

of roles, mapping sensitivity levels, etc., that are integrated from multiple clients and 

systems. Once the policies are successfully mapped, all of the security enforcement code 

can be automatically generated by algorithms. The SSEP for FSICC is represented by the 

left vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 that spans all of 

the five horizontal boxes: Architectural Blueprints, Unified Cloud Computing Access 

Control Model, Access Control Models, Global Security Policy and Global API 

Generation, and Global Security Policy and Global API Utilization and Security 

Enforcement. 

 

EC-D:  Dynamic Enforcement via Intercepting Process: This contribution involves a 

set of programmatic mechanisms that are able to intercept a service call from a client app 

to an API in order to perform appropriate security enforcement checks.   This was shown 

in the bottom of Figure 1.2. In Figure 1.3, these security interceptors are represented within 

the last horizontal box Global Security Policy and Global API Utilization and Security 

Enforcement in Figure 1.3, and the Security Enforcement via Interceptors box in Figure 

1.2. Interceptors include: a RBAC Interceptor that is able to determine at runtime if the 

requested API call on a global service can be executed for a specific user with a specific 

role; a MAC Interceptor that is able to determine at runtime if the requested API call on a 

global service can be executed for a user with a clearance and limited by if the services is 
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read or write; and a DAC Interceptor that is able to determine at runtime if the requested 

API call on a global service can be executed for a specific user with a delegated 

role/service/clearance.  

 

Throughout the remainder of the dissertation, these expected contributions (EC-A, EC-B, EC-C, 

and EC-D) will be high-lighted when relevant. 

 

 
Figure 1.3. High-Level View of FSICC Research Areas and Foci. 

 

1.6 Research Progress to Date 
 

In support of the presented Framework for Secure and Interoperable Cloud Computing, a 

number of articles have been published:  
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• Baihan, M., Sánchez, Y., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. (2018). A 

Blueprint for Designing and Developing M-Health Applications for Diverse Stakeholders 

Utilizing FHIR. In R. Rajkumar (Ed.), Contemporary Applications of Mobile Computing 

in Healthcare Settings (pp. 85-124). Hershey, PA: IGI Global.  

• Baihan, M., and Demurjian, S. (2017). A Framework for Secure and Interoperable Cloud 

Computing. In Research Advances in Cloud Computing, S. Chaudhary (ed.), Springer.  

• Baihan, M., Demurjian, S., Rivera Sánchez, Y., Toris, A., Franzis, A., Onofrio, A., Cheng, 

B., and Agresta, T. (2017). Role-Based Access Control for Cloud Computing Realized 

within HAPI FHIR. Proceedings of 16th International Conference on WWW/INTERNET 

2017 (ICWI 2017), October 2017. 

 

Other published or submitted articles: 

● Rivera Sánchez, Y., Demurjian, S., and Baihan, M. (2017). Achieving RBAC & MAC on 

RESTful APIs for Mobile Apps using FHIR. In The 5th IEEE International Conference on 

Mobile Cloud Computing, Services, and Engineering. 

● Ziminski, T. B., Demurjian, S. A., Sanzi, E., Baihan, M., and Agresta, T. (2017). An 

Architectural Solution for Health Information Exchange. In International Journal of User-

Driven Healthcare (IJUDH), 6(1), 65-103. 

● Rivera Sánchez, Y., Demurjian, S., and Baihan, M. (2017). A Service-Based RBAC & 

MAC Approach Incorporated into the Fast Healthcare Interoperable Resources (FHIR) 

standard. Submitted to The Digital Communications and Networks Journal, special issue 

on The Security, Privacy, and Digital Forensics of Mobile Networks and Mobile Cloud. 
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1.7 Dissertation Outline 
 

The remainder of the dissertation has seven chapters. In Chapter 2, we review background 

on: cloud computing and its main technologies; RBAC, MAC, and DAC models that are utilized 

to enforce authorization on cloud services; application programming interfaces (APIs); and, the 

Fast Health Interoperable Resources (FHIR) standard and its HAPI FHIR implementation. In 

Chapter 3, we present and explain four security requirements and three cloud computing 

capabilities for FSICC that both simplifies and enables client access via global resources via 

standardized system APIs. Chapter 4 defines a Unified Cloud Computing Access Control model 

(UCCACM) for RBAC, MAC, and DAC access control for a cloud setting; this addresses 

Contribution EC-B: An Integrated RBAC, MAC, and DAC Model for Cloud Computing. In 

Chapter 5, we present a set of blueprints for the design and development of IFMWK servers in 

which an application can interact with multiple HIT systems via IFMWK through the design, 

implementation, and usage of IFMWK servers. The architectural blueprints consist of three main 

architectural integration options: Basic Architecture, Alternative Architecture, and Radical 

Architecture; this addresses Contribution EC-A: Architectural Blueprints for Supporting FSICC. 

Chapter 6 has two main parts. The first part presents a set of algorithms for generating the global 

security policy of FSICC; this partially addresses Contribution EC-C:  Security 

Mapping/Enforcement Algorithms and SSEP by focusing on Security Mapping/Enforcement 

Algorithms. The second part introduces and discusses three security interceptors for RBAC, 

MAC, and DAC via a number of checks and an algorithmic approach for each interceptor; this 

addresses Contribution EC-D: Dynamic Enforcement via Intercepting Process. Chapter 7 

introduces and discusses an SOA-based security engineering process for FSICC that is intended 

to help security engineers of systems and clients, on one side, and the security engineer of FSICC, 
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on the other side, to establish and maintain secure interoperable services via RBAC, MAC, and 

DAC; this partially addresses Contribution EC-C:  Security Mapping/Enforcement Algorithms 

and SSEP by focusing on SSEP. Finally, Chapter 8 summarizes the contributions of the 

dissertation and discusses future work.     
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Chapter 2 

Background 
 

This chapter provides background material on the main concepts and topics that support the 

discussion and explanation in the remainder of this dissertation. Section 2.1 presents the cloud 

computing concept and underlying application programming interfaces (APIs), and discusses 

the main technologies behind cloud computing with an emphasis on the service-oriented 

architecture (SOA) technology that underlies the cloud service model. Section 2.2 reviews the 

three classic access control approaches: role-based access control (RBAC) (Ferraiolo, Sandhu, 

Gavrila, Kuhn, & Chandramouli, 2001), discretionary access control (DAC) (Dittrich, Härtig, & 

Pfefferle, 1988), and mandatory access control (MAC) (Bell & La Padula, 1976). Section 2.3 

introduces and explains the Fast Health Interoperable Resources (FHIR) standard with an 

emphasis on the FHIR Resources and reviews the HL7 Application Programming Interface FHIR 

(HAPI-FHIR) which is one popular reference implementation of the FHIR standard. Section 2.4 

introduces and presents a sample healthcare scenario utilized throughout this dissertation.  

 

2.1 Cloud Computing and APIs 
 

Cloud computing has emerged as a de facto approach throughout society, commercial , 

governmental sectors, and research/academic communities. The National Institute of Standards 

and Technology (NIST) (Mell & Grance, 2011) defines: “Cloud computing is a model for 

enabling convenient, on-demand network access to a shared pool of configurable computing 

resources that can be rapidly provisioned and released with minimal management effort or 

service provider interaction.” Historically, cloud computing emerged from the evolution of 

existing technologies (Zhang, Cheng, & Boutaba, 2010), such as service-oriented architecture, 
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that are combined in a certain way to provide a new business model. Service-oriented 

architecture (SOA) (IBM, 2015)  is a model for designing systems in which the focus is around 

offering services for different consumers. An SOA implementation, such as the web services 

standard, could adopt the eXtensible Markup Language (XML) as an SOA approach that enables 

systems to provide and consume services in a common manner without the need to use a specific 

programming language or operating system.  

This facilitates services integration. Service suppliers define and publish services for use by 

consumers.   Cloud services are provided and delivered based on the cloud service model 

(Microsoft.com, 2016) by leveraging concepts from SOA. In the cloud service model in Figure 

2.1, there are three main components: Cloud Service Registry, Cloud Service Supplier, and Cloud 

Service Consumer. The Cloud Service Registry component maintains information on available 

cloud services. The Cloud Service Supplier component publishes services to the Cloud Service 

Registry. The Cloud Service Consumer component discovers services from Cloud Service Registry 

and consumes them. Cloud services are the APIs that define the way that cloud consumers can 

access and utilize cloud-computing resources such as software. 

Cloud computing utilizes an Application Programming Interface (API) to support the definition 

of services.  An API requires a set of inputs via an HTTP request to generate a response in a 

specific format such as the Extensible Markup Language (XML), the JavaScript Object Notation 

(JSON), etc., based on the inputs. In cloud computing, the cloud services are the APIs that define 

the way that cloud consumers can access and utilize cloud-computing resources such as software. 

Some benefits of creating an API are: (1) data can be transferred from one system to another system 

easily and smoothly; (2) an API can be called and processed by almost any programming language 

that can be different from the programming language of the actual system implementation; and, 
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(3) an API can be utilized to encourage external developers to add new features or to enhance 

current features of a system. An API can be designed using web services such as: Representational 

State Transfer (REST) (Fielding, 2000), Simple Object Access Protocol (SOAP) (Microsoft Inc., 

2016), etc. Any API designed based using the REST protocol is called a RESTful API, which is 

defined as a set of definitions for methods of the Back-end system. A RESTful API utilizes a 

Hypertext Transfer Protocol (HTTP) request to interact with the API consumers and the back-end 

system (Rouse, 2014). RESTful requests are frequently referred to as CRUD, which is short for 

Create, Read, Update, and Delete functions. CRUD operations from an HTTP perspective are 

typically defined as: GET to retrieves data; PUT or POST to insert data; POST, PUT, or PATCH 

to update data; and, DELETE to remove data. RESTful APIs have become a dominant choice for 

designing and implementing cloud services. 

Cloud Service 
Registry

Cloud Service 
Supplier

Cloud Service 
Consumer

Bind

 
Figure 2.1. Cloud Service Model. 

 

 

2.2 Access Control Models 
 

Access control models have gained wide acceptance in computing, traditionally in controlling 

access to data in objects that are in a database or a  repository. The three classic approaches are: 

role-based access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), 

discretionary access control (DAC) (Dittrich, Härtig, & Pfefferle, 1988), and mandatory access 
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control (MAC) (Bell & La Padula, 1976). RBAC provides an efficient way to manage consumers, 

users of a system, by utilizing the concept of role in which each role can be authorized to access a 

sub-set of the available cloud services and each consumer is assigned one or more suitable roles. 

The RBAC model as shown in Figure 2.2 consists of three main components: elements that describe 

the different components; constraints that can be defined on the elements; and, relations that exist 

between the various elements.  

There are five main elements in RBAC: objects that represent functionality for an application; 

operations that are defined on objects; permissions that are the allowed operations on the different 

objects; roles that represent a set of responsibilities for a user of the application to capture the 

defined permissions; and, users that are assigned to a role during a session of an application. RBAC 

supports a number of constraints that can be defined to restrict a user playing a specific role. Finally, 

RBAC elements can be organized into relations: a role-user relation to assign users to roles; a role-

permission relation to assign permissions to roles; a role-session relation to assign sessions to roles; 

a user-session relation to assign users to sessions; an operation-object relation to assign objects to 

operations; and, a role-role relation to define a role hierarchy. Moreover, the role-role relations 

form a partial order and are represented using an isa role hierarchy based on generalization 

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001). That is, any role that is located 

higher up in the hierarchy, is a more general role than roles lower in the role hierarchy. As a 

result, a non-root role inherits all of the permissions authorized to the roles above, namely, the 

ancestors. In addition, some roles in the role hierarchy are abstract roles in which no users will 

be assigned to such roles. For example, in healthcare, a physician role can be at a higher level 

than a private physician role, which inherits all of the permissions authorized to the physician 

role; in such a role hierarchy,  the physician role is a more general role. 



27 
 

 

RolesUsers OBSOPS

PRMS

Sessions

UA

Session_rolesUser_sessions

PA

RR

 
Figure 2.2. RBAC Model. 

 

 

When cloud services need to access very sensitive information such as patient data that needs 

to be more strongly controlled than other parts of the patient data, MAC can be employed to control 

access to services using the concept of a sensitivity level, which is a security label that can be 

assigned to an object or a user to indicate the importance of such service or user. In MAC, sensitivity 

levels are assigned to subjects (clearance) and objects (classification) with the permissions for the 

subject to read and/or write an object dependent on the relationship between clearance (assigned to 

users) and classifications (assigned to objects).   MAC typically is modeled using four sensitivity 

levels which are hierarchically ordered from most to least secure:  Top Secret (TS) < Secret (S) < 

Confidential (C) < Unclassified (U); this is referred to as the multi-level security model (MLS). 

These terms are defined in the U.S. classification of information systems in a Presidential Executive 

Order (National Archives, 1982): 

“(1) "Top Secret" shall be applied to information, the unauthorized disclosure of which 

reasonably could be expected to cause exceptionally grave damage to the national security. 

(2) "Secret" shall be applied to information, the unauthorized disclosure of which reasonably 

could be expected to cause serious damage to the national security. 

(3) "Confidential" shall be applied to information, the unauthorized disclosure of which 

reasonably could be expected to cause damage to the national security.” 
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 In MAC, the central authority maintains a classification (CLS) for each object and a 

clearance (CLR) for each user in the system. The MAC model (Bell & La Padula, 1976) also has 

a set of properties, namely, Simple Security (SS), Simple Integrity (SI), Liberal* (L*), and Strict* 

(S*) that has both Read and Write capabilities. Such properties are defined to determine under which 

conditions a user with a CLR level can read or write a given data item with a CLS level.  First, the 

SS property (or read-down, no read-up) is the permission to read an object that has an equal or 

lower CLS level. That is, a user is allowed to read an object with a CLS level equal to or lower than 

their CLR level, but not those objects with a higher CLS level. Second, the SI property (or write-

down, no write-up) is the permission to write an object that has an equal or lower CLS levels. That 

is, a user can write an object of equal or lower CLS level when compared to their CLR level, but 

not to those objects with a higher CLS levels. Third, the L* property (or write-up, no write-down) 

is the permission to write an object that has an equal or greater CLS level (the opposite of SI). Forth, 

S* Write property (or write equal) is the permission to write an object that only has an equal CLS 

level. Finally, the S* Read property (or read equal) is the permission to read an object that only has 

an equal CLS level. From a definition and management perspective, an Security engineer of a 

system would set the CLR level of users following the predefined sensitivity levels (e.g., TS, S, C, 

and U) to establish the levels for both users and objects. These levels are then augmented on a user-

by-user basis by assigning the ability to read an object (via SS or S* Read properties) and the ability 

to write an object (via SI, L*, or S* Write properties). 

To explain the read/write properties, assume that there is an object O1 with a confidential 

classification; an object O2 with a top secret classification; a user U1 with a top secret clearance, 

with SS read property and SI write property chosen for that user. Assume another user U2 with a 
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secret clearance with SS read property and SI write property chosen for this user. In this setting, U1 

can read and write O1 and O2, while U2 can only read and write O1, as shown in Figure 2.3.  

U1 O1 Class: C

O2 Class: TS

Clear: TS

U2Clear: S
 

Figure 2.3. An Example of MAC. 

 

However, the four sensitivity levels typically used in MAC are insufficient to classify data in 

some complex areas such as healthcare. For this reason, a number of healthcare-based sensitivity 

level sets have been proposed in the literature. Two main works are: the HL7 v3 standard 

confidentiality labels (Health Level 7., 2014); and a proposed healthcare multi-level security 

labeling system (Demurjian, Sanzi, Agresta, & Yasnoff, 2018). In the first work, the HL7 

organization introduced the HL7 v3 standard which contains a definition for a set of confidentiality 

labels that is defined to accurately classify healthcare related data. Specifically, the HL7 v3 standard 

defines six confidentiality labels: U – unrestricted, L – low, M – moderate, N – normal, R – 

restricted, and V – very restricted; these six levels replace the four traditional sensitivity levels of 

MAC. Figure 2.4 presents the HL7 v3 confidentiality labels with a definition and examples for each 

confidentiality label, taken from (http://www.hl7.org/documentcenter/public_temp_DFF235EF-

1C23-BA17-

0CB382A77F4391FB/standards/vocabulary/vocabulary_tables/infrastructure/vocabulary/vs_Conf

identiality.html). Note that these confidentiality labels indicate the type of healthcare related data 

that needs to be protected and are different from the typical four sensitivity levels of MAC.   
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Figure 2.4. Confidentiality Labels from HL7 Release 3 Standard. 

 

In the second work, Demurjian et al., (Demurjian, Sanzi, Agresta, & Yasnoff, 2018)  proposed 

a multi-level security labeling system for healthcare domain which has five    healthcare sensitivity 

levels (0-4) and within each level there are different categories of data that will be given to different 

users based on their need as Figure 2.5 shows, where Level 0 is the least secure, while Level 4 is 

the most secure. Specifically: 

▪ Level 0 (Basic Information) is public data available to anyone without control in which 

data in this level can be categorized into: 0-DM for basic demographics such as city and 

state of residence, 0-C for general health condition, and 0-FT for information related to 

tracking fitness data.  

▪ Level 1 (Medical History Data) contains data that has some restrictions in which data in 

this level can be categorized into: 1-DM for detailed demographic data, 1-MHx for 

history of the patient and his/her family, 1-FHx for more sensitive patient-collected 
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fitness data, 1-IM for immunizations, and 1-MH-Hx for mental health history of the 

patient.  

▪ Level 2 (Summary Clinical Data) contains clinical data in which data in this level can be 

categorized into: 2-Rx for prescription, 2-OTC for over-the-counter medications, 2-ALL 

for allergies, 2-Dx for medical diagnoses and problem list, 2-PL for plan for treatment or 

other related instructions, 2-MH-Dx for mental health, separate medical diagnoses and 

problem list, and 2-MH-PL for plan for treatment or other related instructions.  

▪ Level 3 (Detailed Clinical Data) is for use by medical providers in which data in this 

level can be categorized into: 3-RP for reports from imaging studies (CT Scans, MRIs, 

X-Rays, etc.), 3-IM for the images from the studies, 3-EN for detailed information on 

each medical visit, 3-LB for laboratory tests ordered, dates, and results including 

surveillance data, 3-MH-EN for information about mental health encounters, 3-SR for 

surveillance data, and 3-FT for clinical data from fitness devices.  

▪ Level 4 (Sensitive Clinical Data) contains sensitive information on a patient that is used 

by medical specialists in which data in this level can be categorized into: 4-G for data on 

genetics, 4-SA for substance abuse, 4-MH for mental health psychotherapy notes, 4-RH 

for reproductive health, and 4-DV for domestic violence.  
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Figure 2.5. A Multi-Level Healthcare Sensitivity Levels. 

 

 

DAC can be defined as an access control mechanism that can restrict operations (e.g., read, 

write, execute) on objects (or services) based on the identity of subjects (users) and/or groups to 

which they belong, as shown in a Figure 2.6. The word “discretionary” in DAC indicates that a 

subject with a certain access permission is capable of passing that permission on to any other subject 

so that the delegated user may utilize the delegated permission. A subject is also called an original 

user which means that the user was assigned the role directly in the security definition process. A 

role that is assigned to an original user is referred to as an original role, in such an original role has 

original role permissions. An original user may also be assigned a clearance level if they are 

assigned mandatory access capabilities which is reference to as an original clearance. An original 

user may have delegation of authority which allows the original user to pass on the original role to 

a delegated user who acquires all of the capabilities of the original uses role.  When the original 

role is passed to the delegated user, is it is referred to as the delegated role of that delegated user. 



33 
 

The delegated role in turn has delegated role permissions, and if the original user had an original 

clearance, it too could be passed to the delegated user as a delegated clearance. Two other important 

concepts for DAC are delegation authority and pass on delegation of authority. Delegation authority 

is the authority given to an original user that allows the original user to delegate his or her role to a 

delegated user.  Pass-on delegation authority, PODA, is the authority given to an original user or 

delegated user that allows that user to delegate on a useful set of definitions and rules for delegation 

which underlie a proposed delegation language (Zhang, L., Ahn, J., & Chu, T., 2001).  

In a cloud computing setting, DAC can offer the ability of a consumer of the cloud services to 

enable another consumer to utilize all or a sub-set of the consumer’s authorized cloud services, that 

are assigned based a role or a clearance, through a delegation of authority. DAC, as shown in Figure 

2.6, utilizes the concept of delegation to pass privileges among users to delegate both authority and 

permissions to another user. For example, in healthcare, a physician Charles that is leaving the 

office on the weekend could delegate his responsibilities (e.g., patients) to the on-call physician 

Lois who will be covering any queries from patients.   Charles can delegate all of his permissions 

and also the ability to further delegate those permissions beyond the original scope.  For example, 

if the on-call physician Lois has to attend to an emergency, she could then employ user-directed 

delegation to delegate the permissions passed to her by Charles to another user Thomas.  

Administrative-directed delegation has a security engineer to control delegation.   

Users OBSOPS

PRMS

Delegate

 
Figure 2.6. DAC Model. 

 

 

Traditionally, RBAC, DAC, and MAC models define permissions over objects and operations 

of a system. However, the work in this dissertation is focused on a Framework for Secure and 
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Interoperable Cloud Computing (FSICC) which involves the definition of Global Services and the 

need to define security policies that allow the ability to determine which user can access which 

service at which times. The work in this dissertation is very cloud-computing focused with an 

emphasis on services, and since we are interested in supporting Access Control in FSICC the 

RBAC, DAC, and MAC models need to be upgraded, extended, and modified so that permissions 

can be defined against cloud services. Such an extension to access control will provide us with the 

ability to: specify which role can access which cloud service at which time and under which 

situation thereby supporting RBAC; define a classification of each cloud service and a clearance 

for each user/client in order to control which Services can be accessed thereby supporting MAC; 

and, delegate a cloud service from one user to another user thereby supporting DAC. This allows 

the FSICC to authorize a mobile, web, and desktop applications, by roles/clearance, to access cloud 

services.  

 

2.3 FHIR and HAPI FHIR 

The Fast Health Interoperable Resources (FHIR) is a health integration standard developed by 

the Health Level Seven International (HL7) organization (Health Level 7, Fast Health 

Interoperable Resources, 2016). FHIR is primarily structured around the concept of FHIR 

resources (Health Level 7, Fast Health Interoperable Resources list, 2016) which are the data 

elements and associated RESTful APIs that can be leveraged for exchanging healthcare 

information, particularly between mobile applications and HIT systems.    FHIR Resources, the 

main building block in FHIR, can hold any type of information that FHIR deals with to be 

exchanged from one health information technology system to another via RESTful API services 

that utilize with an XML or JSON format. Resources are broadly classified into different 

categories: Clinical Findings; Patient Problems, Allergies, and Adverse Events; Patient History; 
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Suggested Physician Orders; and, Interdisciplinary Care Planning.  To illustrate, sample FHIR 

resources from the 119 currently defined (and always increasing) are: the Practitioner resource to 

track medical providers (physicians, nurses, office staff, etc.);  the Patient resource can track 

demographic data on patients; the RelatedPerson resource to track parents/guardians; the 

FamilyMemberHistory for  basic information on a family medical history; the Condition resource 

to track the relevant medical conditions; the Observations resource to track symptoms, and other 

medical observations; and, the Encounter/EpisodeOfCare resources to track the different times that 

changes to patient data occur based on a visit (Encounter) or action at the visit (EpisodeofCare).  

FHIR Resources can be utilized by HIT systems and applications for different purposes. For 

example, an mHealth application may use the Patient resource to store and exchange information 

about patients back and forth with different HIT systems. All FHIR resources have five main 

properties in common: a unique URL for identification purposes; common metadata; a human 

readable section; a number of predefined data elements; and, an extension element that enables a 

system to add new data elements. FHIR provides four main equivalent representation formats: the 

Unified Modeling Language (UML) format for a diagrammatic representation of the resource; an 

XML schema that is subset of the HL7 schema for the resource; a JSON representation to facilitate 

a programmatic exchange via a RESTful APP; and, a Turtle resource definition format (RDF) to 

assist the process of bridging between operational data exchange within formal knowledge 

processing systems.  Figure 2.7 shows an example of a FHIR Patient resource represented in the 

JSON format. FHIR supports a number of REST API services to enable a system to retrieve and 

modify data in the Resources. The main five services are: Create to add a new instance of a 

resource; Read  to retrieve an existing instance of a resource; Update to manipulate data in an 

existing instance of a resource; Delete to remove an existing instance of a resource; and, Search to 
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retrieve all existing instances of a resource.  The first four services are similar to CRUD, while the 

fifth service for search is intended to allow repositories to be accessed. 

   

{ "resourceType": "Patient",
"id" : "1",
"meta" : { "versionId" : "1", }
"text": { "status": "generated", },
"identifier": [  { "label": "OpenEMR",

"system": "http://www.healthorg.org/openemr",
"value": "10“ } ],

"name": [ {"family": "Levin",
"given": "John" } ],

"gender": {"text": "Male" },
"birthDate": "1985-02-12“ }

 
Figure 2.7. An Example of Patient Resource in JSON. 

 

One popular reference implementation of the FHIR standard is the HL7 Application 

Programming Interface FHIR (HAPI-FHIR) (HAPI community, 2016) which is an open-source 

Java-based library of the FHIR standard. Following the FHIR standard, the HAPI-FHIR library 

provides a HAPI-FHIR server that can be used in front of a system. Figure 2.8 shows the HAPI-

FHIR server architecture that consists of three components: HAPI ResfulServer, Resource 

Providers, and, the Back-end system. The HAPI ResfulServer is a Servlet that a developer utilizes 

to: create instances of user-defined resource providers; and, specify the Servlet path. A Resource 

Provider is a class that represents one FHIR resource (e.g., Patient) that has a number of empty 

annotated methods for CRUD verbs that a developer needs to implement.  These empty annotated 

methods are utilized to to parse HTTP requests and convert the transferred data to/from FHIR 

format/Back-end System format, and to interact with the Back-end System. The Back-end System 

is a Health IT system (HIT) that handles the Resource Providers requests to retrieve or modify the 

actual Electronic Health Records (EHR).  



37 
 

 
Figure 2.8. The HAPI-FHIR Server Architecture (HAPI community, 2016). 

 

The HAPI-FHIR library also provides a general HAPI server interceptor (University Health 

Network, 2016) which is programmatic approach that allows a developer to examine each 

incoming HTTP request to add useful features to the HAPI ResfulServer such as authentication, 

authorization, auditing, logging, etc. The general HAPI interceptor,  the InterceptorAdapter class, 

defines a number of methods that enable a developer to interact with the incoming HTTP requests 

at different points of the request lifetime. As Figure 2.9 shows, these methods are: 

incomingRequestPreProcessed that is invoked before performing any action to the request; 

incomingRequestPostProcessed that is invoked after determining the request type which 

classifying the request; incomingRequestPreHandled which is invoked before sending the request 

to the Resource provider; and, outgoingResponse which is invoked after the request is handled by 

the appropriate Resource provider. Each of these methods must returns either true, to continue 

processing the request, or false, to abort and reject the request. Moreover, a developer may extend 

the InterceptorAdapter class and implement the needed methods and register the extended class in 

the HAPI ResfulServer. 

 

http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/InterceptorAdapter.html
http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/InterceptorAdapter.html
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Figure 2.9. The Methods of HAPI Interceptor (University Health Network, 2016). 

 

 

2.4 A Healthcare Scenario 

 
To assist in explaining FSICC and all of its components and features in this dissertation, this 

section presents a healthcare scenario that has two mHealth client apps, the Connecticut Concussion 

Tracker (CT2) and ShareMyHealth, and two HIT systems, the open electronic health record, 

OpenEMR  (OpenEMR, 2016) and MyGoogle.   To begin, CT2 is a mHealth app, as shown in 

Figure 2.10 for Android and iOS devices, which is developed as a joint effort between the 

Departments of Physiology and Neurobiology, and Computer Science & Engineering at the 

University of Connecticut, in collaboration with faculty in the Schools of Nursing and Medicine.  

The CT2 app allows the user (e.g., parent/guardian, coach, athletic trainer, school nurse) to report 

and manage the concussion incidents of students from kindergarten through high school. The CT2 

app uses an HIT system (i.e., OpenEMR) as a back-end system to maintain patients-related data.  
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The CT2 contains seven tabs starting from the top left and continuing to the second row in Figure 

2.10 (‘Login’, ‘List’, ‘Student’, ‘Cause’, ‘Symptoms’, ‘Follow-up’, and ‘Return’) where: the 

‘Login’ tab allows the user to enter a concussion, to retrieve an open case, or to find a student by 

name; the ‘List’ tab which contains the list of students the user has permission to view and, for each 

student gives him/her the option to add a concussion or edit an existing one; the ‘Student’ tab allows 

the user to input the student’s general information (e.g., name, birthdate, school, and the date of 

concussion); the ‘Cause’ tab allows the user to specify how and where the concussion occurred; the 

‘Symptoms’ tab allows users to record the symptoms the student had within 48 hours and other 

pertinent data; the ‘Follow-up’ tab allows users to record the status of the student over time; and, 

the ‘Return’ tab allows users to specify when the student can return to school activities. Both 

versions (Android and iOS) of CT2 utilize an API (services) to manage CT2 data as given in Table 

2.1. Services CT1 and CT2 are used to: add/modify a student concussion status, and, retrieve such 

status information, respectively. CT2 utilizes CT3 and CT4 services to:  retrieve all information about 

a student, and create/update new student information, respectively. Services CT5 and CT6 provide 

ways for the CT2 to: create/update a student follow-up summary, and retrieve follow-up 

information, respectively. Finally, by calling services CT7 and CT8, CT2 can: retrieve all 

information about a student concussion, and add/modify new student concussion information, 

respectively. CT2 defines four roles (see Table 2.2): Coach, Nurse, Trainer, and Parent. All of the 

four roles can access: all GET services CT2, CT3, CT6, and CT7; and two PUT services CT4, except 

Coach, and CT8. Moreover, Trainer has an additional PUT service (CT5) while Nurse has access to 

all PUT services.  
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Figure 2.10.  CT2 Mobile Application - iOS Version Interceptor. 

 

ShareMyHealth is an mHealth app as shown in Figure 2.11 developed by a team of 

undergraduate students at the University of Connecticut, for Android and iOS devices. 

ShareMyHealth provides patients with a means to manage and share their fitness data across 

multiple systems. Patients can gather data from multiple sources (e.g., MyGoogle, OpenEMR, etc.) 

that can then be made available to medical providers.  The first row of Figure 2.11 contains four 

screens: Welcome for the initial opening of the app; Sign In with Google to authenticate the user 

credentials to access his/her fitness data, such as Google Fit API (via MyGoogle system); Initial 

Access for the user to define fitness data; and Home where the user sees their basic information 

and can access their “Health” and “Settings” pages. The second row of Figure 2.11 contains four 

screens: Health View for viewing information on steps, calories, weight, and height; and a Settings 

page to view setting such as name, gender, date of birth, etc.; and, a second setting page that to 
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modify information. Pressing the “View Steps” button utilizes the user’s Google API Token to 

pull their data from the Google Fit cloud (via MyGoogle system). When a user presses the “Sync 

Steps” button, the app packages the data into Google Fit via MyGoogle system which in turns 

sends the information into OpenEMR via OpenEMR API. Settings such as name, gender, etc., are 

updated by direct calls from ShareMyHealth to OpenEMR. 

 

Figure 2.11.  ShareMyHealth Mobile Application. 

 

ShareMyHealth has access to a RESTful API (SMH1 to SMH5 services, see Table 2.3). 

Moreover, the ShareMyHealth API makes calls (via MyGoogle system) to: Google OAuth API 

that prompts the current user (patient) to allow ShareMyHealth access to the user’s Google Fit 

data; Google REST Fit API to access measurement data (step, height, weight, and calorie); and 

OpenEMR API to read and update patient data. Specifically, ShareMyHealth utilizes services 

SMH1 and SMH2 to add/update and read a patient’s measurements data, respectively. 

ShareMyHealth calls services SMH3 and SMH4 to add/update and read a patient’s demographic 

information. In addition, service SMH5 is used to grant ShareMyHealth app (using its Token) an 

access to the user (patient) fitness data. ShareMyHealth has two roles (see Table 2.4): Patient, that 

has access to all five services, and Physician, that has access to all services but SMH1 and SMH3.  
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Table 2.1.  CT2 Services. 

Sid Service Name 

CT1 PUT /CT2/concussion/status    statusINFO 

CT2 GET /CT2/concussion/status    statusID 

CT3 GET /CT2/student    studentID 

CT4 PUT /CT2/student/add    studentINFO 

CT5 PUT /CT2/followup/add    followupINFO 

CT6 GET /CT2/followups    followupID 

CT7 GET /CT2/concussion/student studentID 

CT8 PUT /CT2/concussions/add    concussionsINFO 

 

Table 2.2.  CT2 Roles. 

Rid Role Service Name 

CTR1 Coach CT2, CT3, CT6 – CT8 

CTR2 Nurse CT1 – CT8 

CTR3 Parent CT2 – CT4, CT6 – CT8 

CTR4 Trainer CT2 – CT8 

 

Table 2.3.  ShareMyHealth Services. 

Sid Service Name 

SMH1 PUT /SMH/newMeasure/mID    mINFO 

SMH2 GET /SMH/Measures/mID     

SMH3 PUT /SMH/newPatient/pID    pINFO 

SMH4 GET /SMH/Patients/pID     

SMH5 PUT /SMH/Users/uID    Token 
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Table 2.4.  ShareMyHealth Roles. 

Rid Role Service Name 

SMHR1 Patient SMH1 – SMH5 

SMHR2 Physician SMH2, SMH4, SMH5 

 

OpenEMR (OpenEMR, 2016)  is an open source Electronic Health Record (EHR) system and 

a medical practice management app that can be utilized by any health/medical organization around 

the world. OpenEMR is a Meaningful Use Stage 2 certified (Himss.org., 2016) and is expected to 

be a Meaningful Use Stage 3 EHR certified soon (Himss.org., 2016). In addition to a web-based 

interface, OpenEMR has a RESTful API from which we have selected a subset of eight services 

as shown in Table 2.5. Services OEMR1 and OEMR2 enable an app (or a user via an app) to 

add/update a note about a patient, and, retrieve information about such a note, respectively. An 

app may utilize services OEMR3 and OEMR4 to: retrieve patient information, and, create/update 

new patient information, respectively. Services OEMR5 and OEMR6 provide ways for an app to: 

create/update a patient follow-up summary, and, retrieve information about such a follow-up, 

respectively.  

Finally, by calling services OEMR7 and OEMR8, an app can: retrieve patient condition 

information, and, add/modify new patient condition information, respectively. Moreover, the 

OpenEMR system defines eight roles (see Table 2.6): Patient, Physician, Coach, Nurse, Trainer, 

Parent, CT2, and MyGoogle in which the last two roles are designed for CT2, and MyGoogle, 

respectively. The roles Nurse, Trainer, and Parent can access: all GET services OEMR2, OEMR3, 

OEMR6, and OEMR7; and two PUT services OEMR4 and OEMR8. Moreover, Trainer has an 

additional PUT service (OEMR5) while Nurse and Physician roles have access to all PUT services. 

In addition, the Physician can only access OEMR2 and OEMR4 services, while the Patient role can 
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access the services OEMR1, OEMR2, OEMR3 and OEMR4. The Coach role can access all services 

except OEMR1, OEMR4, and OEMR5. Moreover, the MyGoogle role is restricted to access 

OEMR1 and OEMR2 services, while the CT2 role can access all services. 

Table 2.5.  OpenEMR Services. 

Sid Service Name 

OEMR1 PUT /OpenEMR/updatepatientnotes    noteINFO 

OEMR2 GET /OpenEMR/getnotes    noteID 

OEMR3 GET /OpenEMR/getallpatients    patientID 

OEMR4 PUT /OpenEMR/addpatient    patientINFO 

OEMR5 PUT /OpenEMR/addvisit    visitINFO 

OEMR6 GET /OpenEMR/getvisits    visitID 

OEMR7 GET /OpenEMR/getlist    conditionID 

OEMR8 PUT /OpenEMR/addlist    conditionINFO 

 

Table 2.6.  OpenEMR Roles. 

Rid Role Service Name 

OEMRR1 Physician OEMR2, OEMR4 

OEMRR2 Patient OEMR1 – OEMR4 

OEMRR3 Coach OEMR2, OEMR3, OEMR6 – OEMR8 

OEMRR4 Nurse OEMR1 – OEMR8 

OEMRR5 Parent OEMR2 – OEMR4, OEMR6 – OEMR8 

OEMRR6 Trainer OEMR2 – OEMR8 

OEMRR7 CT2 OEMR1 – OEMR8 

OEMRR8 MyGoogle OEMR1, OEMR2 
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Table 2.7.  MyGoogle Services. 

Sid Service Name 

MG1 PUT /MyGoogle/fitness/dataSources/dsID    dsINFO 

MG2 GET /MyGoogle/fitness/dataSources/dsID     

MG3 PUT /MyGoogle/newPatient/pID    pINFO 

MG4 GET /MyGoogle/Patients/pID     

MG5 PUT /MyGoogle/Users/uID    Token 

 

Table 2.8.  MyGoogle Roles. 

Rid Role Service Name 

MGR1 SMH MG1 – MG5 

 

Finally, MyGoogle is a HIT that we developed to act as a middle layer between the 

ShareMyHealth app and the two HIT systems: OpenEMR and Google Fit (Google, 2017), which 

is an open HIT system for sharing and managing patient fitness data (e.g., step, height, weight, and 

calorie) that is maintained in the Google Fitness Store (in the cloud) that enables multiple apps to 

access such data via Google Fit APIs. Google Fit consists of two APIs: Fit REST API to add/update 

patient fitness data; and, Google OAuth API to authenticate apps to access users’ fitness data. 

MyGoogle HIT has an API (Table 2.7) to access OpenEMR API and Google Fit APIs and acts on 

behalf of apps. The MyGoogle API consists of five services. MG1 and MG2 enable an app to 

add/modify and read users’ fitness data from/into Google Fitness Store via Fit REST API, 

respectively. MG3 and MG4 add/update and read a patient’s demographic information from/into 

OpenEMR via OpenEMR API, respectively. MG5 utilizes Google OAuth API to authenticate an 

app (using its Token) to access a user’ fitness data. In addition, MyGoogle defines one role, i.e., 
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SMH, (see Table 2.8) which is designed to be assigned to ShareMyHealth app. The SMH role can 

access all MyGoogle API services. 
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Chapter 3 

Security Requirements and Cloud Computing Capabilities for 

FSICC 
 

As we discussed earlier in Section 1.2, the healthcare domain is an emergent application for 

cloud computing, in which the Meaningful Use Stage 3 guidelines recommend health information 

technology (HIT) systems to provide cloud services that enable health-related data owners to access, 

modify, and exchange data. This requires that mobile and desktop applications for patients and 

medical providers  obtain healthcare data from multiple HITs, which may be operating with 

different paradigms (e.g., cloud services, programming services, web services), use different cloud 

service providers, and employ different security/access control techniques. To address these issues, 

this chapter presents the four Security Requirements and the three Cloud Computing Capabilities 

that underlie and support FSICC. These four security requirements and three cloud computing 

capabilities for FSICC simplifies and enables client access via global resources using standardized 

system APIs. A security requirement represents what we consider to be the key security features 

for supporting security in FSICC. The four security requirements are: Numerous and Varied Access 

Control Models, Control Access to Cloud Services Using RBAC, Support Delegation of Cloud 

Services Using DAC, and Control Access to Cloud Services Using MAC. A cloud computing 

capability represents what we consider to be the critical characteristics for supporting cloud 

computing in FSICC.  The three cloud computing capabilities of FSICC are: Local Service 

Registration and Mapping to Global Services, Local Security Policies Registration to Yield Global 

Security Policy, and Global Registration, Authentication, Authorization, and Service Discovery for 

Consumers. To understand the role of security requirements and cloud computing capabilities for 
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FSICC, we reexamine Figures 1.1 to 1.3 which also provides a more complete discussion of FSICC 

and its functionality. 

To begin, recall that Figure 1.1 from Chapter 1  presented the architecture of  FSICC.   The top 

of Figure 1.1, had client Applications (Web, Mobile, and Desktop) which corresponds to the Clients 

box in the Involved Parties component that was at the top of Figure 1.2 from Chapter 1. These client 

applications are interested in utilizing a subset of the available global services and global security 

policies of FSICC. FSICC was shown in the middle of Figure 1.1 and had eight boxes that interact 

with one another. The Clients Registry box, at the top of FSICC, is for clients to register themselves 

into the FSICC. The next lower box is the Global Authentication box that is responsible for 

verifying clients’ identities before allowing them to be authorized to access global services of 

FSICC. The next box down is the RBAC/MAC/DAC interceptors box that is in charge of 

allowing/denying clients requests to access global services of FSICC based on roles/clearances. The 

Clients Registry, the Global Authentication, and the RBAC/MAC/DAC interceptors boxes refer to 

the Global Policy Enforcement component that was shown in Figure 1.2. The Global Services box, 

in the middle of FSICC, is the set of global services that mirror services of registered systems and 

are available to interested clients to utilize.  

The next lower box is the Global Security Policy box which has the global security policy that 

defines what set of global services each client can access based on RBAC, MAC, and DAC models. 

The two next boxes are: the Security Policy Mapping box that is responsible for combining a set of 

security policies from different systems and generating the global security policy; and, the Services 

Mapping box which combines a set of services from systems into one set of global services. The 

System Registry, at the bottom of FSICC, enables systems to provide their services and security 

policies. The System Registry, the Services Mapping, the Global Security Policy, and the Global 
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Services boxes refer to the Generation of Global Policy and Services component that was shown in 

Figure 1.2. The Security Policy Mapping box refers to Security Policy Mapping component that 

was shown in Figure 1.2.  The bottom of Figure 1.1 had Web, Programming, and Cloud 

Applications, which corresponds to the Systems box in the Involved Parties component at the top 

of Figure 1.2, that are willing to provide their services and security policies into the FSICC. Security 

requirements have influence on security policy and mapping boxes as well as the RBAC, MAC, 

and DAC models and interceptors.  Cloud computing capabilities have influence on the services, 

service mapping, and system registry boxes. 

In addition, FSICC that was given in Figure 1.2 is an infrastructure for cloud computing that 

provides a global policy authorization and enforcement mechanism and is capable of supporting 

different access control models such as RBAC, DAC, and MAC in the Access Control Models 

component in the middle of the figure. This is the main component where security requirements 

have an impact. FSICC organizes and globally manages the cloud services, APIs, and web services 

from multiple service suppliers (systems) via the Systems box in the Involved Parties component 

at the top of Figure 1.1 into a set of global services in the Global Services box in the Generation of 

Global Policy and Services component in Figure 1.2. These are the main components where cloud 

computing capabilities have an impact.  This allows the mobile, web, and desktop applications 

clients in the Clients box in the Involved Parties component at the top of Figure 1.2 to be used to 

easily discover and utilize them in order to interact with multiple constituent systems with a 

common interface. Representative technologies to support the implementation of FSICC  include: 

the  HAPI FHIR reference model (Health Level 7, Fast Health Interoperable Resources, 2016) from 

Section 2.3; the DIRECT project (The Direct Project, 2016) that allows for the sharing of 

information with best practices that have trust and privacy considerations; and, the HEART WG 



50 
 

project (OpenID, 2016) that provides privacy and security specifications for authorization and 

access to health-related RESTful APIs. 

Furthermore, Figure 1.3 from Chapter 1 presented a high-level view of the FSICC’s main 

aspects. Figure 1.3 has five horizontal boxes for each main aspect of FSICC and vertical boxes that 

span across the horizontal boxes. The five horizontal boxes are: Architectural Blueprints box that 

contain the different options for architectural option for connecting clients and systems with FSICC; 

Unified Cloud Computing Access Control Model box with boxes for Schema Definitions, Enterprise 

Definitions, Policy Definitions, FSICC Definitions, and Intercepting Definitions; Access Control 

Models box for the ability to control services via RBAC, MAC, and DAC; GSP  (Global Security 

Policy) Generation and GAPI (Global API) Generation box for generating the security policy from 

multiple systems to make global APIs available to clients; and, Global Security Policy and Global 

API Utilization and Security Enforcement box that utilizes security interceptors to allow/deny 

clients from access global services of FSICC. Moreover, the security requirements for FSICC, 

which will be described in this chapter, are represented in Figure 1.3 by the upper right vertical box 

SECURITY REQUIREMENTS that spans two horizontal boxes: Unified Cloud Computing Access 

Control Model and Access Control Models. The three cloud computing capabilities, which will be 

described in this chapter, are represented in Figure 1.3 by the lower right vertical box CLOUD 

COMPUTING CAPABILITIES that spans two horizontal boxes: Global Security Policy and 

Global API Generation, and Global Security Policy and Global API Utilization and Security 

Enforcement. 

The presentation in the remainder of this chapter is in four parts.  Section 3.1 defines and explains 

the four security requirements for FSICC: Numerous and Varied Access Control Models, Control 

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and 
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Control Access to Cloud Services Using MAC. Section 3.2 details the three cloud computing 

capabilities with associated components of the FSICC: Local Service Registration and Mapping to 

Global Services; Local Security Policies Registration to Yield Global Security Policy; and, Global 

Registration, Authentication, Authorization, and Service Discover for Consumers. Section 3.3 

discusses related research in cloud computing as compared with FSICC. Note that the work in this 

chapter has been published in (Baihan, M. & Demurjian, S., 2017). 

 

3.1 FSICC Security Requirements 
 

This section discusses four security requirements for FSICC, exploring the impact of the 

SECURITY REQUIREMENTS vertical box in Figure 1.3. A security requirement represents what 

we consider to be the key security features for supporting security in FSICC. To facilitate this 

discussion, there must be a shift in focus on the concept of RBAC, DAC, and MAC permissions on 

objects and operations to one that assigns permissions to individual cloud services. For RBAC, this 

corresponds to the global services being assigned to different users by role. For MAC, global 

services are assigned classifications (TS, S, C, U) with a user having a clearance and performing 

domination checks on classification vs. clearance for every service invocation. For DAC, this 

corresponds to the ability to delegate services from user to user by role and potentially limited by 

classification/clearance checks if MAC has defined. The remainder of this section presents and 

discusses the four security requirements: Numerous and Varied Access Control Models, Control 

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and 

Control Access to Cloud Services Using MAC. 

 Security Requirement 1 - Numerous and Varied Access Control Models. The first security 

requirement acknowledges that the constituent systems (i.e., service suppliers) that wish to publish 
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access to cloud, API, or web services may have access control and security protocols that are varied. 

Thus, FSICC must be capable of supporting a wide range of access control models such as  Role-

based Access Control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), 

Mandatory Access Control (MAC) (Bell & La Padula, 1976), Discretionary Access Control (DAC) 

(Dittrich, Härtig, & Pfefferle, 1988), Attribute-based Access Control (ABAC) (Yuan, E. & Tong, 

J. , 2005), Usage Access Control (UCON) (Sandhu, R. & Park, J. , 2003), etc. This leads to Security 

Requirement 1 - Numerous and Varied Access Control Models and is represented in the Access 

Control Models horizontal box in Figure 1.3.  

From the healthcare scenario of Section 2.4, we know that each HIT (MyGoogle and OpenEMR) 

supports RBAC as illustrated in Tables 2.6 and 2.8. These systems also support DAC to allow 

permissions (services) to be delegated from a physician Charles (user) to the on-call physician Lois 

(user) after hours and weekends. FSICC,  as was shown in Figure 1.1, enables these systems to 

register their security policies (as shown for MyGoogle and OpenEMR in Tables 2.6 and 2.8) into 

FSICC via the System Registry box in Figure 1.1.  This is the Registration and Services Mapping 

box of the Generation of Global Policy and Services component in Figure 1.2, in which security 

policies are combined via the Security Policy Mapping box in Figure 1.1, Security Policy Mapping 

component in Figure 1.2, to generate the global security policy via the Global Security Policy box 

in Figure 1.1, Global Policy box of the Generation of Global Policy and Services component in 

Figure 1.2. Specifically, the global security policy should define, for each role, the global services 

assigned by role. This was accomplished as discussed by mapping permissions to call systems’ 

services (cloud, web, and API) from Table 2.5 and 2.7 into permissions to call global cloud services.  

Security Requirement 2 - Control Access to Cloud Services Using RBAC. The second 

security requirement involves the large number of services that are published in the cloud by 
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multiple systems which are to utilized by numerous consumers, meaning that the usage of such 

services is expected to be high, which needs to be controlled so that only certain consumers at 

different times can have access to specific services. Thus, when all of the system services are 

collected into a set of global cloud services, the resulting set can be controlled based on roles,  as 

shown in  the RBAC box of the Access Control Models horizontal box in Figure 1.3, in which each 

role can be assigned on a consumer-by-consumer basis. This leads to Security Requirement 2-

Control Access to Cloud Services Using RBAC where global services can be assigned by role, see 

the Role-based Access Control box of the Access Control Models component in Figure 1.2.  

To illustrate, the global security policy may define nine global roles: GPhysician (global 

physician), GPatient (global patient), GCoach (global coach), GNurse (global nurse), GParent 

(global parent), and GTrainer (global trainer) would be assigned to individuals that are utilizing 

applications, while GCT2 (global CT2), GMyGoogle (global MyGoogle), and GSMH (global SMH) 

represent the roles of the systems and applications that may need to utilize services. The GPhysician 

role is used by a doctor to access his/her patients’ electric information and to provide better 

healthcare services for his/her patients. The GPatient role is used by a patient to access his/her 

digital information and to request different healthcare services. The GCoach role is used by a coach 

to report a health incident (e.g., concussion) at an athletic event with very limited information on 

the patient. The GNurse role is used by a nurse to manage a patient’s health incident from its 

occurrence to its resolution. The GParent role is used by a parent to both report a health incident on 

his/her child while attending the athletic event or to track the current status of his/her children that 

have health incidents. The GTrainer role is used by a trainer to do a limited preliminary assessment 

if a health incident occurs at a training event. Moreover, The GCT2 application role is used by a 

CT2 application to gather information related to patients’ concussion incidents. The GMyGoogle 
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system role is used by the MyGoogle system to gather medical and fitness information of patients. 

Finally, The GSMH application role is used by the ShareMyHealth application to retrieve/add 

fitness information of patients. In addition, there is also a need to work on the ability to constrain 

the invocation of a service based on values.  

 Security Requirement 3 - Support Delegation of Cloud Services Using DAC. Users of 

applications, which consume services, may need: to collaborate with other users to accomplish a 

better job; and/or to have other users to perform some of their tasks on behalf of them in case of 

emergency. This leads to Security Requirement 3 - Support Delegation of Cloud Services Using 

DAC where FSICC supports the ability to delegate cloud services from one user to another, see the 

Discretionary Access Control box of the Access Control Models component in Figure 1.2 and the 

DAC box of the Access Control Models horizontal box in Figure 1.3. For example, consider a user 

Charles with a GPhysician role is leaving the office for the day or the weekend and is interested in 

delegating his/her authority to access the services for his patient to the on-call physician Lois who 

will be covering night and weekend inquiries from patients.  In this case, Lois will then be utilizing 

a mobile application to access patient data that is available via OpenEMR services (see Section 2.4). 

Charles could delegate all or some of his OpenEMR services to Lois. For example, Charles may 

delegate global services that involve patient data. If the delegation for Charles to Lois is during the 

week (Monday to Thursday) it could go into effect at 5pm (close of business) and be revoked at 

9am (start of business). For weekend calls the delegation would go from Friday at 5pm to Monday 

at 1am.   

Security Requirement 4 - Control Access to Cloud Services Using MAC. Many services may 

access very sensitive information such as patient data that needs to be more strongly controlled than 

other parts of the patient data.  For example, mental health data is limited to a psychiatrist or 
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psychologist and not available to a family medical provider. This leads to Security Requirement 4 - 

Control Access to Cloud Services Using MAC as shown in the Mandatory access control (MAC) 

box of the Access Control Models horizontal box in Figure 1.3. This supports the definitions and 

usage of classifications (for services) and clearances (for users) which are instrumental in 

controlling access to a service and the data passed by a service.  Thus, to further restrict access to 

cloud services, FSICC supports MAC in addition to RBAC and DAC, has shown in the Mandatory 

Access Control box of the Access Control Models component in Figure 1.2. That is, all of the global 

services may be labeled with classification levels, and all users may be labeled with clearance levels. 

Specifically, each of the global cloud services in FSICC can all be labeled with a classification level 

(i.e., TS, S, C, or U).  

 

 

3.2 FSICC Cloud Computing Capabilities 

 

The set of security requirements in Section 3.1 leads to the definitions of a set of three FSICC 

cloud computing capabilities, as shown in the CLOUD COMPUTING CAPABILITIES vertical 

box in Figure 1.3, that bring together all of the concept and focus on the process and components 

of FSICC. Cloud Computing Capability 1, Local Service Registration and Mapping to Global 

Services, is for systems to register local services which are then mapped to a global set.  Cloud 

Computing Capability 2, Local Security Policies Registration to Yield Global Security Policy, is 

for systems to register their local security policy which is utilized to generate a global security 

policy.  Cloud Computing Capability 3, Global Registration, Authentication, Authorization, and 

Service Discover for Consumers, is to support the process of a consumer's (mobile, web, or desktop 

app) registration to discover and be authenticated and then authorized to utilize services. The 



56 
 

remainder of this section discusses these three cloud computing capabilities using the healthcare 

scenario of Section 2.4.  

 Cloud Computing Capability 1 - Local Service Registration and Mapping to Global 

Services. This cloud computing capability of FSICC enables a service supplier (system) to register 

its cloud, programming, and/or web services as indicated by the arrows at the bottom of  Figure 1.1, 

as shown in the Security Policies and Services Registration and Global Services Generation boxes 

of the GSP Generation and GAPI Generation horizontal box in Figure 1.3. Referring to column 2 

in Tables 2.5 and 2.7, OpenEMR registers the cloud services OEMR1 to OEMR8 and MyGoogle 

registers its services MG1 to MG5. For eexampl, OpenEMR registers OEMR1 with name 

OpenEMR, URI (/OpenEMR/updatepatientnotes), PUT CRUD method, and input variable 

noteINFO; MyGoogle registers MG1 with name MyGoogle, URI 

(/MyGoogle/fitness/datasource/dsID), PUT CRUD method, and input variable dsINFO.  

The end result of the registration is that all of the cloud services, API calls, and web services of 

systems are transitioned to a set of equivalent global services. For each registered cloud, API, or 

web service, a global cloud service is created with appropriate components that mirror the signature 

of the system service named as a new global cloud service, which was represented in Figure 1.1 by 

the Services Mapping and Global Services boxes that car spawns to the Generation of Global Policy 

and Services component in Figure 1.2. For example, the service OEMR1 can be mapped to a new 

global service in FSICC.  Note that the existence of OEMR1 is no longer visible to the mobile, cloud 

or web application; this is true for all of the converted services/API calls. The end result is a unified 

set of global cloud services to be presented to the mobile, web, or desktop applications as supported 

by the Services Mapping box of FSICC as was shown in Figure 1.1, which maintains a mapping 

list of system to global cloud services.    
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      Cloud Computing Capability 2 - Local Security Policies Registration to Yield Global 

Security Policy. This cloud computing capability allows HIT systems to register their local security 

policies (roles and permissions to APIs) that can then be combined to yield a global security policy, 

as shown in the Security Policies and Services Registration and Global Security Policy Generation 

boxes of the GSP Generation and GAPI Generation horizontal box in Figure 1.3.  The local policy 

registration process of this cloud computing capability enables a service supplier (system) to specify 

the security requirements or policy to access its services (cloud, web, and API) as indicated by the 

arrows at the bottom of Figure 1.1. After the systems register the local services, as given in Tables 

2.5 and 2.7, they can then register the local security policies that are available in their systems as 

given in Tables 2.6 and 2.8.  This includes for a particular HIT system: the defined roles, the 

permissions that are defined on each local service, the permissions authorized to each role, the 

classifications for each service, and the allowable delegations.  

As local security policies are registered over time, a security administrator or policy engineer is 

responsible to design and evolve an appropriate global security policy that would encompass all of 

the local security requirements (from all different access control models) and provides a unified, 

global view for the applications.  This is supported in FSICC as shown in Figure 1.1 by the Security 

Policy Mapping and Global Security Policy boxes, which correspond to the Security Policy 

Mapping component and the Generation of Global Policy and Services component, respectively, in 

Figure 1.2.  The security engineer defines a global security policy over global cloud services based 

on defined local roles and associated permissions in the bottom of Figure 1.1 to define a set of 

global roles and their permissions.  This is accomplished by: defining global roles, assigning global 

permissions to global cloud services, authorizing global roles to global permissions, and defining 

constraints over these assignments.  In the healthcare scenario, the global roles can be defined and 
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evolved over time by considering and unifying all of the particular roles of the originally registered 

HIT systems (such as MyGoogle and OpenEMR) and new systems that are added over time.   

Specifically, for the healthcare scenario from Section 2.4, the RBAC permissions as given by 

the roles and API services in Tables 2.6 and 2.8 are mapped to a global set of roles and the global 

API services, respectively.   For example, for the patient role in Table 2.6, the permissions to the 

OpenEMR services OEMR1-OEMR5 are mapped into the permissions to equivalent global cloud 

services that are the authorized global services to the global patient role GPatient. Similarly, for the 

SMH role in Table 2.8, the permissions to the MyGoogle services MG1-MG5 are mapped into the 

permissions to equivalent global cloud services that are the authorized global services to the global 

SMH role GSMH. Essentially, at a high-level, the authorized permissions of the Patient role of 

OpenEMR and the SMH role of MyGoogle are mapped into new global roles GPatient (global 

patient) and GSMH (global SMH), respectively. The security engineer needs to make similar 

mapping and define new global roles (GPhysician, GCoach, GNurse, GParent, and GTrainer) for 

the other local roles and the other systems that are also functioning as roles (GCT2 and 

GMyGoogle). These processes are supported by the Security Policy Mapping box of  FSICC as was 

hownn in Figure 1.1. A mapping list of local to global security policies is maintained by the Global 

Security Policy box of FSICC.  

Cloud Computing Capability 3 - Global Registration, Authentication, Authorization, and 

Service Discover for Consumers. This cloud computing capability enables services consumers 

(mobile, web, or desktop app) to register themselves, which then allows application users to 

discover and be authenticated and then authorized to utilize services by role, as shown in the GSP 

and GAPI Utilization and Security Enforcement horizontal box in Figure 1.3.  The intent is to 

provide access for application users to the global roles and the authorized global services.  The 
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global registration activity of this cloud computing capability is supported by the Client Registry 

box of FSICC as shown in Figure 1.1, which corresponds to the Registration and Services Mapping 

box of the Generation of Global Policy and Services component in Figure 1.2. The global 

authentication activity of this cloud computing capability is supported by the Global Authentication 

box of FSICC as was shown in Figure 1.1, which corresponds to the Global Authentication box of 

the Global Policy Enforcement component in Figure 1.2. The global authorization activity of this 

cloud computing capability is supported by the RBAC/MAC/DAC Interceptors box of FSICC as 

shown in Figure 1.1, which corresponds to the RBAC Interceptor, MAC Interceptor, and DAC 

Interceptor boxes of the Global Policy Enforcement component in Figure 1.2. The service discovery 

activity of this cloud computing capability is supported by the Global Services box of FSICC as 

was shown in Figure 1.1, which corresponds to the Global Services box of the Generation of Global 

Policy and Services component in Figure 1.2. Note that we distinguish between consumers that are 

designing and deploying new mobile, web or desktop applications vs. ones that are retrofitting an 

existing mobile, web, or desktop application that may have its own access control (RBAC, DAC, 

and/or MAC) and cloud/web/programming APIs. 

For consumers designing and deploying a new application, we can extend the healthcare scenario 

of Section 2.4 with a mobile application for the patient and a desktop EHR application for the 

physician, where all of these applications have been developed using the global cloud services.   To 

accomplish this development, each application must register with FSICC in order to gain the 

relevant global roles to be authorized to each application user.  A user of the mobile application for 

the patient would be authorized to the GPatient global role and limited to the services authorized to 

GPatient.  The physician using the EHR desktop application would be authorized to the GPhysician 

global role and limited to the services authorized to GPhysician.   For the HIT systems, MyGoogle 
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would have the GMyGoogle global role with its authorized global services. Note that OpenEMR 

services are not called by the consumers’ applications instead MyGoogle services utilize OpenEMR 

services to store/retrieve patient demographic data (see the healthcare scenario of Section 2.4).  

Cloud Computing Capability 3 is also utilized to allow a consumer of a new application to 

discover global cloud services for the healthcare scenario.  This is accomplished by utilizing a 

service discovery request to the Global Services box of FSICC as seen in Figure 1.1. The discovery 

request returns a list of all available services by GSid, name, and description. Upon successful 

discovery, the service consumer (application) can then submit a request to utilize one or more 

discovered services. The application can send  a list of the global services requested and its 

identification information to the Global Authentication box of FSICC which authenticates the 

application. Then, the RBAC/MAC/DAC Interceptors box of FSICC authorizes the appropriate 

global user role associated with the requested services, and then forwards the service access request 

along with the application’s global role to the Global Security Policy box of FSICC. The Global 

Security Policy box then authorizes the requested global services only if the application’s global 

role is authorized to access such a service. As a result of calling a global cloud service, the mapped 

local service or API call of a local HIT system is invoked. Note that the HIT system allows the call 

only as long as the application’s global role is mapped to an equivalent local role that is authorized 

to access such a system service.  

For example, suppose that the mobile application for the patient sends a service discovery 

request to the Global Services box of FSICC to find a service to return the demographic information 

for a patient. The discovery sends back the id of the required global service, name (e.g., GET 

/FSICC/Patient/id), and a description such as calls the OEMR3 of the OpenEMR system. Based on 

this, the patient mobile application can send a global service access request along with the 
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application identification information to the Global Authentication box.  This box can then 

authenticate the application and forward the request to the RBAC/MAC/DAC Interceptors box that 

can authorize the application to utilize the GPatient role and forward the global service access 

request along with the GPatient role to the Global Security Policy box. The Global Security Policy 

box enables the patient mobile application to access the requested global service, since the GPatient 

global role can access that global service. Then, the Global Security Policy box retrieves the patient 

role, of OpenEMR system, which is mapped to the GPatient global role. As a result of calling the 

authorized global service, an access request to the mapped system service OEMR3 along with the 

patient local role is sent to the OpenEMR system. The OpenEMR system allows the patient mobile 

application to access the service OEMR3 since the patient local role is authorized to access OEMR3.    

For consumers retrofitting an existing mobile, web, or desktop application, there is an extra layer 

(i.e., the integration layer) of functionality that must be considered. Recall the CT2 and 

ShareMyHealth mHealth (SMH) applications from the healthcare example in Section 2.4. Each of 

these applications has its own API to access its database. Suppose that the developer of SMH needs 

to expand SMH capabilities in order to store/retrieve patients’ fitness and demographic information 

from MyGoogle and OpenEMR (via MyGoogle) systems, respectively.  Suppose also that the SMH 

has already defined roles for patient and physician that impact the way that the app works for 

different users in terms of the fitness and demographic data collected can be entered, viewed, and/or 

edited.  In order to make use of the global roles and services of FSICC, the existing SMH app needs 

to be able to map its own app roles to appropriate global roles, and, programmatically link its API 

so that it will be able to call the appropriate global services of MyGoogle.  In order to support this 

programmatic link, the SMH app may also operate in the role of a provider per cloud computing 

capability 1 to define and register a new set of services for the SMH app that link its current API 
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services to the global services.  This requires a similar process as described above to map from the 

local SMH roles to the global roles.     

 

 

3.3 Related Work in Cloud Computing 

 

In this section, we present a number of related efforts in cloud computing, from both academic 

and industrial communities, that are solving similar problems to FSICC, comparing and contrasting 

their work to FSICC.  The first effort (Buyya, Ranjan, & Calheiros, 2010) proposed a framework 

named InterCloud for federating cloud services to manage the services of multiple cloud service 

providers in which the framework allocates cloud services to the cloud consumers based on quality 

of service (QoS) needs of the consumer. To accomplish this, the Cloud Broker, which is a 

component of their framework, determines the most suitable cloud service provider based on the 

cloud services preferences through the Cloud Exchange, which is another component of InterCloud.  

Our use of global services in FSICC provides a one-stop shopping location for consumers which is 

similar to InterCloud since both frameworks remove the consumers’ needs to search through many 

cloud providers. Further, our work utilizes the global roles (and their assigned services by RBAC, 

DAC, and MAC) in order to control which services each consumer is allowed to perform which is 

different from their work that does not provide any security features to control access to the cloud 

services. 

A second effort (Nair, Porwal, Dimitrakos, Ferrer, & Tordsson, 2010)  introduced a framework 

design for cloud services that supports features including: data confidentiality and integrity for 

cloud service consumers; enable cloud service providers to publish cloud services that are unified 

to the cloud service consumers; and, manage the published cloud services.  Their framework allows 

the cloud service providers to receive access requests from the framework without the knowledge 
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of the actual service consumer requesting such an access, and enforces access control over the 

published cloud services.  Their approach contrasts with our approach, particularly for the 

healthcare domain, where the knowing of the identity of the consumer by the provider is vital to 

restrict access to protected health information (PHI). Moreover, the main common features between 

our framework and their framework are: unifying multiple services from different providers to the 

consumers side, and controlling the unified services using access control means. 

A third effort in (Tordsson, Montero, Moreno-Vozmediano, & Llor, 2012) proposed a cloud 

broker that enables a heterogeneous set of cloud service providers, in which each provider may 

require a different infrastructure to operate, to integrate with the cloud broker. Such a cloud broker 

is capable of: optimizing placement of virtual infrastructures across variant clouds; and, hiding the 

processes of deploying and managing the cloud services of the cloud providers. The proposed 

broker utilizes a scheduling algorithm that manages the processes of cloud services deployment. 

Our work on FSICC is similar to their effort, since our global roles and services effectively hide the 

location of the local services providers which is similar to the cloud broker approach in hiding the 

processes of deploying and managing the cloud services. Our work utilizes RBAC, DAC, and MAC 

access control models to control which services each consumer can access which is different from 

their work that does not provide any security features to control access to cloud services. 

The fourth effort (Vordel, 2016), the Vordel Cloud Service Broker, supports integrating local 

on-site applications with offsite cloud services via the Multi-Domain Registry, one main component 

of Vordel. Vordel also provides monitoring, and management services. Vordel is located between 

the cloud service providers and the cloud consumers referred to as organizations. An organization 

may utilize Vordel broker to introduce a level of trust within the cloud application of such an 

organization. The work on Vordel is similar to our efforts in FSICC since they map the services of 
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cloud providers to organizations’ applications via a Multi-Domain Registry and we map local 

roles/services to global roles/services that offer RBAC, DAC, and MAC security.          The main 

difference between our and theirs is that they do not clearly explain the way the integrated services 

in the Multi-Domain Registry are controlled in term of what cloud services each consumer is 

restricted to access. 

A fifth effort (Jamcracker, 2016), the JamCracker platform, unifies the processes of cloud 

management and governance. Specifically, JamCracker provides a number of services including: 

risk and policy compliance management; operation management; and, create, deliver, and multi-

cloud services management. JamCracker also allows cloud service providers to unify delivery and 

management of private and public cloud application/services and distribute them to cloud service 

consumers. JamCracker enables cloud service providers to publish their services and virtualized 

applications along with security policies (only RBAC is supported) to control their services and 

applications via the JamCracker Connect, one main component of the JamCracker platform. The 

main similarities between our work on FSICCC and the JamCracker are both frameworks that unify 

multiple services from different providers to the consumers side, and control the unified services 

using access control means. However, while our framework supports controlling access to the 

unified services using RBAC, MAC, and DAC, JamCracker only supports RBAC as an access 

control mechanism.    

A final effort (Amato, Di Martino, & Venticinque, 2012) proposed a cloud broker that acts as a 

component that: manages the use, performance, and delivery of cloud services; and, mediates the 

process of enabling cloud service consumers to access cloud services of service providers. This is 

achieved by the proposed cloud broker utilizing an agent that dynamically identifies a set of cloud 

services from various providers based on the service consumer requirements. The architecture of 
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the cloud broker agent is presented along with its implementation in (Amato & Venticinque, Multi-

objective decision support for bro-kering of cloud sla, 2013). Their effort is similar to our work on 

FSICC since both works remove the consumers’ needs to search through many cloud providers. 

However, their effort utilizes an agent-based approach to find one cloud provider that most suit the 

needs of the cloud consumer, while FSICC unifies many services from multiple cloud providers to 

be used by the cloud consumers. Moreover, while our framework supports controlling access to the 

unified services using RBAC, MAC, and DAC, their effort does not provide any security features 

to control access the cloud services.  

The major difference between our work in FSICC and the aforementioned efforts is that their 

focus is on solving portions of the problems that we are attempting to address in FSICC; none of 

these efforts provides a comprehensive solution to the problem of securing and integrating cloud 

and none-cloud services provided from different service provides.  
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Chapter 4 

A Unified Cloud Computing Access Control Model (UCCACM) for 

RBAC, MAC, and DAC 

 

 

This chapter defines and explains a Unified Cloud Computing Access Control Model 

(UCCACM) for RBAC, MAC, and DAC that is intended to upgrade these existing access control 

models so that they are capable of defining permissions based on services. The model has been 

motivated and influenced by the four main security requirements of FSICC as presented in Section 

3.1. The first requirement, Numerous and Varied Access Control Models acknowledges that the 

systems providing services to FSICC may have access control and security protocols that are 

varied (i.e., RBAC, MAC, DAC, ABAC, etc.), which would require UCCACM to have broad 

access control abilities. The second requirement, Control Access to Cloud Services Using RBAC, 

offers one possible way to the availability of services to users by assigning roles that authorize to 

access a sub-set of the available cloud services on a role by role basis. The third requirement, 

Support Delegation of Cloud Services Using DAC, offers the ability for users of cloud services to 

enable other consumers to utilize all or a sub-set of the user’s authorized cloud services in which 

DAC can be utilized to keep a list of delegated services, along with authorized delegated users, in 

which each user can delegate all or a sub-set of his/her authorized cloud services to another 

consumer anytime. Finally, the fourth requirement, Control Access to Cloud Services Using MAC, 

provides the ability users that need access to sensitive information in certain secure cloud services 

to utilize MAC to label cloud services with sensitivity levels called classifications (e.g.,  Top Secret 

(TS) < Secret (S) < Confidential (C) < Unclassified (U)) which can be made available to users that 

are assigned clearances under appropriate with read and write properties as described in Section 
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2.3 of Chapter 2. These last three security requirements for RBAC, MAC, and DAC, are the 

foundational capabilities that need to underlie UCCACM.  

In support of these requirements, this chapter presents a Unified Cloud Computing Access 

Control Model (UCCACM) for the FSICC in which UCCACM provides a set of details 

definitions to cover all aspect of the four requirements above along with examples for each 

definition. UCCACM also provides a single view of global services to applications and allows 

those global services to be authorized according to RBAC (FSICC’s security requirement 2), 

MAC (FSICC’s security requirement 4), and DAC (FSICC’s security requirement 3) policies; 

this supports expected contribution EC-B: an Integrated RBAC, MAC, and DAC Model for 

Cloud Computing from Section 1.5. Moreover, UCCACM is an access control model that 

utilizes three main access control models (RBAC, MAC, and DAC) to define and enforce 

security policies for both: clients/systems, and global resources. That is, each client/system 

defines RBAC, MAC, and/or DAC security policies against its objects. Moreover, the security 

policies for the global resources of FSICC are defined and enforced against global cloud 

services of such global resources. UCCACM has a critical placement as a layer in the High-

Level View of FSICC Research Areas and Foci of Figure 1.3, that provides of capabilities and 

functionalities that are necessary to support the Access Control Models in the next layer. These 

two adjacent layers are influenced by the four security requirements.  

The rest of this chapter provides formal definitions of UCCACM in eight sections. Section 

4.1 presents a set of core definitions on schemas to support authorizing users to a set of schemas 

based on roles and/or sensitivity levels. Section 4.2 provides core definitions on enterprise 

application that include definitions for clients, systems, and types of clients and systems as part 

of the enterprise application. Section 4.3 discusses core definitions on RBAC, MAC, and DAC 
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models that describe the way that such access control models can be modified to support the 

four security requirements of FSICC. Section 4.4 describes advanced definitions on enterprise 

applications in which the security aspects of RBAC, MAC, and DAC models are introduced 

into clients and systems of any enterprise application. Section 4.5 has core definitions on global 

resources and permissions by API in which definitions that describe what are global services 

and the way that such global services are controlled via means of RBAC, MAC, and DAC are 

provided. Section 4.6 presents advanced definitions on FSICC that describe the way that 

services and security policies of different systems are mapped. Section 4.7 discusses core 

definitions on security interceptors for RBAC, MAC, and DAC along with enforcement checks 

that each security interceptor utilizes. Section 4.8 presents related work on access control for 

cloud computing. Throughout the entire presentation of UCCACM, detailed examples will be 

provided utilizing the healthcare scenario of section 2.4 Chapter 2. Note that the work in this 

chapter has been published in (Baihan, M., et al., 2017). 

 

4.1 Core Definitions on Schemas 
 

To begin, Definitions 1 to 4 are adopted from work on adding RBAC, MAC, and DAC to 

XML schemas (De La Rosa Algarin A. , 2014) (De La Rosa Algarin, Ziminski, Demurjian, & 

Rivera Sánchez, 2014) that allowed XML schemas to be customized based on role and 

classifications to customize what each user is authorized to see from instances of the schema.   

Defn. 1: An element = NAMEID eee ,  is defined as two-tuple that represents a single piece of a 

data abstraction that describes one aspect of a data structure, where 
IDe  is the element’s 

unique identifier, and NAMEe  is an element name.  
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Defn. 2: A schema (SC) is a data abstraction that represents the structure of a particular kind 

of information, and is defined as a three-tuple = ENAMEID SCSCSCSC ,,  where 
IDSC  is a 

schema’s unique identifier, NAMESC  is a schema name, and 
ESC  is a set of elements (as 

defined in Defn. 1) that represent the schema.    

Defn. 3: Each schema, jSC , has a set of jn schema instances, =
njj sciscisciSCI ,...,, 21

, where 

= VIDi sciscisci ,  in which Vsci  is an element-value set of a schema for all elements in 

each schema. 

Defn. 4: Let o={read, insert, update, delete}, be the set of operations that can be performed 

against an element (e) of a schema. 

 

Example 4.1: A schema for the Patient resource can be represented as = EPaientPatientSC ,,11  where 

},4,,3,,2,,1{ = birthDategendernameidPaientE . A schema instance of 1SC can be 

represented as =
V

scisci 11 ,1  where ,,,,,7,{1 = malegenderAlinameidsci
V

}782005, −− birthDate .  

 

4.2 Core Definitions on Enterprise Application  
After establishing definitions for schemas and schemas’ elements that describe the way that 

data in FSICC is organized to be exchanged from system to system or from system to client via 

FSICC, in this section, we provide core definitions on main actors of FCISS that provide, 

consume, and/or maintain such data using the defined schemas and schemas’ elements. These 

actors form a concept of an enterprise application that includes clients, systems, and types of 

clients and systems as part of the enterprise application.  The next set of definitions, Definitions 

5 to 8, are associated with a large-scale enterprise application that is comprised of clients and 
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systems. Specifically, the definition for enterprise application explains the Involved Parties 

component of Figure 1.2. Furthermore, the definitions for clients and systems describe that 

contents and types of Clients and Systems boxes of the Involved Parties component of Figure 

1.2. 

 

Defn. 5: An Enterprise Application, = SCSSSCSNAMEID EAEAEAEAEAEA ,,,, , has a unique identifier 

(EAID), name (EANAME), sets of client applications (EACS) and systems (EASS), and a set of 

schemas (EASCS).  EA, via FSICC, allows multiple clients (mobile, web, desktop) to interact 

with multiple systems via APIs (cloud, web, programmatic). 

 

Example 4.2: An enterprise application for health information exchange (EAHIE) would allow 

applications for patients, family members, medical providers, insurance companies, etc. (e.g., 

CT2 and ShareMyHealth from Section 2.4), to interact with OpenEMR and MyGoogle (from 

Section 2.4) via cloud, web, or programmatic APIs. These HITs utilize FHIR Resources, the 

integration layer in Figure 1.1 from Chapter 1, (Health Level 7, Fast Health Interoperable 

Resources list, 2016) which include schema representations in both XML and JSON. The 

schemas defined in EASCS are used by each HIT system. 

 

The inclusion of schemas as part of an EA allows for the modeling of the information utilized 

in a cloud computing application to be represented.  Many cloud computing applications utilize 

cloud computing services that send/receive XML or JSON objects, which in turn based on 

underlying schemas; this is true with FHIR and the API reference implementation.  Thus, an EA 
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with schemas provides an actual link from the type of information and the APIs.  Given example 

4.2, definitions for client and system can be provided. 

 

Defn. 6: A client in an EA is a mobile, web, or desktop application, top of Figure 1.1 from 

Chapter 1, that includes, as part of its functionality, cloud-based services, web services, or 

a programming API of services, and is interested in utilizing a subset of EASCS via available 

cloud computing services. A client can be characterized based on the degree that it is a 

consumer and/or a provider in a cloud, web, or programming service-based setting. 

There are two different types of clients: 

i. A Pure Client is only a consumer of services. 

ii. A Mixed Client is primarily a consumer of services and is also a provider 

of a small number of services. 

 

Defn. 7: A system, bottom of Figure 1.1 from Chapter 1, in an EA provides functionality for 

use by clients via cloud-based services, web services, or a programming API, and is 

interested in providing access to a subset of EASCS via its services or API. A system can 

be characterized based on the degree that it is a consumer and/or a provider in a cloud, 

web, or programming service-based setting. There are two different types of systems: 

i. A Pure System is only a provider of services. 

ii. A Mixed System is primarily a provider of services and is also a consumer 

of a small number of services. 
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Example 4.3: Recall the healthcare scenario from Section 2.4 and let us assume that the CT2 client 

does not provide services. Based on this assumption we can categorize the ShareMyHealth and 

CT2 client Apps; and OpenEMR and MyGoogle systems as follows: 

- CT2 client App is a pure client, since it only utilizes services from OpenEMR system  

- ShareMyHealth client App is a mixed client, since it utilizes services from MyGoogle 

system and provides a number of services 

- OpenEMR system is a pure system, since it only provides services 

- MyGoogle system is a mixed system, since it provides services and utilizes services from 

OpenEMR 

 

4.3 Core Definitions on RBAC, MAC, and DAC for Roles/Users  
 

After providing definitions on enterprise applications, clients, and systems, in this section, we 

transition to describe the way that three main access control models RBAC, MAC, and DAC, 

see RBAC, MAC, and DAC boxes of the Access Control Models component in Figure 1.2, can 

be modified to enable the clients and systems in an enterprise application to utilize such access 

control models to protect their services from unauthorized access. The next set of definitions, 

Definitions 8 to 30, discuss the way that the FSICC security requirements in Section 3.1 from 

Chapter 3 are supported in our work. Specifically, providing RBAC features for systems and 

clients supports the security requirement 2 of FSICC: Control Access to Cloud Services Using 

RBAC. Moreover, providing MAC features for systems and clients supports the security 

requirement 4 of FSICC: Control Access to Cloud Services Using MAC. Finally, providing DAC 

features for systems and clients supports the security requirement 3 of FSICC: Support Delegation 

of Cloud Services Using DAC.  
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Defn. 8: A role, r, is defined as a two-tuple = NAMEID rrr ,  where IDr  is a role unique 

identifier and NAMEr  is a role name.  

Defn. 9: Let },...,,{ 21/ jSC rrrR =  be defined as the set of j roles for a given client/system 

where 
SCj Rr /  and =

jj NAMEIDj rrr , . 

Defn. 10: In support of mandatory access control (FSICC’s security requirement 4), we 

define a linearly-ordered set of sensitivity levels (U-unclassified < C-confidential < S-

secret < TS-top secret) with the ability to assign levels of clearances (CLR) to users/clients 

and classifications (CLS) to schemas’ elements and services.  

 

In support of mandatory access control, Definitions 1 and 2 are revised in order to define the 

classification on each schema and each element of a schema.  

Defn. 1: (V2) An element = CLSNAMEID eeee ,,  is defined as three-tuple element that represents 

a single piece of a data abstraction that describes one aspect of a data structure, where 
IDe  

is the element’s unique identifier, NAMEe  is an element name, and CLSe  is the element 

classification, as described in Defn. 10. 

Defn. 2: (V2) A schema (SC) is a data abstraction that represents the structure of a particular 

kind of information, and is defined as a four-tuple = CLSENAMEID SCSCSCSCSC ,,,  where IDSC  

is a schema’s unique identifier, NAMESC  is a schema name, ESC  is a set of elements (as 

defined in Defn. 1v2) that represent the schema, and CLSSC  is the schema classification 

that is equal to the least secure of all of its constituent elements.    
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Given the V2 revised Defns. 1 and 2, the corresponding permissions can be defined for RBAC 

and MAC on roles and users with Definitions 11 to 19 to present: the   concept of a permission, 

the way that permissions are associated with roles, the way that a user is defined with a clearance, 

the way that a user assigned a role, and the way that different roles are related.    

Defn. 11: A permission, p, is defined as a three-tuple = OSCID pppp
ID

,,  where  
IDp  is a 

permission unique identifier, 
IDSCp is ID of the involved schema (Defn. 2v2), and Op  is the 

operation (Defn. 4).  

Defn. 12: A role permission, rp, is defined as a three-tuple = IDIDID rprprp ,,  where 
IDp ,

IDr  are 

the IDs of the involved permission (Defn. 11) and role (Defn. 8), respectively.  

Defn. 13: Each role r has a role-permission set (RPS) },...,,{ 21 kr rprprpRPS = of role 

permissions (Defn. 12). 

Defn. 14: A user, u, is defined as three-tuple = CLRNAMEID uuuu ,, , where IDu is a user unique 

identifier, NAMEu  is a user name, and CLRu  is a user clearance (Defn. 10). 

Defn. 15: Let },...,,{ 21/ jSC uuuU =  be defined as the set of j users for a given client/system, 

where 
SCj Uu / and =

jjj CLRNAMEIDj uuuu ,, . 

Defn. 16: Each user SCi Uu / can be assigned a role 
SCj Rr /  for a user role assignment 

(ura), = jik ruura , , that signifies that a user is limited to playing that role and the 

authorized permissions. Note that a user can be assigned multiple roles but only plays one 

role in any session with a client/system.  

Defn. 17: The user-role-assignment set (URASC/S) for a client/system, 

},...,,{ 21/ kSC uraurauraURAS = is the set of all k user role assignments (Defn. 16), that 



75 
 

contains an entry for relevant user/role combinations that are applicable for RBAC in 

support of any client/system.  

Defn. 18: Each role r has a role-role set (RRS) 𝑅𝑅𝑆𝑟𝑖 = {𝑟1, 𝑟1, . . , 𝑟𝑘} based on the isa role 

hierarchy as described in Section 2.2.  

Defn. 19: The role hierarchy (RHC/S) for a client/system, 𝑅𝐻𝐶/𝑆 = {𝑅𝑅𝑆𝑟1 , 𝑅𝑅𝑆𝑟2 , . . , 𝑅𝑅𝑆𝑟𝑘} 

is the set of all k role-role sets (Defn. 18). 

 

In support of discretionary access control (FSICC’s security requirement 3) and based on the 

DAC concepts that were introduced in Section 2.2, we provide definitions 20 to 30 that 

distinguish between the user who performs the delegation act referred to as an original user and 

the user who acquires additional permissions based on a delegation act referred to as a delegated 

user. These definitions also present the way that an original user is supported with different options 

to perform the delegation (i.e., delegate role, delegate role permission, and delegate clearance).   

Defn. 20: An original role, or , is a system or client role that is delegable. 

Defn. 21: An original role permission, orp , is in the role-permission set (RPS) of a specific 

original role or . 

Defn. 22: An original clearance, oc , is a clearance (Defn. 10) in a system or client that is 

delegable. 

Defn. 23: An original user, ou , is a system or client user who assigned: an original role 

or , in which ou is illegable to delegate or or orp to another original user ou ; and/or an 

original clearance oc with read/write properties, in which ou is illegable to delegate oc to 

another original user ou . 

Defn. 24: A delegated clearance, dc , is a clearance (Defn. 10) that is delegated to a user. 
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Defn. 25: A delegated role, dr , is a role that is delegated to a user. 

Defn. 26: A delegated role permission, drp , is a role permission that is delegated to a user. 

Defn. 27: A delegated user, du , is a user to whom a delegated role dr , delegated role 

permission drp , or delegated clearance dc will be delegated. 

Defn. 28: Delegation Authority (DA): A Security engineer determines which users in a 

system or client can delegate their roles/role permissions/clearance to other users in that 

system or client. 

Defn. 29: Pass On Delegation Authority (PODA) is a Boolean value assigned to a user 

which determines if he/she can delegate his/her roles/role permissions/clearance to 

another user (poda=true) or not (poda=false). 

Defn. 30: A Delegation Set (DS) for a system or client is a set of active role/role 

permission/clearance delegations 
SCDS /

={ 1d , 2d , … , nd } in which each active 

delegation { , , / / }id ou du dr drp dc=  has three parts: original user (ou), delegated 

user (du), and a delegated role (dr), a delegated role permission (drp), or a delegated 

clearance (dc).   

 

4.4 Advanced Definitions on Enterprise Applications 
 

As previously discussed in Section 3.2, we presented three main cloud computing capabilities 

for FSICC with the associated components. These cloud computing capabilities were: Local 

Service Registration and Mapping to Global Services, see the Security Policies and Services 

Registration and Global Services Generation boxes of the GSP Generation and GAPI Generation 

horizontal box in Figure 1.3; Local Security Policies Registration to Yield Global Security Policy, 

see the Security Policies and Services Registration and Global Security Policy Generation boxes 
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of the GSP Generation and GAPI Generation horizontal box in Figure 1.3; and, Global 

Registration, Authentication, Authorization, and Service Discover for Consumers, see the GSP 

and GAPI Utilization and Security Enforcement horizontal box in Figure 1.3. Based on this, this 

section provides a set of definitions, Definitions 31 to 33, that support the three aforementioned 

cloud computing capabilities of FSICC. Also, a number of definitions from Sections 4.1, 4.2, 

and 4.3 are redefined as version 2. To start, the three new definitions are for systems and clients 

with RBAC/MAC/DAC.  

  

Defn. 31: A cloud, web, or programming service of a client or system, denoted  , is defined 

as = TypeSIGNAMEID  ,,, with unique ID, name, signature, and type for each service. 

A signature SIG  is further defined in two different ways based on the technology used to 

create a service as following:    

i. Web/cloud: = VARIABLEINPUTURITYPEMETHODSIG __ ,,   where

},,,,,, Re,{_ DELETEPUTPOSTGETDeleteUpdateadCreateTYPEMETHOD   is the 

type of CRUD method, 
URI  a unified resource identifier URI, and VARIABLEINPUT _  is 

the input variable. 

ii. Program: = PARAMETERSTYPERETURNNAMEMETHODSIG  ,, __
 where 

NAMEMETHOD_  in the 

call name, 
TYPERETURN_  is the return type, and PARAMETERS  are the parameter 

names/types. 

A service type Type  of a web/cloud-based service can be: (read) if TYPEMETHOD_  is 

Read/GET; or (write) if TYPEMETHOD_  is Create/Update/Delete/POST/PUT/DELETE.  A 
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service type Type  of a program-based service can be: (read) indicating that values of all 

service parameters PARAMETERS will not be modified after the service call, (write) indicating 

that values of all service parameters PARAMETERS can be modified after the service call, or 

(read/write) indicating that values of some service parameters PARAMETERS can be modified 

after the service call while values of other parameters will not. 

Defn. 32: A system, , , , , , , , , ,
S S S S S S S

i i i i i i i i i i i

ID NAME API SC R RPS RH U URAS DSS S S S S S S S S S S=  , SS

i EAS   

is identified by a unique identifier, name, and  cloud, web, or programmatic API of a 

system, respectively, where a given 
i

APIS  is comprised of a set of ij API services  

},...,,,{ 321

i

j

iiii

APIS =  with each 
j  as given in Defn. 31 along with a schema subset 

i

SCS
S , sets of roles i

RS
S , role permission sets i

RPSS
S , role hierarchy 

S

i

RHS , users i

US
S , user-role 

assignment set i

URASS
S , and system delegation set i

DSS
S  (Definitions 2v2, 9, 13, 19, 15, 17 

and 30 respectively).   

Example 4.4: MyGoogle and OpenEMR (from Section 2.4) are two systems in EASS where there 

are RESTful cloud services for MyGoogle, and RESTful web services for OpenEMR. Figures 4.1 

and 4.2 define MyGoogle and OpenEMR systems, respectively, with the signature σSIG as a 

placeholder for readability. 
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Figure 4.1. MyGoogle Notation for Example 4.4. 

 

 
Figure 4.2. OpenEMR Notation for Example 4.4. 
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Defn. 33: A client application, 
CS

i EAC   is defined as 

, , , , , , , , ,
C C C C C C C

i i i i i i i i i i i

ID NAME API SC R RPS RH U URAS DSC C C C C C C C C C C= with unique identifier, name, 

i

APIC  the set of ij API services },...,,,{ 321

i

j

iiii

APIC = with each 
j  as given in Defn. 31, 

and, a schema subset 
i

SCC
C , sets of roles i

RC
C , role permission sets i

RPSC
C , role hierarchy 

C

i

RHC , users i

U C
C , user-role assignment set i

URASC
C , and client delegation set 

i

DSC
C  

(Definitions 2v2, 9, 13, 19, 15, 17 and 30 respectively).   

Example 4.5: In Section 2.4 we have two clients: ShareMyHealth with RESTful cloud services; 

and CT2 with RESTful web services, which are in EACS. Figures 4.3 and 4.4 define ShareMyHealth 

and CT2 clients with the signature σSIG as a placeholder for readability. 

 

 
Figure 4.3. ShareMyHealth Notation for Example 4.5. 
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Figure 4.4. CT2 Notation for Example 4.5. 

 

UCCACM for cloud computing, that supports the FSICC’s security requirements (see 

Section 3.1), also provides the means to represent a unified set of global services encapsulated 

into one Global Resource for a given EA and its systems. This allows the clients to be able to 

utilize a set of shared global services rather than specific services for each system that may be 

in different formats (e.g., cloud services, web services, programmatic API services in different 

languages, etc.). This is basically meant to support the FSICC’s cloud computing capabilities 

(see Section 3.2). Although, grouping multiple systems services attracts app developers, in a 

domain such as healthcare, there is a need to create useful and rich apps (i.e., apps with many 

features) in an easy and efficient way (i.e., avoid effort duplication). This need must be balanced 

against the potential to create one great target that attackers can utilize to illegally access a large 

set of crucial and sensitive data (see Security Risks of adopting FSICC in Section 3.3), through 

services, such as electronic health records of large number of patients. Thus, an access control 



82 
 

mechanism should be developed and utilized to restrict services access only to the authorized 

users and their Apps.  

Moreover, since there is a demonstrated need to protect such global services we make two 

major observations: (1) there must be a shift in focus on the concept of RBAC permissions from 

objects and operations (in the traditional RBAC model) to permissions that define individual 

global services that are authorized by role to make invocations (calls) on objects; and (2) there 

is a need to utilize a larger set of the four sensitivity levels of MAC such that the set of 

sensitivity levels can adequately classify sensitive data in complex areas such as healthcare, 

note that the healthcare-based security level approaches discussed in Section 2.2 are too focused 

on the healthcare domain. In this dissertation, we present an access control mechanism, i.e., 

UCCACM, that provides solutions for observations 1 and 2. Regarding the first major 

observation, Figure 4.5 shows the UCCACM for RBAC part that consists of four elements: 

Roles; Users; Sessions; and Permissions (i.e., the defined service calls on objects), and five 

relations: User-Role (i.e., which user assigned to which role); Role-Permission (i.e., which role 

authorized to which service in which each service calls a specific object); User-Session (i.e., 

which user is active in the current session); Role-Session (i.e., which role of the current user is 

active in the current session); and Role-Role (i.e., which role, or set of roles, is the parent of the 

active role based on the isa role hierarchy).  
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Figure 4.5. The UCCACM for RBAC Part. 

 

In the case of the second major observation, recall the work presented in Section 2.2 and 

Figure 2.5. In Section 2.2, we reviewed the different HL7 confidentiality levels:  U – 

unrestricted, L – low, M – moderate, N – normal, R – restricted, and V – very restricted (Health 

Level 7., 2014). In Section 2.2, we also reviewed the work on the lattice-based categories and 

subcategories of sensitivities for healthcare that defined five main healthcare sensitivity levels: 

0 – Basic Information, 1 – Medical History Data, 2 – Summary Clinical Data, 3 – Detailed Clinical 

Data, 4 – Sensitive Clinical Data (Demurjian, Sanzi, Agresta, & Yasnoff, 2018) in Figure 2.5.  

Using that work as a basis, for the second major observation, we present a set of five sensitivity 

levels (0-4) that can be utilized to classify data of any complex domain such as healthcare, but 

not limited to the healthcare domain as follows: 

Level 0: Public Information (PI) contains data that is freely available to anyone. Examples 

for data at this level are: basic demographics such as city and state of residence; and general 

personal information such as bachelor graduation year and university name.   

Level 1: Basic Sensitive Information (BSI) contains data that has some restrictions. 

Examples for data at this level are: detailed demographic data such as the patient name, 

full address, and date of birth.  
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Level 2: Sensitive Information Summary (SIS) contains data that groups or summaries a set 

of data that is classified as Basic Sensitive Information. Examples for data at this level are: 

clinical data including prescription and over-the-counter medications; and key data of a 

student’s academic record such as GPA.  

Level 3: Sensitive Information Details (SID) contains data that elaborates and provides more 

information about data that is classified as Basic Sensitive Information. Examples for data 

at this level are: reports from imaging studies (CT Scans, MRIs, X-Rays); and detailed 

academic information such as a report on a student academic record. 

Level 4: Very Sensitive Information (VSI) contains very sensitive information about people 

or organizations. Examples for data at this level are: sensitive information on a patient that 

is used by medical specialists including data on genetics, substance abuse, mental health 

psychotherapy notes; and sensitive employees’ information such as social security number. 

 

In the examples from this point forward, we refer to Level 0 to Level 4, respectively, by the 

acronyms:  PI, BIS, SIS, SID, and VSI. 

Given Figure 4.5, we revise the Definitions 9, 15, 16, 17, and 30 to version 2 (v2) that includes 

G (for global) as an option for a role set, user set, user role assignment, user-role assignment set, 

and delegation set. 

Defn. 9: (v2) Let },...,,{ 21// jGSC rrrR =  be defined as the set of j roles for a given 

client/system/Global Resource where 
GSCj Rr //  and =

jj NAMEIDj rrr , . 

Defn. 15: (v2) Let },...,,{ 21// jGSC uuuU =  be defined as the set of j users for a given 

client/system/Global Resource, where 
GSCj Uu // and =

jjj CLRNAMEIDj uuuu ,, . 
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Defn. 16: (v2) Each user 
GSCi Uu // can be assigned a role 

GSCj Rr //  for a user role 

assignment (ura), = jik ruura , , that signifies that a user is limited to playing that role 

and the authorized permissions. Note that a user can be assigned multiple roles but only 

play one role in any session with a client/system/Global Resource.  

Defn. 17:  (v2) The user-role-assignment set (URASC/S/G) for a client/system/Global 

Resource, },...,,{ 21// kGSC uraurauraURAS = is the set of all k user role assignments (Defn. 

16v2), that contains an entry for relevant user/role combinations that are applicable for 

role-based access control in support of any client/system/Global Resource.  

Defn. 30: (v2) Delegation Set (DS) for a client/system/Global Resource is a set of active 

role/role permission delegations 
GSCDS //

={ 1d , 2d , … , 
nd } in which each active 

delegation { , , / / }id ou du dr drp dc=  has three parts: original user (ou), delegated 

user (du), and a delegated role (dr), a delegated role permission (drp), or a delegated 

clearance (dc).   

 

 

To complete the changes, based on the presented sensitivity levels above we revise the Defn. 

10 to version 2 (v2) to include the five sensitivity levels. 

Defn. 10: (v2) In support of mandatory access control (FSICC’s security requirement 4), we 

define a linearly-ordered set of sensitivity levels (0-PI < 1-BSI < 2-SIS   < 3-SID < 4-VID) 

with the ability to assign levels of clearances (CLR) to users/clients and classifications 

(CLS) to schemas’ elements and services. 
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4.5 Core Definitions on Global Resources and Permissions by API 
 

As we introduced RBAC, MAC, and DAC into definitions for systems and clients in Section 

4.3 and revised in Section 4.4, in this section, we present a set of definitions (Definitions 34 to 

39) that focus on the higher-level needs of UCCACM within FSICC.  Specifically, UCCACM 

provides a unified set of global services encapsulated into a number of Global Resources. This 

supports FSICC’s cloud computing capability 1 in Section 3.2, see the Security Policies and 

Services Registration and Global Services Generation boxes of the GSP Generation and GAPI 

Generation horizontal box in Figure 1.3. This set of global services belongs to a given enterprise 

application and its systems in which interested clients are able to utilize authorized services from 

this set of shared global services. This is to remove the need for clients to utilize multiple and 

possibly heterogeneous services from each system, separately, that may be in different formats 

(e.g., cloud services, web services, programmatic API services in different languages, etc.). 

Moreover, the FSICC’s global services are controlled using RBAC, MAC, and/or DAC which 

supports FSICC’s cloud computing capability 2 in Section 3.2 as was shown in the GSP Generation 

and GAPI Generation horizontal box in Figure 1.3. 

 

Defn. 34: A global service of a global resource, denoted  , is defined as 

= CLSSIGNAMEID  ,,, with unique ID, name, signature (similar to SIG  in Defn. 31), 

and a classification (Defn. 10) for each service. 

Defn. 35: A global resource, iG  represents a set of global services that are intended to map 

to services from different Clients/Systems. 
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Defn. 36: For a global resource, iG , a global service permission, = i

ID

i

ID

i

gp jk
r  , , binds 

a jth  global service 
i

j of 
i

APIG  by identifier, i

ID j
 ,  to a role  i

R

i

k G
Gr   by identifier, i

ID j
r .  

Defn. 37: For a global resource, iG , and a role  i

R

i

k G
Gr  , a role permissions set, i

kr
RPS = 

},...,,{
21

i

gp

i

gp

i

gp n
 contains all of the n global service permissions i

gp j
  associated with a 

role.  

Defn. 38: For a global resource, iG , the resource role permissions set, i

RRPSG
G ={ ir

RPS
1

, 

ir
RPS

2
, …, i

mr
RPS } contains all of the role permission sets for the m roles in i

RG
G . 

Defn. 39: A global resource, iG  can be represented as 

= i

DS

i

RRPS

i

URAS

i

U

i

R

i

API

i

NAME

i

ID

i

GGGGG
GGGGGGGGG ,,,,,,, , is identified by a unique identifier, 

name, and  cloud API, respectively, where a given 
i

APIG  is comprised of a set of ij API 

services },...,,,{
321 jiiii

i

APIG =  with each 
j  as given in Defn. 34 along with sets of 

roles i

RG
G , users i

U G
G , user-role assignment sets i

URASG
G (Definitions 9v2, 15v2, and 17v2 

respectively), a resource role permission set, i

RRPSG
G (Defn. 38), and a resource delegation 

set 
i

DSG
G (Defn. 30v2).   

Example 4.6: Figure 4.6 defines the Global Resource G1 with the signature σSIG as a placeholder 

for readability.  The global services (see Table 4.1) are organized into one Global Resource G1 

with global roles (Table 4.2).  
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Figure 4.6. Global Resource G1 Notation for Example 4.6. 

 
 

 

Table 4.1.  FSICC Global Services for Global Resource G1
 

Gid Service Name 

gs1 PUT /FSICC/Observation/id    obINFO 

gs2 GET /FSICC/Observation/id    

gs3 PUT /FSICC/Patient/id    ptINFO 

gs4 GET /FSICC/Patient/id    

gs5 PUT /FSICC/User/id    usINFO, Token  

gs6 PUT /FSICC/Encounter/id    enINFO 

gs7 GET /FSICC/Encounter/id    

gs8 PUT /FSICC/Condition/id    cnINFO 

gs9 GET /FSICC/Condition/id    

 

 

Table 4.2.  FSICC Global Roles for Global Resource G1
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Rid Role FSICC Services 

GR1 GPhysician gs2, gs4, gs5 

GR2 GPatient gs1
 – gs5 

GR3 GCoach gs2, gs3, gs7
 – gs9 

GR4 GNurse gs1
 – gs4, gs6

 – gs9 

GR5 GParent gs2
 – gs4, gs7

 – gs9 

GR6 GTrainer gs2
 – gs4, gs6

 – gs9 

GR7 GCT2 gs1
 – gs4, gs6

 – gs9 

GR8 GMyGoogle gs1, gs2 

GR9 GSMH gs1
 – gs5 

 

 

 

4.6 Advanced Definitions on FSICC 
 

After presenting a set of definitions that describes the unified set of global services of FCISS, 

this section continues and provides a set of Definitions 40 to 48 that explains the way that services 

and security policies of different systems are mapped to generate global services and global 

security policy for FSICC.  Specifically, this section defines the main components of the FSICC 

and the way that such components are generated from the separate mapping involving clients and 

systems.  The first mapping is from clients (which have services to register) and Systems to Global 

resources. The second mapping is from Client/System roles to Global roles which is FSICC’s cloud 

computing capability 2 in Section 3.2 and the Security Policies and Services Registration and 

Global Security Policy Generation boxes of the GSP Generation and GAPI Generation horizontal 

box in Figure 1.3. The third mapping is from Clients/Systems API services to Global API services 

which is FSICC’s cloud computing capability 1 in Section 3.2 and the Security Policies and 
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Services Registration and Global Services Generation boxes of the GSP Generation and GAPI 

Generation horizontal box in Figure 1.3. 

 

Defn. 40: The Framework for Secure and Interoperable Cloud Computing (FSICC) can 

be represented as FSICC= <G, R, U, URAS, RRPS> where G = {Gi | all i resources} 

is a set of all of the global resources in which each 
iG  as given in Defn. 39, R = }{ iall

i

RG
G   

of all role sets from all i global resources, U = }{ iall
i

UG
G of all user sets from all i global 

resources, URAS = }{ iall
i

URASG
G  of all user role assignment sets from i the global resources, 

and RRPS = }{ iall
i

RRPSG
G of all resource role permission sets from all i global resources. 

Defn. 41: Client/System to Global Mapping 
iF

CSGM
SICC

 = IDIDID GSC ,/  where each iC

/ iS  is mapped to one iG  G.  

Defn. 42: Client/System to Global Mapping Set:

=
j21 FFFF CSGM,...,CSGM,CSGMCSGMS

SICCSICCSICCSICC
, where 

jF
CSGM

SICC
is as defined 

in Defn. 41.  

Defn. 43: Client/System API to Global API Mapping = ID

API

ID

API

ID

APISICC
GSC ,/

iF
CSAGAM  

where each i

API

i

API SC /  is mapped to 
i

APIG . 
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Defn. 44: Client/System API to Global API Mapping Set 

=
j21 FFFF CSAGAM,...,CSAGAM,CSAGAMCSAGAMS

SICCSICCSICCSICC
, where 

jF
CSAGAM

SICC
is as 

defined in Defn. 43. 

Defn. 45: Client/System Roles to Global Roles Mapping = ID

R

ID

R

ID

RSICC GSC
GSC ,/

iF
CSRGRM

where i

R

i

R SC
SC /  are mapped to 

i

RG
G . 

Defn. 46: Client/System Roles to Global Roles Mapping Set 

=
j21 FFFF CSRGRM,...,CSRGRM,CSRGRMCSRGRMS

SICCSICCSICCSICC
, where 

jF
CSRGRM

SICC
is as 

defined in Defn. 45. 

Defn. 47: Client/System Users to Global Users Mapping = ID

U

ID

U

ID

USICC GSC
GSC ,/

iF
CSUGUM  

where i

U

i

U SC
SC /  are mapped to 

i

U G
G .  

Defn. 48: Client/System Users to Global Users Mapping Set 

=
j21 FFFF CSUGUM,...,CSUGUM,CSUGUMCSUGUMS

SICCSICCSICCSICC
, where 

jF
CSUGUM

SICC
is as 

defined in Defn. 47. 

 

Note that the mappings in Definitions 41-48 are performed by a FSICC security engineer in regards 

to reconciling roles and APIs as part of the mapping process. Part of this process is performed 

utilizing a set of algorithms for global RBAC policy generation, global MAC policy generation 

and global DAC policy generation; this will be explored in detail in Section 6.3 of Chapter 6.  

 

Example 4.7: Table 4.3 contains the mappings of services and roles of MyGoogle, OpenEMR, 

CT2, and ShareMyHealth (see Section 2.4). This is basically, the result of utilizing FSICC’s cloud 
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computing capability 1: local service registration and mapping to global services; and cloud 

computing capability 2: local security policies registration to yield global security policy (see 

Section 3.2). Table 4.3a is for the role mapping where the client role and system role could map to 

the same global role, as shown for the first six rows, e.g., SMHR1 and OEMRR2 rows are the Patient 

role for Client/System, respectively, that maps to the global Patient role GR2. Tables 4.3b to 4.3e 

map CT2, ShareMyHealth, MyGoogle, and OpenEMR services, respectively, to global services. 

 
 

Table 4.3.  Mapping Tables to Global Services. 

 

a. Mapping Client/System to Global Roles. 

Client 

Rid 

Client 

Role Name 

System Rid System Role Name Global Rid Global Role 

Name 

CTR1 Coach OEMRR3 Coach GR3 GCoach 

CTR2 Nurse OEMRR4 Nurse GR4 GNurse 

CTR3 Parent OEMRR5 Parent GR5 GParent 

CTR4 Trainer OEMRR6 Trainer GR6 GTrainer 

SMHR1 Patient OEMRR2 Patient GR2 GPatient 

SMHR2 Physician OEMRR1 Physician GR1 GPhysician 

  OEMRR7 CT2 GR7 GCT2 

  OEMRR8 MyGoogle GR8 GMyGoogle 

  MGR1 SMH GR9 GSMH 

 
b. Mapping of CT2 Services to Global Services. 

Sid Service Name Gid FHIR  

CRUD/Resource 

CT1 PUT /CT2/concussion/status    statusINFO G1 PUT Observation 

CT2 GET /CT2/concussion/status    statusID G2 GET Observation 

CT3 GET /CT2/student    studentID G4 GET Patient 
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CT4 PUT /CT2/student/add    studentINFO G3 PUT Patient 

CT5 PUT /CT2/followup/add    followupINFO G7 PUT Encounter 

CT6 GET /CT2/followups    followupID G8 GET Encounter 

CT7 GET /CT2/concussion/student studentID G10 GET Condition 

CT8 PUT /CT2/concussions/add    concussionsINFO G9 PUT Condition 

 
c. Mapping of ShareMyHealth Services to Global Services. 

Sid Service Name Gid FHIR  

CRUD/Resource 

SMH1 PUT /SMH/newMeasure/mID    mINFO G1 PUT Observation 

SMH2 GET /SMH/Measures/mID     G2 GET Observation 

SMH3 PUT /SMH/newPatient/pID    pINFO G4 GET Patient 

SMH4 GET /SMH/Patients/pID     G3 PUT Patient 

SMH5 PUT /SMH/Users/uID    Token G5 PUT User 

 
d. Mapping of MyGoogle Services to Global Services. 

Sid Service Name Gid FHIR  

CRUD/Resource 

MG1 PUT /MyGoogle/fitness/dataSources/dsID    dsINFO G1 PUT Observation 

MG2 GET /MyGoogle/fitness/dataSources/dsID     G2 GET Observation 

MG3 PUT /MyGoogle/newPatient/pID    pINFO G4 GET Patient 

MG4 GET /MyGoogle/Patients/pID     G3 PUT Patient 

MG5 PUT /MyGoogle/Users/uID    Token G5 PUT User 

 
e. Mapping of OpenEMR Services to Global Services. 

Sid Service Name Gid FHIR  

CRUD/Resource 

OEMR1 PUT /OpenEMR/updatepatientnotes    noteINFO G1 PUT Observation 

OEMR2 GET /OpenEMR/getnotes    noteID G2 GET Observation 
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OEMR3 GET /OpenEMR/getallpatients    patientID G4 GET Patient 

OEMR4 PUT /OpenEMR/addpatient    patientINFO G3 PUT Patient 

OEMR5 PUT /OpenEMR/addvisit    visitINFO G7 PUT Encounter 

OEMR6 GET /OpenEMR/getvisits    visitID G8 GET Encounter 

OEMR7 GET /OpenEMR/getlist    conditionID G10 GET Condition 

OEMR8 PUT /OpenEMR/addlist    conditionINFO G9 PUT Condition 

 

 

4.7 Core Definitions on Interceptors 
 

As we described earlier in Section 3.2 of Chapter 3, the global security policy of FSICC is 

generated by the cloud computing capability 2 of FSICC, i.e., local security policies registration 

to yield global security policy, that utilizes two components of FSICC:  Security Policy Mapping 

box of FSICC in Figure 1.1 and Global Security Policy box of FSICC in Figure 1.1. To enforce 

the FSICC’s global policy defined on global resources with the allowed API service calls 

controlled by RBAC (FSICC’s security requirement 2), MAC (FSICC’s security requirement 

4), and DAC (FSICC’s security requirement 3) permissions, this section introduces a set of 

definitions for security Interceptor that is able to intercept API calls to global services in order 

to perform appropriate RBAC, MAC, and DAC security enforcement checks.  To begin, we 

define an interceptor as follows: 

 

Defn. 49:  A Security Interceptor is defined as a programmatic mechanism that is able to 

intercept a service call from a client application to an API in order to perform appropriate 

security enforcement checks.   
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The remainder of this chapter reviews the interceptors for RBAC, MAC, and DAC. Section 4.7.1 

provides a set of definitions that explains the way that the global RBAC policy are enforced using 

the RBAC interceptor. Section 4.7.2 discusses a set of definitions that explains the way that the 

global MAC policy is enforced using the MAC interceptor. Section 4.7.3 provides a set of 

definitions explains the way that the global DAC policy are enforced using the DAC interceptor. 

Note that at the end of each subsection, we provide an example for the respective definitions.   

 

4.7.1 Definitions on RBAC Interceptor 

In support of the FSICC’s security requirement 2 (see Section 3.1), this section presents 

definitions for the RBAC interceptor. Definitions 50 to 52 provide two enforcement checks that 

the RBAC interceptor utilizes to enforce the global RBAC policy.  

Defn. 50: User-Role Enforcement Check: For a global resource, Gi, a user uID ϵ G
i
UG can 

utilize a role rID ϵ G
i
RG iff the entry <uID, rID> exists in the User-Role set Gi

URASG.   

Defn. 51: Role-Service Enforcement Check: For a global resource, Gi, a user with a role rID 

ϵ G
i
RG can access a global service σi

ID ϵ G
i
API iff the entry <rID, σi

ID> exists in the role 

permissions set RPSrid ϵ G
i
RRPSG. 

Defn. 52: The RBAC Interceptor of FSICC is a programmatic security enforcement check 

utilizing Definitions 50 and 51 that is able to determine at runtime if the requested API 

call on a global service can be executed for a user uID (Defn. 15v2) with a role rID (Defn. 

9v2). 

 

Example 4.8: Consider a Global Resource G1 that has: a user ,John>=<uG 1
1

1 ; and a role 

= n,GPhysiciarG 1
1

1  in which 
1

1

Gr is authorized to access global services },,{
1

3

1

2

1

1

GGG  ; and 
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suppose that the user-role assignment  
1

1

Gura =<
1

1

Gu ,
1

1

Gr > is established, then the user 
1

1

Gu  can 

invoke all the three global services },,{
1

3

1

2

1

1

GGG  . 

 

4.7.2 Definitions on MAC Interceptor 

In order to support the FSICC’s security requirement 4 (see Section 3.1) and the MAC 

Interceptor, we first define the level of security enforcement checks that are required for MAC.  

The MAC model (Bell & La Padula, 1976) has a set of properties, namely, Simple Security (SS), 

Simple Integrity (SI), Liberal* (L*), and Strict* (S*) that has both Read and Write capabilities. 

Such properties are defined to determine under which conditions a user with a CLR level can read 

or write a given data item with a CLS level.  For the purposes of FSICC, this is focused on whether 

a user with a CLR level can invoke a write service (i.e., Create, Update, or Delete) or a read service 

(i.e., Read) with a CLS level that is part of a global service permission. Now we explain the way 

that MAC properties are used in FSICC. First, SS property (or read-down, no read-up) is the 

permission to invoke a read service that has an equal or lower CLS level. That is, a user is allowed 

to invoke a Read service with a CLS level equal to or lower than their CLR level, but not those 

Read services with a higher CLS level. Second, SI property (or write-down, no write-up) is the 

permission to invoke a write service that has an equal or lower CLS levels.  

That is, a user can invoke a Create, Update, or Delete service of equal or lower CLS level when 

compared to their CLR level, but not to those Create, Update, or Delete services with a higher CLS 

levels. Third, L* property (or write-up, no write-down) is the permission to invoke a write service 

that has an equal or greater CLS level (the opposite of SI). Forth, S* Write property (or write equal) 

is the permission to invoke a write service that only has an equal CLS level. Finally, S* Read 

property (or read equal) is the permission to invoke a read service that only has an equal CLS level. 

From a definition and management perspective, an Security engineer of FSICC would set the 
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CLR level of users following the predefined sensitivity levels (e.g., TS, S, C, and U - see Defn. 

10) to establish the levels for both users and services. These levels are then augmented on a user-

by-user basis by assigning the ability to invoke a read service (via SS or S* Read properties) and 

the ability to invoke a write service (via SI, L*, or S* Write properties).   

 

In support of the FSICC’s security requirement 4 (see Section 3.1), this section presents 

definitions for the MAC interceptor.  Definitions 53 to 56 introduce concepts on MAC read/write 

properties and an enforcement check that the MAC interceptor utilizes to enforce the global MAC 

policy.  

Defn. 53: Available MAC properties: There are four properties: Simple Security (SS), Simple 

Integrity (SI), Liberal* (L*), Strict* (S*) that has both Read and Write capabilities. The SS 

property allows a user to invoke a read service iff the user’s CLR is equal or higher than 

the CLS of the read service. The SI property allows a user to invoke a write service iff the 

user’s CLR is equal or higher than the CLS of such a service. The L* property allows a 

user to invoke a write service iff the user’s CLR is equal or below the CLS of such a service. 

The S* Write property allows a user to invoke a write service iff the user’s CLR is equal 

to the CLS of such a service. The S* Read property allows a user to invoke a read service 

iff the user’s CLR is equal to the CLS of such a service. 

Defn. 54: User Assigned MAC Properties: The Security engineer is responsible for 

assigning each user one read property (SS or S* Read) and one write property (SI, L*, or 

S* Write).  
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Defn. 55: MAC Enforcement Check: For a global resource, iG , a user i

U G
Gu can invoke a 

Read, Create, Update, or Delete global service 
iG

i  iff the CLR of u satisfies established 

MAC properties (Definitions 53 and 54).  

 

Given Definitions 53 and 54, we revise Defn. 15v2 as below: 

Defn. 15: (v3) A user, u, is defined as five-tuple = MACW RMACRDCLRNAMEID uuuuuu ,,,, , where 

MACRDu  is SS or S* Read and MACW Ru  is SI, L*, or S* Write (Defn. 53). 

 

Example 4.9: Consider a Global Resource G1 that has a user ,John,TS>=<uG 1
1

1  and three global 

services: a Create service 
1

1

G =< SNewRxgs gs

SIG ,,, 1111  >, a Read service 
1

2

G =< SAllRxgs gs

SIG ,,, 1212 

>, and a Read service 
1

3

G =< CfillCangs gs

SIG ,,Re, 1313  >, and suppose that the Security engineer 

established two MAC properties (SS, SI) on 
1

1

Gu , then the user 
1

1

Gu  can invoke all the three 

global services, since the CLR level (TS) of 
1

1

Gu  is greater than all CLS levels (S, S, and C) of 

services (
1

1

G , 
1

2

G , and
1

3

G ), respectively. 

 

Defn. 56: The MAC Interceptor of FSICC is a programmatic security enforcement check 

utilizing Definitions (53, 54 and 55) that is able to determine at runtime if the requested 

API call on a global service can be executed for a user with a CLR (Defn. 15v3) and 

limited by a Read/Write properties combination (Defn. 54). 

  
 

4.7.3 Definitions on DAC Interceptor 
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In support of the FSICC’s security requirement 3 (see Section 3.1), this section presents 

definitions for the DAC interceptor. Definitions 57 to 60 provide three enforcement checks that 

the DAC interceptor utilizes to enforce the global DAC policy.  

Defn. 57: Delegated User-Delegated Role Enforcement Check: For a global resource, Gi, a 

delegated user duID ϵ G
i
UG can utilize a delegated role drID ϵ G

i
RG iff the entry < ouID, duID, 

drID> exists in the Delegation Set Gi
DSG.   

Defn. 58: Delegated User-Delegated Role Permission Enforcement Check: For a global 

resource, Gi, a delegated user duID ϵ G
i
UG can utilize a delegated role permission drpID

 iff 

the entry < ouID, duID, drpID> exists in the Delegation Set Gi
DSG. 

Defn. 59: Delegated User- Delegated Clearance Enforcement Check: For a global resource, 

Gi, a delegated user duID ϵ G
i
UG can utilize a delegated clearance dcID ϵ G

i
RG along with the 

associated read/write properties iff the entry < ouID, duID, dcID> exists in the Delegation 

Set Gi
DSG. 

Defn. 60: The DAC Interceptor of FSICC is a programmatic security enforcement check 

utilizing Definitions 57-59 that is able to determine at runtime if the requested API call 

on a global service can be executed for a delegated user duID. 

 

Example 4.10: Consider a Global Resource G1 that has: two users ,John>=<uG 1
1

1  and 

,Ali>=<uG 2
1

2 ; and a role = n,GPhysiciarG 1
1

1  in which the resource delegation set 1

CDSG  has 

an entry {
1

1

Gd } with =
1111

1211 ,, GGGG ruud , then the user 
1

2

Gu can utilized all the global permissions 

that are authorized to 
1

1

Gr . 
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4.8 Related Work on Access Control for Cloud Computing 
 

In this section, we review a number of related works on access control for cloud computing, 

comparing and contrasting their work to our approach in this chapter. We classify these related 

efforts into two main groups: the first group of three efforts involves data-based RBAC in a cloud 

setting while the second group of three efforts involves RBAC in a cloud setting at an API level.  

The first effort (Tang, Wei, Sallam, Li, & Li, 2012)  proposed an RBAC model with an owner 

role to enable the data owner to grant a user access to their data and to update the owner data in 

cloud, with a user role. Our work on UCCACM is similar to this effort since both works involve 

definitions for RBAC and DAC that can be utilized to restrict users access in the cloud. However, 

while our UCCACM provides MAC based capabilities to secure sensitive services, their effort 

does not consider the need for controlling users access based on sensitivity levels (MAC).  

The second effort (Wang Z. , 2011) proposed a cloud-based RBAC that authorizes permissions 

to data in cloud with roles that assigned to cloud users. This is accomplished by two main 

algorithms: the User Role Assignment and the Role Permissions Assignment. To further control 

sensitive data, this effort enables a cloud user to disable/enable roles that are authorized to such 

sensitive data. The main common aspect between this effort and our work on UCCACM is that 

both works utilize RBAC to control user access in the cloud. However, regarding more sensitive 

data/services, their effort utilizes it approach that disable/enable roles while in UCCACM we 

utilize a more advanced technique with sensitivity levels (MAC).  

The third effort (Takabi, Joshi, & Ahn, 2010) proposed a security framework for cloud 

computing environments that has an access control module that protects a provider’s data in cloud 

using classic RBAC. Our work on UCCACM is similar to this effort since both works involve 

definitions for RBAC that can be used to restrict users access in the cloud. However, while our 
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UCCACM provides MAC and DAC based capabilities to secure sensitive services, their effort 

does not consider the need for controlling users access based on sensitivity levels (MAC) and 

delegation (DAC).  

The fourth effort (Sirisha & Kumari, 2010) proposed an API-based RBAC model for cloud 

services that defines permissions against cloud services where permissions are authorized to roles 

that are assigned to users. This effort is similar to our work on UCCACM since both works define 

permissions against cloud API (cloud services). However, our UCCACM is more fine-grained 

since permissions are assigned to different CRUD methods of cloud services, while their effort 

allows/denies access to all CRUD methods.   

The fifth effort (Wonohoesodo & Tari, 2004) proposed a Web Service (SOAP)-based RBAC 

model in which a role assigned to a service consumer is authorized to both a SOAP service and a 

parameter of a SOAP service with an access mode (e.g., read, write, execute, modify, and delete). 

The main common aspect between this effort and our work on UCCACM is that both works utilize 

RBAC to restrict the way that users can access services. However, while their effort is dedicated 

to SOAP-based services, the permissions in UCCACM can be defined and enforced on any type 

of cloud or web services such as SOAP and REST. 

The last effort (Feng, Guoyan, Hao, & Li, 2004) also proposed a Service (SOAP)-Oriented 

RBAC model that authorizes SOAP services to roles that can be assigned to users, where when a 

user activates a role, an Actor is created that enables the user to access SOAP services authorized 

to the role. Although this effort introduced the role activation by users, this effort basically is 

similar to our work on UCCACM since both works utilize RBAC to restrict access to services. 

However, their effort is more focused on SOAP-based services, while in UCCACM the 
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permissions can be defined and enforced on any type of cloud or web services such as SOAP and 

REST. 

Overall, our work on UCCACM contrasts with the three first efforts by focusing on defining 

permissions against cloud services as opposed to data. Regarding the last three efforts, their work 

differs from UCCACM since none of these efforts utilizes sensitivity levels (MAC) or delegations 

(DAC) to restrict access to the services. 
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Chapter 5 

Architectural Blueprints to Facilitate Interoperability and 

Information Exchange of Clients and Systems 
 

As presented in Section 1.4 of Chapter 1, an integration layer was defined as a standard API 

that converts data from a system or client into a common data format to facilitate information 

exchange. Such a common data format can be utilized by other systems and clients, within a 

framework like FSICC, to easily exchange data. An integration layer exists with an 

integration framework (IFMWK) which is a set of standards and associated technologies that allow 

different systems to interact with one another utilizing one common data format. The associated 

technologies allow integration servers to be designed and implemented to facilitate the exchange 

of information using the common data format via a set of shared services via an integration layer. 

The integration framework facilitates the interactions of clients and systems with one another in 

FSICC by providing a common layer to allow clients and systems to interact with one another. 

The common layer of IFMWK can be used to map to and from cloud, programming, or web 

services. To accomplish this mapping, we assume that the integration framework IFMWK has an 

available implementation that can be utilized to generate dedicated IFMWK servers for two-way 

mapping and exchange as needed. The FHIR standard presented in Section 2.3 of Chapter 2 and 

its HAPI FHIR reference implementation, which has a set of resources in XML, JSON, RDF, and 

Turtle that are a common data representation with associated services for CRUD and searching, is 

an example of an integration framework (FHIR) and its implementation (HAPI). 

As described in Chapter 1, the interactions and integration of clients and systems with the 

Framework for Secure and Interoperable Cloud Computing (FSICC), as shown in Figure 1.1, can 

be defined from a client perspective and from a system perspective.  From a system perspective, 
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each system, which corresponds to the Systems box in the Involved Parties component at the 

topmost of Figure 1.2 from Chapter 1, needs to create an integration layer API in front of their 

API, and modifies their security policy to be defined against the integration layer API. This 

integration layer corresponds to the Architectural Blueprints in Figure 1.3. Architectural 

Blueprints, the main focus of this chapter, are guidelines that define the way of placing and 

creating an integration layer for a systems or client to allow such them to exchange data with 

other systems and clients in one common data format. There are three Architectural Blueprints 

options as shown in Figure 1.2: a Basic Architecture option that includes a IFMWK server that 

works directly with the App repository and IFMWK servers of other systems; an Alternative 

Architecture option that includes a IFMWK server that works directly with the App RESTful API 

and IFMWK servers of other systems; and, a Radical Architecture option that removes the 

repository and has IFMWK servers for the App API and the other systems.  Once a blueprint option 

has been chosen and applied, each system is able to register: the system’s name, the integration 

layer API, and the security policy into FSICC. This is done using the Systems Registry box in the 

middle of Figure 1.1, which corresponds to the Registration and Services Mapping box of the 

Generation of Global Policy and Services component in Figure 1.2.  Based on the integration layer 

of registered systems, the security engineer of the FSICC creates a global API.  This corresponds 

to the Global Services box of the Generation of Global Policy and Services component in Figure 

1.2, which is an integration layer in which clients may utilize such a global API via FSICC. Each 

of the different alternatives of the architectural blueprints process the means to integrate the 

services of a system so that can easily map to/from the global services.  

From a client perspective, each client, which corresponds to the Clients box in the Involved 

Parties component at the topmost of Figure 1.2, creates an integration layer API at the top of Figure 
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1.1 in front of its API. Clients, like systems, may require an architectural blueprint option to 

integrate with FSICC, particularly in the case where it is a mixed client, see Defn. 6 in Section 4.2 

of Chapter 4.  With or without a blueprint, each client is able to register: the client’s name into the 

FSICC, using the Clients Registry box, and reconfigure the client integration layer API to call the 

global API of FSICC, see Figure 1.1.  The integration layer that can be created by systems, clients, 

and FSICC is the technology that facilitates the bi-directional mapping and exchange of 

information: between clients’ applications and global services of FSICC; and, between systems’ 

services and global services of FSICC.  

The architectural blueprints presented in this chapter have a strong interaction with UCCACM 

as was shown in the top portion of Figure 1.3 from Chapter 1. UCCACM has four definitions 

that are directly related to architectural blueprints. Definitions 41 to 44 involve, respectively: the 

mapping of clients and systems that provide services to global resources in FSICC in Defn. 41; the 

set of all of the global resources that were mapped from clients and systems in Defn. 42; the 

mapping of the services of the APIs from clients and systems to the global services APIs of FSICC 

in Defn. 43; and, the set of all of the global APIs for all clients and systems in Defn. 44. The 

architectural blueprints that enable clients and systems to provide an API that is conducive to being 

integrated via UCCACM into FSICC which is facilitated using the mappings of Definitions 41 to 

44. This chapter explores and examines three architectural blueprints options, Basic 

Architecture, Alternative Architecture, and Radical Architecture, for design and development 

processes that can be followed to integrate an mHealth, web, or desktop application utilizing 

FHIR to multiple HIT systems via FSICC. The work in this chapter supports expected 

contribution EC-A: Architectural Blueprints for Supporting FSICC from Section 1.5, this is 

represented by the Architectural Blueprints box at the top of Figure 1.3.  
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The remainder of this chapter is organized into a five-part discussion. In Section 5.1, we 

explore four issues that must be understood for an application of FSICC to support a discussion 

of the architectural blueprint options: the overall architecture of the application; the involved 

technologies that can be used to develop the application; the source code availability of the 

application, APIs, server code, or database; and, the allowable access to system sources.  In 

Section 5.2, we examine the three different Architectural Blueprint options, namely, Basic, 

Alternative, and Radical, for integrating an application to multiple HIT systems via FSICC, 

utilizing an integration framework, IFMWK, with examples provided using FHIR.  In Section 

5.3, we present Architectural Blueprints for each of the three options that illustrates the way that 

the options can be realized using IFMWK, including the various phases and steps that are 

required. In Section 5.4, we explore a complex example that utilizes the Alternative and Radical 

Architectural Blueprint options prototype applied to the healthcare scenario from Section 2.4 of 

Chapter 2 via FHIR as an IFMWK and HAPI as a server. In Section 5.5, we discuss two related 

works in the literature that explain alternative ways that FHIR can be implemented to integrate 

healthcare systems and/or applications in different settings. Note that the work in this chapter 

has been published in (Baihan, M., et al., 2018) (Ziminski, T., Demurjian, S., Sanzi, E., Baihan, 

M., & Agresta, T., 2017). 

 

5.1 Issues that Impact Interoperability 
 

In this section, we explore the different characteristics and components of an application and 

its interaction with multiple mixed clients and pure or mixed systems via FSICC and as a result 

define for issues that impact interoperability. The four issues  are: the overall architecture of the 

application with respect to tiers of functionality of mixed clients and pure or mixed systems such 
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as one-tier, two-tier, and three-tier architectures, etc.; the involved technologies that are utilized by 

different mixed clients and pure or mixed systems such as RESTful APIs, programmatic APIs, 

database API, etc.; the source code availability of the mixed clients and pure or mixed systems 

such as the app, APIs, server code, or database; and, the allowable access to the mixed clients and 

pure or mixed systems via RESTful APIs, programmatic APIs, etc.  Each is discussed in turn.  

The first issue that impacts interoperability choices is the overall architecture of the application 

with respect to tiers of functionality of mixed clients and pure or mixed systems such as one-tier, 

two-tier, and three-tier architecture, etc. That is, in order to integrate a mixed client or pure or 

mixed system, via FSICC, one must understand its architecture. In general, there are three different 

architectures: one-tier, two-tier, and three-tier. In a one-tier architecture, the client/system would 

contain all of the components of the client/system including: user interface (the presentation layer); 

user request processing (the business layer); and the repository (the data layer). In a two-

tier architecture, the client/system would have the user interface (the presentation layer) while user 

request processing (the business layer) and the repository (the data layer) are hosted in a separate 

server. In a three-tier architecture, the client/system would only have the user interface (the 

presentation layer) with the user request processing (the business layer) hosted by a separate server 

through an API and the repository (the data layer) hosted in another separate (third) server.  Note 

that the repository in all three cases may in turn interact with another layer but from the perspective 

of the architectural blueprints options, this will be hidden. Also note that for the two and three tier 

architectures, the middle request processing layer might involve access to multiple separate APIs. 

For the purposes of this dissertation, the mixed clients and pure or mixed systems are client 

mHealth apps or system HITs. The second issue that impacts the choice of an integration option is 

the involved technologies that are utilized by different mixed clients and pure or mixed systems 
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such as RESTful APIs, programmatic APIs, database API, etc. These technologies can be utilized 

by a mixed client or pure or mixed system to make external integration with FSICC possible. The 

programmatic API of a client/system is a set of definitions for functions or methods of that 

application, where an external application may call an API to perform an application’s method 

without the knowledge of the actual code of such a method. A repository API is similar to the 

programmatic API, however, the functions or methods of such API perform operations over 

repository items that may be in a database or some other option. A RESTful API is a set of 

definitions for methods of an application. Such an API is designed based on the REST architecture 

(Fielding, 2000) which utilizes Hypertext Transfer Protocol (HTTP) requests to interact with the 

data of a client/system.  Cloud services are the APIs that define the way that cloud consumers can 

access and utilize cloud computing resources such as software. These cloud services can be 

designed using web services such as Representational State Transfer (REST), Simple Object 

Access Protocol (SOAP), etc. 

The third issue that impacts the choice of an integration option is the source code availability 

of the mixed clients and pure or mixed systems such as the app, APIs, server code, or database. 

Since a client/system can be developed based on different architectures (as described in issue 1), 

it is crucial to consider the availability of source code of components such as the app, APIs, server, 

or repository. Specifically, the source code of the client/system is the code that is used to 

implement: the user interface component and the methods that interacting with any external 

servers. The API’s source code is the code that is utilized to map the application’s methods to an 

abstract set of calls that an external source can invoke. The server code is the code that is used to 

implement the business logic of the application. The repository source code is the source file or 

database schema and any code that is used to access data in such a repository. Some of the 
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architectural blueprint options require access to source code in order to make limited programmatic 

changes to support the integration. The intent is to try to minimize these changes when attempting 

to integrate an app with multiple mixed clients and pure or mixed systems via FSICC, in order to 

have little or no impact on existing code. 

The fourth and final issue that impacts the choice of an integration option is the allowable 

access to the mixed clients and pure or mixed systems via RESTful APIs, programmatic APIs, etc. 

This enables external applications to be integrated with such mixed clients and pure or mixed 

systems. The ability to integrate these various API and services seamlessly with an integration 

framework such as HAPI FHIR is critical to support the different integrations options presented in 

this chapter. Recall in the introduction to this chapter, we defined an integration framework, 

IFMWK, as a set of standards and associated technologies that allow different systems to interact 

with one another utilizing one common data representation. The associated technologies allow 

integration servers to be designed and implemented to facilitate the exchange of information using 

the common data representation via a set of shared unified services.  The FHIR standard is one 

example of an integration framework which has a set of resources in XML, JSON, RDF, and Turtle 

that are a common data representation with associated services for CRUD and searching.  The 

HAPI FHIR reference implementation is the associated technology that implements the FHIR 

framework that uses CRUD services; as a result, it is possible to develop a FHIR server as a means 

to support integration. In summary, the exact configuration of each of the four aforementioned 

issues (overall architecture, involved technologies, source code availability, and allowable access 

to mixed clients and pure or mixed systems) has a direct impact on the different available options 

that can be utilized via an integration framework such as HAPI FHIR to integrate a particular 

application architecture and multiple mixed clients and pure or mixed systems via FSICC. 
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5.2 Application Integration Options 
 

 

In this section, we enumerate a number of different Application Integration Options to allow 

an application to send/receive data with multiple mixed clients and pure or mixed systems, via 

FSICC, by the creation of integration servers.  To begin, Figure 5.1 contains an architecture of an 

App (a client/system), its RESTful API, and its repository along with three systems (OpenEMR, 

OpenMRS, and a PHR such as MTBC (MTBC, 2016)). Note that while we use health information 

technology (HIT) in the example, the integration options and blueprints work for any IT system 

from any domain. The different components in Figure 5.1 define three architectural blueprint 

options that illustrate the alternate ways that the App can be integrated with the systems, via 

FSICC, based on the four issues previously discussed in Section 5.1 (overall architecture, involved 

technologies, source code availability, and allowable access to client/system).  In order to facilitate 

the integration of multiple systems with one another, we utilize the previously integration 

framework, IFMWK, to accomplish this mapping, we assume that the integration framework 

IFMWK has an available implementation that can be utilized to generate dedicated IFMWK 

servers as needed. Note that the aforementioned FHIR standard and its HAPI FHIR reference 

implementation correspond to the sample of an integration framework and its implementation. 

Using this discussion as a basis, in this section, we present three architectural blueprint options: a 

Basic Architecture option that includes an IFMWK server that works directly with the App 

repository and IFMWK servers for OpenEMR, OpenMRS, and PHR; an Alternative Architecture 

option that includes an IFMWK server that works directly with the App RESTful API and IFMWK 

servers for OpenEMR, OpenMRS, and PHR; and, a Radical Architecture option that removes the 
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repository and has IFMWK servers for the App API, OpenEMR, OpenMRS, and PHR. Note that 

the HITs that are shown (OpenEMR, OpenMRS, and PHR) are illustrative and in practice, a 

generalized version could have one or more systems via FSICC,  but for explanation purposes we 

utilize   three HIT systems. Note that in the rest of this chapter, we use the term HIT systems as 

follows. HIT is referring to health information technology such as EMRs and PHRs, and systems 

is referring to pure or mixed systems as discussed in Defn. 7 of Section 4.2. 
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Figure 5.1. App and HIT Systems. 

 

 

The Basic Architecture option is shown in Figure 5.2a, where the assumption is made that:  

direct access to the app repository is available; and, the source codes of app, RESTful API, 

OpenEMR and OpenMRS HIT systems and their APIs are available.  In Figure 5.2a, at the bottom, 

there are IFMWK servers, see the ovals in Figure 5.2a, to load/store data from OpenEMR, 

OpenMRS and PHR (named OpenEMR.IFMWK, OpenMRS.IFMWK, and PHR.IFMWK) using 

their APIs (a third tier) into selected IFMWK resources; and an App.IFMWK server to load/store 

data from the App repository, at the top of Figure 5.2a.  Basically, each HIT systems requires an 

IFMWK server (e.g., OpenEMR.IFMWK) to extract data to/from HIT via IFMWK resources that 

in turn interacts with the App.IFMWK server of the App repository.  Interactions from the App 

via its RESTful API are not impacted; also, the App RESTful API to the App repository. However, 
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to enable the App to take advantage of the HIT systems, two new IFMWK services 

App.IFMWK.LOAD and App.IFMWK.STORE are defined. The App.IFMWK.LOAD service  

retrieves all of the data from either OpenEMR, OpenMRS, or the PHR in the IFMWK format.  

This App.IFMWK.LOAD service  takes the JSON IFMWK from the HIT.IFMWK (e.g., 

OpenEMR.IFMWK) server and add them into the App repository via an App IFMWK service, 

which converts the IFMWK format into App repository format.  This allows all of the App 

RESTful API calls to use this temporary data. The App.IFMWK.STORE service  extracts   data 

from the App repository, via an App IFMWK service, which coverts App repository format into 

IFMWK format and adds them into the OpenEMR, OpenMRS, or the PHR repository. The 

App.IFMWK.LOAD and App.IFMWK.STORE services require source code availability of the 

repository in order to make the needed calls to stage data back and forth from HIT sources.  Note 

that the App.IFMWK.LOAD and App.IFMWK.STORE services may also be periodically called 

to ensure that the repositories at both sides are updated. In this way, the App, API, and repository 

are not modified. Figure 5.2b presents a customized Basic Architecture applied to the healthcare 

domain where the FHIR framework is used as an example of an integration framework for 

healthcare, where all IFMWKs in Figure 5.2a is replaced by FHIR in Figure 5.2b. 
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Figure 5.2a. Basic Architecture with Direct Database Access using IFMWK. 
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Figure 5.2b. Basic Architecture customized with FHIR for IFMWK. 

 

In the second option, shown in Figure 5.3a, the situation is similar to the basic option in Figure 

5.2a, except that there is no direct access to the app repository. Thus, the App.IFMWK server on 

the App side is moved in order to directly interact with the App RESTful API. There are still the 

HIT.IFMWK servers for OpenEMR/OpenMRS/PHR as in Figure 5.3a. In this option, the App 

continues to use the App RESTful API without change. However, the App.IFMWK.LOAD and 

App.IFMWK.STORE services transition to become part of the App RESTful API. That is, each 

App.IFMWK.READ service of the App RESTful API first calls the App.IFMWK.LOAD service, 

which takes an id of the queried instance and: retrieves the related data from OpenEMR, 

OpenMRS, or PHR via their IFMWK server.  The second call adds retrieved data into the App 

repository via another App IFMWK API service using the App.IFMWK.CREATE service. This 

requires slight programmatic changes and source code availability (third issue of Section 5.1).  The 
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next step in the process calls the App.IFMWK.READ service of the App RESTful API which 

retrieves the related data from the App repository (which is updated with the new data from the 

HIT system). Similarly, each App.IFMWK.CREATE service of the App RESTful API first adds 

the related data into the App repository.  Then, the App.IFMWK.CREATE service of the App 

RESTful API calls the STORE service, which takes the newly added data from the App repository 

via another App.IFMWK API service (i.e., a App.IFMWK.READ service) and adds them into the 

OpenEMR, OpenMRS, or the PHR database, via their IFMWK service. Note that, in this way, 

while the App and its calls to the App.IFMWK.RESTful API are not modified, there is a single 

call is added to either the App.IFMWK.LOAD or App.IFMWK.STORE services RESTful API. 

This requires source code availability of the RESTful API. Figure 5.3b presents a customized 

Alternative Architecture applied to the healthcare domain where the FHIR framework is used as 

an example of an integration framework for healthcare, with all of the IFMWKs in Figure 5.3a is 

replaced by FHIR in Figure 5.3b. 
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Figure 5.3a. Alternative Architecture with App RESTful API Access using IFMWK. 
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Figure 5.3b. Alternative Architecture customized with FHIR for IFMWK. 

 

In the Radical Architecture, shown in Figure 5.4a, the situation is the same as the alternative 

option of Figure 5.3a, but alters the tiers by removing the repository (database). As a result, this 

option is a more drastic and involves replacing the App repository and so that it now   totally relies 

on the HIT systems.   This option would move and reconfigure all of the App data under the control 

of the HIT system to store and manage all data. This requires a total rewrite of the code for the 

App RESTful API with the strong requirement that all service signatures remain unchanged so as 

not to impact the App.  In this case, every rewritten App RESTful API service implements a 

App.IFMWK service to directly call OpenEMR.IFMWK, OpenMRS.IFMWK, or PHR.IFMWK 

as required to load/store data as needed. In the Radical Architecture, the services defined are: 

App.IFMWK.CREATE, App.IFMWK.READ,  App.IFMWK.UPDATE,  and 

App.IFMWK.DELETE.  Source code availability and changing the APIs may be required. This 

approach is clearly time and effort prohibitive. Figure 5.4b presents a customized Radical 

Architecture applied to the healthcare domain, where the FHIR framework is used as an example 

of an integration framework for healthcare, with all of the IFMWKs in Figure 5.4a is replaced by 

FHIR in Figure 5.4b. 
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Figure 5.4a. Radical Architecture without a Database using IFMWK. 
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Figure 5.4b. Radical Architecture customized with FHIR for IFMWK. 

 

5.3 Integration Steps and Processes of Architectural Blueprints 
 

This section presents a discussion of the steps and processes that are necessary to develop the 

various IFMWK servers illustrated in Figures 5.2a, 5.3a, and 5.4a for the Basic, Alternative, and 

Radical options.   The end result is set of guidelines for the architectural blueprints for the 

integration of an App application, via a App.IFMWK server that integrates with the App RESTful 

API, with multiple HIT systems, via FSICC, and a HIT.IFMWK server that integrates with the 

APIs of OpenEMR, OpenMRS, and PHR.  The   guidelines presented in this section provides   

stakeholders with a process to integrate an App with multiple HIT systems via FSICC using 

IFMWK servers.  This section details the blueprints for the Basic, Figure 5.2.a, Alternative, Figure 

5.3.a, and Radical, Figure 5.4.a, architectures. All three of these architectures blueprints share the 
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common HIT.IFMWK blueprint which involves defining the HIT system data items to be 

sent/received and designing a HIT.IFMWK server to facilitate the exchange. The three 

architectures have their own specific needs, namely, the App.IFMWK server required at the App 

side Repository in Figure 5.2.a, the App.IFMWK server in Figure 5.3.a, and rewriting the App 

RESTful API in Figure 5.4.a with a App.IFMWK server. Note that while we are using an HIT 

system and the health care domain, this is generalizable to any IT system and associated domain. 

To begin, the common HIT IFMWK Blueprint involves defining the HIT system data items to 

be sent/received back and forth via a set of Identified IFMWK Resources to another IFMWK 

server or client, and designing a HIT IFMWK server (HIT.IFMWK) with a RESTful API to 

facilitate the exchange. The processes of each step that are the guidelines are as:  

1. Define the HIT system data items (i.e., for the HIT repositories in Figures 5.2.a, 5.3.a, and 

5.4.a) that are needed to be exchanged to/from the App. This step consists of four sub-steps:    

a. Identify each single candidate data item (e.g., “patient name” table field) in the HIT 

repository that are accessible via an HIT API.  

b. For each candidate data item: 

▪ Provide a short and clear item name: by reviewing the IFMWK resources, identify 

a IFMWK resource, and mapping the candidate data item to the most comparable 

data item of the identified IFMWK Resource.  

▪ For the candidate data item, if there is no similar item’s name for the identified 

IFMWK resource, identify an item of a IFMWK resource that has the same datatype 

as the candidate data item. 



118 
 

▪ Provide a brief description that explains the mapping for the case where there is a 

comparable IFMWK data item and more importantly, the case where there is only 

a comparable IFMWK data type.  

c. Group multiple related HIT system data items (e.g., patient name and patient gender) into 

a separate and distinct data abstraction (e.g., patient entity). This would make mapping to 

an Identified IFMWK Resource clearer by finding the most similar IFMWK resource’s 

name. 

d. End Result: A set of Identified IFMWK Resources that map to the HIT data entities and 

items. 

2. Design an HIT.IFMWK server in front of the HIT system API in two sub-steps:  

a. A HIT.IFMWK server is designed for all of the Identified IFMWK Resources in Step 1d 

that defines a IFMWK API that has CRUD operations for all of the Identified IFMWK 

Resources and interacts with the HIT API.  

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the HIT. 

▪ Create an HIT.IFMWK.Controller class that receives requests from the App (or any 

other system) and forwards each request to the appropriate Identified IFMWK 

Resource class based on the universally unique identifier (UUID) of an Identified 

IFMWK Resource.  

▪ Create a class for each Identified IFMWK Resource that receives requests from the 

IFMWK controller class and performs the requested CRUD service. This class is 

defined for each Identified IFMWK Resource as HIT.IFMWK.IFRCName where 

IFCRName is the Identified IFMWK Resource Class name.  This class implements 

four main CRUD services: 
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• A HIT.IFMWK.IFRCName.Create service that stores an instance of a 

IFMWK resource from an external call from another IFMWK server to 

create and store new data into the HIT repository. This service takes the data 

in as a IFMWK Resource and then converts the data into a format that can 

be stored in the HIT repository via a call to one or more HIT API services. 

This effectively stores IFMWK Resource data into the HIT repository. For 

example, OpenEMR.IFMWK.Patient (the Patient IFMWK Resource) 

would call the service of an OpenEMR API that stores the data into the 

Patient_data table of OpenEMR’s MySQL database. 

• A HIT.IFMWK.IFRCName.Read service that is a request for an instance of 

a IFMWK resource from an external call from another IFMWK server that 

to read existing data from the HIT repository.  This service takes the request 

for a IFMWK Resource that requires a call to one or more HIT API services 

to retrieve the data from the HIT and create an instance of an Identified 

IFMWK Resource to send back. For example, OpenEMR.IFMWK.Patient 

(the Patient IFMWK Resource) would call the service of an OpenEMR API 

that reads the data from the Patient_data table and perhaps other tables of 

OpenEMR’s MySQL database and creates a FHIR Patient instance. 

• An HIT.IFMWK.IFRCName.Update service that receives an instance of a 

IFMWK resource from an external call from another IFMWK server to 

update existing data into the HIT repository. This service takes the data in 

as a IFMWK Resource and then converts the data into a format that can be 
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stored in the HIT repository via a call to one or more HIT API services that 

update an existing instance.   

• A HIT.IFMWK.IFRCName.Delete service that receives a request to 

remove one or more instances (based on the parameters in the request) of a 

IFMWK resource from an external call from another IFMWK server to  

delete existing data from the HIT repository. This service takes the request 

for a IFMWK Resource and interprets the request to call one or more HIT 

API services to delete instance(s).   

 

Note that for healthcare and similar domains in practice, there may be a desire to not implement 

either HIT.IFMWK.IFRCName.Update or HIT.IFMWK.IFRCName.Delete services since in 

electronical medical records, incorrect data is not deleted, but is marked as incorrect.  For example, 

an incorrect laboratory test result assigned to the wrong patient can be marked as not valid. 

The Basic Architecture Blueprint, Figure 5.2.a, allows information from the App repository to 

be sent/received back and forth via a set of Identified IFMWK Resources to another IFMWK 

server or client by designing an App IFMWK server (App.IFMWK) with a RESTful API to 

facilitate the exchange. There are three main steps to the guideline: define the App data items, 

design the App IFMWK server with the LOAD and STORE services, and reuse the HIT IFMWK 

guideline:  

1. Define the App data items (i.e., App repository tables’ fields in Figure 5.2.a)   needed to be 

exchanged with an HIT system. This step consists of four sub-steps in which the first three 

processes are identical to the processes of Step 1 of the HIT IFMWK Blueprint with the data 
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items now referring to the App data items as opposed to the HIT data items.  

End Result: A set of Identified IFMWK Resources that map to the App data items. 

2. Design the App IFMWK server which consists of the App.IFMWK.LOAD and 

App.IFMWK.STORE services.  This step has two sub-steps.   

a. A App.IFMWK.LOAD service that calls “read” services of an HIT.IFMWK to retrieve 

(in IFMWK format) all of the new added data from the  HIT repository. Then, the 

App.IFMWK.LOAD service converts the retrieved IFMWK resources into a format 

that can be stored into App repository via App repository API. This read occurs upon 

startup to initialize the App repository with information from HITs. 

b. A App.IFMWK.STORE service that calls App repository API to retrieve all of the new 

added data in App repository and converts  into the IFMWK format. Then, the 

App.IFMWK.STORE service simply forwards the converted data to appropriate 

HIT.IFMWK.CREATE services which add the new data into the HIT repository. This 

store occurs when the mobile app closes to update the HIT repository with information 

from App repository. 

3. Employ the HIT IFMWK Blueprint. 

Recall that the Basic Architecture has access to the source code of the repository. There may be 

more than one way to access the repository via Web/cloud services, an API (as with OpenEMR), 

or by direct programmatic access to the repository (e.g., a MySQL database). As a result, 

App.IFMWK.LOAD and App.IFMWK.STORE services would utilize one of these access modes 

in conjunction with calls to HIT.IFMWK CRUD services (e.g., OpenEMR.IFMWK.Patient.Read) 

and take the result of these calls for the identified IFMWK resources, and parse and put this 

information to/from App repository.   



122 
 

The Alternative Architecture Blueprint, Figure 5.3.a, also communicates with the common HIT 

IFMWK Blueprint as previously described in the last step of the Alternative Architecture blueprint. 

There are four main steps to the Alternative Architecture guideline: define the App data items and 

design the App IFMWK server (similar to the one in the Basic Architecture Blueprint), design the 

LOAD and STORE services, and reuse the HIT IFMWK Blueprint. The processes of each step are 

similar to the ones of the Basic Architecture guideline of Figure 5.2.a:  

1. Define the App data items (i.e., App repository tables’ fields in Figure 5.3.a) that are needed 

to be exchanged with an HIT system. This step consists of four main processes in which the 

first three processes are identical to the processes of Step 1 of the HIT IFMWK Blueprint with 

the data items now referring to the App data items as opposed to the HIT data items.  

End Result: A set of Identified IFMWK Resources that map to the App data items. 

2. Design an App.IFMWK server in front of the App RESTful API in two sub-steps:  

a. A App.IFMWK server is designed for all of the Identified IFMWK Resources in Step 

1d that defines a IFMWK API that has CRUD operations for all of the Identified 

IFMWK Resources and interacts with the HIT.IFMWK server.  

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the 

App repository. 

▪ A App.IFMWK.IFRCName.Create service that stores an instance of a IFMWK 

resource from an external call from another IFMWK server to create and store new 

data into the App repository. This takes the data in as a IFMWK Resource and then 

converts the data into a format that can be stored in the App repository via a call to 

one or more App RESTful API services. This effectively stores IFMWK Resource 
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data into the App repository. This would be similar to the OpenEMR example for 

the HIT.IFMWK server. 

▪ A App.IFMWK.IFRCName.Read service that is a request for an instance of a 

IFMWK resource from an external call from another IFMWK server that to read 

existing data from the App  repository.  This takes the request for a IFMWK 

Resource that requires a call to one or more App RESTful API services to retrieve 

the data from the App repository and create an instance of an Identified IFMWK 

Resource to send back. This would be similar to the OpenEMR example for the 

HIT.IFMWK server. 

▪ An App.IFMWK.IFRCName.Update service that receives an instance of a IFMWK 

resource from an external call from another IFMWK server to update existing data 

into the App  repository. This takes the data in as a IFMWK Resource and then 

converts the data into a format that can be stored in the App repository via a call to 

one or more App RESTful API services, updating an existing instance.   

▪ A App.IFMWK.IFRCName.Delete service that receives a request to remove one or 

more instances (based on the parameters in the request) of a IFMWK resource from 

an external call from another IFMWK server to delete existing data from the App  

repository. This takes the request for a IFMWK Resource and interprets the request 

to call one or more App RESTful API services to delete instance(s).   

These App.IFMWK CRUD services are called by the App API in order to send information 

back and forth in a IFMWK format that can then be shifted to the HITs via the 

App.IFMWK.LOAD and App.IFMWK.STORE operations defined in Step 3. 
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3. Design the App.IFMWK.LOAD and App.IFMWK.STORE services. These two services are 

located between the App.IFMWK server and any HIT system IFMWK server and have sub-

steps.  The HIT.IFMWK CRUD services are used to support these functions. 

a. A App.IFMWK.LOAD service that calls “read” services of an HIT.IFMWK to 

retrieve (in IFMWK format) the new added data into HIT system. Then, the 

App.IFMWK.LOAD service simply forwards the retrieved data to “create” services 

of App.IFMWK which adds the new data into the App repository. This read occurs 

when the App.IFMWK.IFRCName.Read is called to update the App repository 

with information from HITs. 

b. A App.IFMWK.STORE service that calls “read” services of the App.IFMWK to 

retrieve (in IFMWK format) the new added data in App repository. Then, the 

App.IFMWK.STORE service simply forwards the retrieved data to “create” 

services of HIT.IFMWK which adds the new data into the HIT repository . This 

store occurs after the App.IFMWK.IFRCName.Create is called to update the HIT 

repository with information from App repository. 

4. Employ the HIT IFMWK Blueprint. 

Note that in practice, there may be a desire to not implement either 

App.IFMWK.IFRCName.Update or App.IFMWK.IFRCName.Delete since in electronical 

medical records, incorrect data is not deleted, but is marked as incorrect.  In this case, we may not 

want the App to propagate incorrect data into the HIT systems. 

Finally, the Radical Architecture Blueprint, Figure 5.4.a, has three main steps: define the App 

data items, redesign the App RESTful API, and communicate the IFMWK HIT Blueprint. The 

processes of these steps in this guideline are: 
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1. Define the App data items, see Figure 5.4.a, that are needed to be exchanged with an HIT 

system. This step consists of four main processes in which the first three processes are identical 

to the processes of Step 1 of the HIT IFMWK guideline with the data items now referring to 

the App data items as opposed to the HIT data items.  

End Result: A set of Identified IFMWK Resources that map to the App data items. 

2. Redesign the App RESTful API to implement App.IFMWK server in two sub-steps:  

a. App.IFMWK server is designed for all of the Identified IFMWK Resources in Step 1d that 

defines a IFMWK API that has CRUD operations for all of the Identified IFMWK 

Resources and interacts with the HIT.IFMWK.  

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the App. 

▪ A App.IFMWK.IFRCName.Create service that receives the new data from the 

App, converts it into a format that can be assigned to a IFMWK resource, creates 

an instance of the IFMWK resource, and populates the IFMWK resource with the 

converted data. After that, this service calls the HIT.IFMWK.IFRCName.Create 

service with the IFMWK resource as a parameter. 

▪ A App.IFMWK.IFRCName.Read service that receives the id of a IFMWK resource 

from the App,  invokes the HIT.IFMWK.IFRCName.Read service with the id as a 

parameter. After receiving the result in IFMWK format, this service converts the 

result into a format that can be used by the App and sends it to the App. 

▪ An App.IFMWK.IFRCName.Update service that is similar to the 

App.IFMWK.IFRCName.Create service, however, this service updates the existing 

data.   
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▪ A App.IFMWK.IFRCName.Delete service that receives the id of a IFMWK 

resource from the App, calls the HIT.IFMWK.IFRCName.Delete service.   

3. Employ the HIT IFMWK Blueprint. 

Note that for healthcare and similar domains in practice, there may be a desire to not invoke either 

App.IFMWK.IFRCName.Update or App.IFMWK.IFRCName.Delete services for the same issue 

discussed above.  Also note that there is no need for LOAD and STORE in this Radical option 

since there is no repository remaining on the App side of Figure 5.4.a. 

In summary, there are a number of observations to make regarding the IFMWK CRUD, LOAD, 

and STORE services.  The CRUD services are defined to manipulate a single IFMWK resource 

that interacts with either the App Repository or the HIT system in order to take information in 

IFMWK format and convert it back and forth into the format of the data items in the 

Repository/HIT.  This requires creating, reading, updating or deleting to/from the Repository/HIT 

using the respective API.  For the read service on a particular resource, the information is retrieved 

using services of the API in the native format of the Repository/HIT and converted to the common 

format of the IFMWK resource so that it can be delivered through the IFMWK.READ service.   

For the update service on a particular resource, the resource comes in the common format and the 

update service would extract out the data items so that they can be assembled to call the appropriate 

Repository/HIT API services.  The create and delete services would work in a similar fashion. The 

LOAD and STORE services differ in that they deal with multiple IFMWK resources.  For STORE, 

a set of IFMWK resources is passed in via a common format and these resources are extracted and 

assembled to allow multiple API services to be called to store the information in the destination 

format of the Repository or HIT system.  For LOAD, multiple API services from the 

repository/HIT are called to gather information that is then converted and assembled into the 
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appropriate IFMWK resources.  The resource concept of IFMWK facilitates information 

exchange.  However, there is still extraction/conversion required to transition the data from the 

source to the sharable IFMWK format. 

 

5.4 Blueprint Prototype Applied to the Healthcare Scenario 
 

This section presents a proof-of-concept prototype that demonstrates the ability of a select 

subset of the Blueprints from Sections 5.2 and the usage of the corresponding guidelines in Section 

5.3, that can be applied to the healthcare scenario from Section 2.4. This is by applying the 

blueprint process on two integration cases: (case 1) integrate the CT2 mHelth app into the 

OpenEMR HIT system via FSICC (Chapter 3); and (case 2) integrate the ShareMyHealth 

mHelth app into the MyGoogle HIT system via FSICC (Chapter 3). In the process, we fully 

illustrate the application of two of the three architectures blueprints (Basic, Alternative, Radical) 

and the HIT IFMWK blueprint to the two integration cases above. The end result of this process 

is that the CT2 and ShareMyHealth client Apps are able to utilize the services of the OpenEMR 

and MyGoogle systems, respectively, via the global services of the FSICC. The remainder of 

this section is organized into two parts. In Section 5.4.1, we detail the rational of the chosen 

architectural options for integrating the two mHelth apps into the two HIT systems (cases 1 and 

2) using: the Alternative architecture to integrate CT2 app into OpenEMR, see Figure 5.3b in 

Section 5.2; and the Basic architecture to integrate ShareMyHealth app into MyGoogle, see Figure 

5.2b in Section 5.2. Then, in Section 5.4.2, we apply the three architectural options and associated 

guidelines of Section 5.3 to describe the integration steps and processes for integration cases 1 and 

2. 

 

5.4.1 Integrating Architectural Options for CT2 and ShareMyHealth 
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This section explains the rationale that influenced the selection of the most suitable integration 

option for the two mHealth apps/clients CT2 and ShareMyHealth and two HIT systems 

OpenEMR and MyGoogle for the three architecture options, Basic Figure 5.2, Alternative Figure 

5.3, Radical Figure 5.4, discussed in Section 5.2. Note that we made an assumption that the FSICC 

has already been built and published its own IFMWK server (FSICC.FHIR) so that different apps 

and systems can integrate via the FSICC FHIR server. To begin, for the CT2 mHealth app (case 1), 

the Alternative architecture was chosen and reconfigured, as shown in Figure 5.5, based on a 

number of reasons. First, we had significant human knowledge of the CT2 mHealth app and 

RESTful API and maintain the MySQL database. Second, we had the source code available for: 

the App, the RESTful API, and the MySQL database. This meant that we had the ability to do any 

of the three architectural options, but we chose the Alternative architecture we were able to 

maintain the processing and flow of the CT2 app through the RESTful API to the database. To 

apply the Alternative architecture, two FHIR servers, as shown in Figure 5.5, are created: one for 

the CT2 RESTful API (CT2.FHIR) and another one for the OpenEMR API (OpenEMR.FHIR). 

These two FHIR servers are utilized for exchanging data between CT2 and OpenEMR via FSICC. 

Moreover, from the CT2 App’s perspective, the signatures of the services of the CT2 RESTful APIs 

remained unchanged, while from the CT2 API’s perspective, the interaction with the app and the 

database remained unchanged. For example, when a user interacts with the CT2 App to view and 

modify a concussion incident for a student, the process transitions from the user request to an API 

call to a database access to a returned concussion incident. The only change in the process is at the 

start when a user requests a concussion incident for the student and at the end when a user stores 

the modified concussion incident for a student. In both situations, the FHIR server of the CT2 

RESTful API intercepts and retrieves/stores the concussion incident to OpenEMR via FSICC. 
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When the incident is loaded from OpenEMR.FHIR via FSICC.FHIR, a temporary copy is made in 

the CT2 database and all of the changes that occur via the RESTful API are made to the database 

on that temporary copy. The final store sends the temporary copy through the CT2.FHIR and 

FSICC.FHIR servers to OpenEMR.FHIR. We decided against the Radical Architecture since we 

didn’t want to make the substantial changes that would be required to migrate all of the information 

in the CT2 database to OpenEMR. This would have included registration information, permissions 

(who can see/modify which concussion incidents), etc., that would have been difficult to directly 

store in OpenEMR.   
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Figure 5.5. Alternative Architecture for Integrating CT2 into OpenEMR via FSICC. 

 
For case 2, the Basic architecture was chosen and reconfigured for the ShareMyHealth (SMH) 

mHealth app as shown in Figure 5.6. For the SMH app, the source code is available for: the app, 

the RESTful API, and the repository. Based on this, we are able to utilize any of the three 

architectural options. However, we decide to apply the Basic architecture since we want to keep 

the SMH’s architecture unchanged as much as we can. To apply the Basic architecture two FHIR 

servers as shown in Figure 5.6 are created: one for the SMH repository (SMH.FHIR) and another 

one for the MyGoogle API (MyGoogle.FHIR). These two FHIR servers, in addition to 
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FSICC.FHIR server, are utilized for exchanging data between SMH and MyGoogle via FSICC. 

The Basic architecture also requires SMH to create two services into FHIR: SMH.FHIR.LOAD 

which retrieves related data from MyGoogle, via FSICC.FHIR, in the FHIR format; and, 

SMH.FHIR.STORE which grabs the data from the SMH repository, via an SMH FHIR service, 

and sends them to MyGoogle via FSICC.FHIR. These two services are meant to be periodically 

called to ensure that the repositories at both sides are updated. Note that interactions from both the 

SMH via its RESTful API and the SMH RESTful API to the SMH repository are not changed   The 

Alternative and Radical architectures are not suitable for the same reason stated for case 1.   
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Figure 5.6. Basic Architecture for Integrating SMH into MyGoogle via FSICC. 

 

 

5.4.2 Applying Integration Steps and Processes 

 
In this section, we apply the guidelines of the Blueprint of Sections 5.2 and 5.3 to enumerate 

the integration steps and processes for integration cases 1 and 2 from Section 5.4.1. For case 1 in 

Section 5.4.1, we know that we need to integrate the CT2 mHelth app into the OpenEMR HIT 

system via FSICC, see Figure 5.5, using two blueprints: the Alternative architecture to create 
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the CT2.FHIR server, and the HIT FHIR blueprint to create OpenEMR.FHIR server. First, the 

steps of the Alternative architecture from Section 5.3 can be reformulated as: 

1. Define the CT2 mHealth data items from the CT2 that need to be exchanged with 

OpenEMR via FHIR to yield the Identified FHIR resources for CT2. 

2. Design a CT2.FHIR server in front of the CT2 RESTful API. 

3. Design  CT2.FHIR CRUD services (CT2.FHIR.IFRCName.Create, 

CT2.FHIR.IFRCName.Read, CT2.FHIR.IFRCName.Update, and 

CT2.FHIR.IFRCName.Delete) in addition to CT2.FHIR.LOAD and CT2.FHIR.STORE 

services that extend the CT2 RESTful API so that the exchange via FHIR can occur 

with OpenEMR.  

4. Employ the HIT FHIR Blueprint. 

Then for the HIT FHIR blueprint, the two steps can be reformulated as: 

1. Define the OpenEMR system data items that are needed to be exchanged to/from the 

CT2 mHealth app via FHIR to yield the Identified FHIR resources for OpenEMR. 

2. Design an OpenEMR.FHIR server in front of the OpenEMR system API. 

The main focus for both of these blueprints is in Step 1 of each which focuses on the way to identify 

the data items that need to be exchanged from each side via FHIR.  This requires a designer to 

understand the correspondence between two sets of information: 

• The data items of the CT2 concussion MySQL database and the relevant FHIR resources 

that can be chosen to store them. 

• The data items of the OpenEMR MySQL database and the relevant FHIR resources that 

can be chosen to store them. 
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The challenge is to consider these correspondences simultaneously to understand the way that the 

data items of the concussion app can be mapped via FHIR resources to the data items of OpenEMR.  

The end result is a set of Identified FHIR resources that serves as the common layer to facilitate 

the exchange of data between CT2 and OpenEMR via FHIR services.  

To begin this analysis process, in Step 1 of the Alternative Architecture Blueprint from Section 

5.3, we start by identifying the four key data items of CT2 mHealth that are in four tables of the 

MySQL Concussion database, namely: the Students table that tracks basic information on students 

(e.g., demographics, school, etc.); the  Incidents table that tracks information on the concussion 

incident (e.g., when concussion happened, initial symptoms, etc.); the Incident_Locations table 

that tracks where the concussion occurred (e.g., at school, at sports field, at home, etc.); and, the 

Incident_Lingering_Symptoms table that tracks concussion symptoms observed in the days 

following the concussion (e.g., dizzy, nauseous, etc.). These four tables are shown in Figure 5.7. 

 
Figure 5.7. CT2 Data Items of Interest. 

 

Given the understanding of this information, we can continue the analysis process with Step 2 

of the Alternative Architecture Blueprint in Section 5.3 to determine the Identified FHIR 
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Resources that can be utilized to capture the information from Figure 5.7.  To track concussion 

data on a student, we can use the FHIR resources (Health Level 7, Fast Health Interoperable 

Resources, 2016) as shown in Figure 5.8. The Identified FHIR Resources are: Patient, Condition, 

Encounter, and Observation. Specifically: Patient to track demographic and other basic 

information on patients (students that suffer concussions); Condition to track a medical condition, 

in our case a concussion; Encounter to track the different times that changes are made, in our case, 

as the concussion incident is tracked over time such as lingering symptoms; and Observation to 

track symptoms and lingering symptoms of patients (students).  Examining the MySQL tables of 

the CT2 database in comparison to the aforementioned FHIR resources, we can establish a 

correspondence or mapping between them as shown in Figure 5.9.  In this mapping of CT2 database 

MySQL tables  FHIR resources we have: students  Patient; incidents  Condition; 

incident_lingering_symptoms  Observations; and incident_locations Encounter. 
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Figure 5.8. FHIR Resources of Interest. 
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Figure 5.9. Mapping from CT2 to/from FHIR. 

 

Now, let’s turn the discussion to Steps 1 and 2 of the HIT FHIR Blueprint from Section 5.3 that 

involves an analogous process to Figures 5.7, 5.8, and 5.9, with the data items of OpenEMR.  Since 

we have already arrived at the FHIR resources needed for mapping, Figure 5.8, we can reuse the 

aforementioned Identified FHIR Resources to assist in the identification of the appropriate four 

data items in OpenEMR in Figure 5.10, namely: the Patient_Data table that tracks patient (student) 

demographic data; the Lists table that tracks issues related to medical problems, etc. (concussion 

medical problem);  the Form_Encourter table that tracks the event involved with the patient 

visiting (student seeing nurse); and, the Procedure_Order_Code table that tracks different codes 

associated with procedures. These four items correspond to the FHIR Resources as shown in 

Figure 5.11. This mapping has: Patient_data  Patient; Lists  Condition; procedure_order_code 

 Observations;  and form_encounter Encounter. 
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Figure 5.10. The OpenEMR Data Items of Interest. 
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Figure 5.11. Mapping from OpenEMR to/from FHIR. 

 

The last step of the HIT FHIR Blueprint is the creation of the OpenEMR.FHIR server. As 

described in the HIT FHIR Blueprint and based on the selected FHIR resources in the provisos 

steps, we created a FHIR controller class which receives requests from the CT2 mHealth app, or a 

third-party such as FSICC, and sends the request to the appropriate OpenEMR FHIR resource class 

along with any parameters. We also created four OpenEMR Identified FHIR resources classes 

(i.e., Patient, Condition, Observation, and Encounter) as shown in the bottom right of Figure 5.12. 

For each OpenEMR FHIR resources classes, we defined: OpenEMR.FHIR.IFRCName.Create and 

OpenEMR.FHIR.IFRCName.Read). The OpenEMR.FHIR.IFRCName.Create service receives an 

instance of a FHIR resource that involves new data, of a specific class, converts the data into a 
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format that can be stored in the OpenEMR system, and sends the converted data to a create service 

of the OpenEMR system API that  stores the data into the OpenEMR database. The 

OpenEMR.FHIR.IFRCName.Read service retrieves data from the OpenEMR database via a read 

service of the OpenEMR system API, creates a new instance of the specific FHIR resource class, 

and converts the retrieved data into a format that can be assigned to the identified OpenEMR FHIR 

resource instance. Following that, this service populates the corresponding OpenEMR FHIR 

resource instance with the converted data, and sends this FHIR resource instance to the CT2 

mHealth app, or a third-part such as FSICC. This service is also designed to retrieve all of the 

related data on the specific data item if there are no passed parameters.   

Finally, the remaining step of the Alternative Architecture Blueprint in Section 5.3 is to 

implement the CT2.FHIR server. As described in the Alternative Architecture Blueprint and based 

on the selected FHIR resources, we created a FHIR controller class which receives requests from 

the CT2.FHIR.LOAD and CT2.FHIR.STORE services; and sends the request to the appropriate 

CT2 FHIR resource class along with any parameters. We also created four CT2 Identified FHIR 

resources classes (i.e., Patient, Condition, Observation, and Encounter) at the top right of Figure 

5.12 shows. For each of these CT2 FHIR resources classes, we created two main CRUD service, 

CT2.FHIR.IFRCName.Create and CT2.FHIR.IFRCName.Read and CT2.FHIR.LOAD and 

CT2.FHIR.STORE services. The CT2.FHIR.IFRCName.Create service receives an instance of a 

FHIR resource with new data, converts the data into a format that can be stored in the CT2 database, 

and sends the converted data to the CT2 RESTful API (a create service) which stores the data into 

the CT2 database. The CT2.FHIR.IFRCName.Read service retrieves data from the CT2 database 

via a CT2 RESTful API (a read service), creates a new instance of related CT2 FHIR resource class, 

and converts the retrieved data into a format that can be assigned to the CT2 FHIR resource 
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instance. After that, the CT2.FHIR.IFRCName.Read  populates the CT2 FHIR resource instance 

with the converted data, and finally sends this FHIR resource instance to the request source. The 

CT2.FHIR.IFRCName.Read  service also retrieves all of the related data about specific data item 

if there are no passed parameters. The CT2.FHIR.LOAD service takes an id of the queried 

CT2.FHIR resource instance, retrieves the related data from the OpenEMR system via 

OpenEMR.FHIR and FSICC.FHIR servers, and adds retrieved data into the CT2 database via 

another CT2 FHIR service (i.e., the CT2.FHIR.IFRCName.Create service). Finally, the 

CT2.FHIR.STORE service calls the CT2.FHIR.IFRCName.Read service to retrieve (in FHIR 

format) all of the new added data in CT2 database. Then, the CT2.FHIR.STORE service simply 

sends the retrieved data to “create” services of OpenEMR.FHIR, via the FSICC.FHIR server, 

which adds the new data into the OpenEMR system. 
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Figure 5.12. Combined Result of the Two Blueprints. 
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From Section 5.4.1, we know that, for case 2, we need to integrate the SMH mHelth app into 

the MyGoogle HIT system via FSICC, see Figure 5.6, using: the Basic architecture blueprint to 

create the SMH.FHIR server, and the HIT FHIR blueprint to create MyGoogle.FHIR server. 

First, the steps of the Basic architecture can be reformulated as: 

1. Define the SMH mHealth data items from the SMH’s repository that need to be 

exchanged with MyGoogle via FHIR to yield the Identified FHIR resources for SMH. 

2. Design a SMH.FHIR server in front of the SMH repository that includes the two service 

SMH.FHIR.LOAD and SMH.FHIR.STORE  so that the exchange via FHIR can occur 

with MyGoogle.  

3. Employ the HIT FHIR Blueprint. 

Then, for the HIT FHIR blueprint, the two steps can be reformulated as: 

1. Define the MyGoogle system data items that are needed to be exchanged to/from the 

SMH mHealth app via FHIR to yield the Identified FHIR resources for MyGoogle. 

2. Design an MyGoogle.FHIR server in front of the MyGoogle system API. 

Similar to case 1, we start by performing Step 1 of the Basic Architecture Blueprint. Specifically, 

we identify the three key data items of SMH mHealth that are in three tables of the SMH repository, 

namely: the Measurements table that tracks fitness data of each patient (e.g., height, weight, steps, 

etc.); the Patients table that tracks basic information on patients (e.g., demographics, gender, etc.); 

and, the Users table that holds information on SMH’s users (e.g., user_id, user_name, etc.). These 

three tables are shown in Figure 5.13. 
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Figure 5.13. SMH Data Items of Interest. 

 

Given the understanding of this information, we can continue the analysis process with Step 2 

of the Basic Architecture Blueprint to determine the Identified FHIR Resources that can be utilized 

to capture the information from Figure 5.13. To track measurement data on a patient we can use 

the FHIR resources as shown in Figure 5.14: Observation, Patient, and User. Specifically: 

Observation to track measurement of patients; Patient to track demographic and other basic 

information on patients; and, User to maintain users’ data.  Examining the tables of the SMH 

repository in comparison to the aforementioned FHIR resources, we can establish a 

correspondence or mapping between them as shown in Figure 5.15. In this mapping of SMH 

repository tables  FHIR resources, we have: Measurements  Observation; Patients  Patient; 

and Users  User. 

Patient
Id

Name.given

Name.given

Name.family

Telecom

Observation
Id
Note
Type
Value
Issued

Users

Id
Name
Note

 
Figure 5.14. FHIR Resources of Interest. 
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Figure 5.15. Mapping from SMH to FHIR. 

 

For the HIT FHIR Blueprint, we now discuss Steps 1 and 2 that are similar to the processes in 

Figures 5.13, 5.14, and 5.15, with the data items of MyGoogle.  Since we have already arrived at 

the FHIR resources needed for mapping, Figure 5.14, we can reuse the aforementioned Identified 

FHIR Resources to assist in the identification of the appropriate three data items in MyGoogle in 

Figure 5.16, namely: the DataSources table that tracks fitness data of each patient (e.g., height, 

weight, steps, etc.); the Patients table that tracks patient demographic data; and, the Users table 

that holds about MyGoogle users. These three items correspond to the FHIR Resources as shown 

in Figure 5.17. In the mapping of MyGoogle data items  FHIR resources we have: DataSources 

 Observation; Patients  Patient; and Users  User. 
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Figure 5.16. MyGoogle Data Items of Interest. 
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Figure 5.17. Mapping from MyGoogle to FHIR. 
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The last step of the HIT FHIR Blueprint is the creation of the MyGoogle.FHIR server. As 

described in the HIT FHIR Blueprint and based on the selected FHIR resources in the provisos 

steps, we created a FHIR controller class which receives requests from the SMH mHealth app, or 

a third-party such as FSICC, and sends the request to the appropriate MyGoogle FHIR resource 

class along with any parameters. We also created three MyGoogle Identified FHIR resources 

classes (i.e., Patient, Observation, and User) as shown in the bottom left of Figure 5.12. For each 

of these MyGoogle FHIR resources classes, we defined: MyGoogle.FHIR.IFRCName.Create and 

MyGoogle.FHIR.IFRCName.Read). The MyGoogle.FHIR.IFRCName.Create service receives an 

instance of a FHIR resource that involves new data, of a specific class, converts the data into a 

format that can be stored in MyGoogle system, and sends the converted data to a create service of 

the MyGoogle system API that  stores the data into the MyGoogle database. The 

MyGoogle.FHIR.IFRCName.Read service retrieves data from the MyGoogle database via a read 

service of MyGoogle system API, creates a new instance of the specific FHIR resource class, and 

converts the retrieved data into a format that can be assigned to the identified MyGoogle FHIR 

resource instance. Following that, this service populates the corresponding MyGoogle FHIR 

resource instance with the converted data, and sends this FHIR resource instance to the SMH 

mHealth app, or a third-part such as FSICC. This service is also designed to retrieve all of the 

related data on the specific data item if there are no passed parameters.   

Finally, the remaining step of the Basic Architecture Blueprint is to implement the SMH.FHIR 

server. As described in the Basic Architecture Blueprint and based on the selected FHIR resources, 

we created a FHIR controller class which receives requests from the SMH.FHIR.LOAD and 

SMH.FHIR.STORE services and sends the request to the appropriate SMH FHIR resource class 

along with any parameters. We also created three SMH Identified FHIR resources classes (i.e., 
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Patient, Observation, and User) at the top left of Figure 5.12 shows. Then, we created the two 

services: SMH.FHIR.LOAD and SMH.FHIR.STORE. The SMH.FHIR.LOAD service retrieves 

all related data from the MyGoogle system via MyGoogle.FHIR and FSICC.FHIR servers, and 

adds retrieved data into the SMH repository. Finally, the SMH.FHIR.STORE service retrieves, in 

FHIR format, all of the new added data in SMH repository. Then, the SMH.FHIR.STORE service 

simply sends the retrieved data to “create” services of MyGoogle.FHIR, via the FSICC.FHIR 

server, which adds the new data into the MyGoogle system. 

Note that the FSICC.FHIR, middle of Figure 5.12, has five resources: Observation, Patient, 

Encounter, Condition, and User. These resources were selected as a result of FHIR resources 

selection of both sides: CT2 and OpenEMR require Observation, Patient, Encounter, and Condition 

FHIR resources on the right side of Figure 5.12; and, SMH and MyGoolge require Observation, 

Patient, and User FHIR resources on the left side of Figure 5.12. Also note that the role of 

FSICC.FHIR server simply is to send the FHIR instances back and forth between the associated 

clients and systems. That is, between CT2 and OpenEMR FHIR servers on one side; and between 

SMH and MyGoogle FHIR servers on the other side. 

 

 

 

 

 
5.5 Related Work 
 

This section reviews two efforts that illustrate FHIR design and implementation: enabling better 

interoperability for healthcare (Kasthurirathne, Mamlin, Kumara, Grieve, & Biondich, 2015) and 

applying FHIR in an integrated health monitoring system (Franz, Schuler, & Kraus, 2015).  The 

work in (Kasthurirathne, Mamlin, Kumara, Grieve, & Biondich, 2015) provided a new API module 
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for OpenMRS system that has been built using FHIR. The processes of designing and developing 

the OpenMRS FHIR API included: design a framework that assists in adding FHIR-based API for 

OpenMRS; select a third party FHIR library to implement FHIR resources creation and validation; 

develop a FHIR-based API for the OpenMRS system; and, implement the search service of a 

number of FHIR resources that are capable of retrieve data from the OpenMRS system. The 

architecture of the presented FHIR module consists of two layers: the FHIR web layer which 

mainly retrieves FHIR resources from the FHIR API layer and the FHIR API layer that basically 

models and validates FHIR resources. The initial prototype of the FHIR controller interacted with 

the Patient and Observation resources with a middle layer that transitions information to/from 

OpenMRS. This effort is similar to our work on architectural blueprints guidelines as both works 

presented steps to design and develop an integration framework in front of systems that 

facilitates system interoperability. However, their effort was focus on the FHIR standard, and 

as a result is limited to the healthcare domain and only highlighted the main steps of 

implementing a HAPI FHIR API without providing a detailed discussion on such steps. 

Furthermore, their effort presented an integration option, similar to our Radical Architecture 

Blueprint, that   extended OpenMRS system with FHIR API. In contrast to this effort, our 

approach provided detailed steps and process of designing and implementing an integration 

framework that can be applied to any integration framework of any domain including FHIR and 

HAPI FHIR.  

The work of (Franz, Schuler, & Kraus, 2015) presented an extension to a health monitoring 

system using FHIR to enable interoperability between medical devices and HIT systems. The 

health monitoring system consists of an aggregation manager module which is a mobile device 

and a telehealth service center module which is a server. These two modules were extended by 



144 
 

adding components, which are implemented using FHIR, to enable their integration. The 

aggregation manager module was extended with two services: FHIROBSMessageSender which 

sends the measured data as Observation FHIR resource to the telehealth service center module; 

and, FHIRDORMessageSender that sends DeviceObservationReport FHIR resource to the 

telehealth service center module. The telehealth service center module was extended with two 

services: OBSController and DORController which receive Observation and 

DeviceObservationReport FHIR resources respectively from the aggregation manager module. 

This effort is similar to our work on architectural blueprints guidelines as both works successfully 

applied and implemented an integration framework to extend different systems and make such 

systems more interoperable. However, this effort discussed only one integration option, similar to 

our Alternative Architecture Blueprint, that was specific to the reported effort. In contrast, our 

approach provided a generalizable integration framework that can be applied to any integration 

framework of any domain including FHIR and HAPI FHIR.  
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Chapter 6 

Global Security Policy Generation and Dynamic Enforcement for 

FSICC 
 

In this chapter, we discuss GSP (Global Security Policy) Generation and GAPI (Global API) 

Generation and Global Security Policy and Global API Utilization and Security Enforcement which 

was shown in the 4th and 5th  horizontal  boxes, respectively, in Figure 1.3 of Chapter 1.  As 

described earlier in Chapter 3, the global security policy of FSICC is generated by cloud 

computing capability two, Local Security Policies Registration to Yield Global Security Policy, of 

FSICC, that utilizes two components of FSICC: Security Policy Mapping, see the Security Policy 

Mapping box of FSICC in Figure 1.1 form Chapter 1; and Global Security Policy, see the Global 

Security Policy box of FSICC in Figure 1.1. Specifically,  capability two of FSICC enables any 

system, which corresponds to the Systems box in the Involved Parties component at the top of 

Figure 1.2, to register the system’s security policy that can be any combination of RBAC, MAC, 

and DAC, which corresponds to the Access Control Models component in Figure 1.2. For RBAC, 

the system registers to provide: the defined roles, the defined services, the role-services 

authorization list, the role hierarchy, the defined users, the user-role assignment list. For MAC, 

the system registers  to provide: the defined services along with a classification for each service; 

and the defined users in which each user has a clearance, a read property and a write property. 

Finally, for DAC, the system registers to provide: the role delegation list and the clearance 

delegation list. In further support of this chapter, we utilize the Unified Cloud Computing 

Access Control Model (UCCACM), from Chapter 4, which has a set of definitions for global 

security policy generation and utilization (see Defns. 41-48 in Section 4.6). These definitions 

ensure that such global security policy can control access to a set of global services that are 
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generated using one or more of integration architecture blueprints: Basic Architecture, 

Alternative Architecture, or Radical Architecture from Chapter 5. In addition, from the 

enforcement perspective to check whether applications are allowed to call particular services, 

UCCACM has definitions for RBAC interceptors (see Defns. 50-52 in Section 4.7.1), MAC 

interceptors (see Defns. 53-56 in Section 4.7.2), and DAC interceptors (see Defns. 57-60 in Section 

4.7.3). 

Based on this, this chapter has two main parts. The first part presents a set of algorithms for 

generating the global security policy of FSICC; this partially addresses Contribution EC-C: 

Security Mapping/Enforcement Algorithms and SSEP, from Section 1.5, by focusing on Security 

Mapping/Enforcement Algorithms, this is represented by the Global Security Policy Generation 

box of the GSP (Global Security Policy) Generation and GAPI (Global API) Generation horizontal 

box in Figure 1.3 from Chapter 1. To support this, we present a set of algorithms to implement 

the concepts of global security policy definition and mapping of services to/from mixed clients 

and pure and mixed systems.  These algorithms support: global RBAC generation, global MAC 

generation, global DAC generation, and global policies combination. The second part introduces 

and discusses three security interceptors for RBAC, MAC, and DAC (which are the 

implementation of the UCCACM for the FSICC) via a number of checks and an algorithmic 

approach for each interceptor; this addresses Contribution EC-D: Dynamic Enforcement via 

Intercepting Process from Section 1.5, this is represented by the Security Enforcement via 

Interceptors box of the GSP (Global Security Policy) and GAPI (Global API) Utilization and 

Security Enforcement horizontal box in Figure 1.3. This is accomplished by presenting a set of 

programmatic RBAC, MAC, and DAC interceptors, which are the implementation of the 

definitions in Section 4.7 for UCCACM, that intercept any request to access FSICC’s global 
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services, that are generated using one or more of integration architecture blueprints from 

Chapter 5. To support this, a number of security interceptors (i.e., RBAC Interceptor, MAC 

Interceptor, and DAC Interceptor) are presented to enforce such global security policy on the 

users’ access requests.  

     In the remainder of this chapter, we discuss Global Security Policy Generation and Dynamic 

Enforcement for FSICC in three sections. In Section 6.1, a set of security policy integration 

algorithms are presented and discussed for: global RBAC generation, global MAC generation, 

global DAC generation, and global policies combination.  In Section 6.2, we demonstrate the 

realization of UCCACM of FSICC in HAPI FHIR utilizing the healthcare scenario of Section 2.4 

of Chapter 2 that involves the implementation of HAPI FHIR APIs and its server interceptor to 

support UCCACM checks with three different algorithms to support three different HAPI FHIR 

interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. Moreover, the interceptor 

discussions are supported by two access scenarios. Section 6.3 presents and discusses related work 

in both security policy integration and enforcing security policies on FHIR API. Note that the 

work in this chapter has been published in (Baihan, M., et al., 2017).  

 

6.1. Security Policy Integration Algorithms 
 

To start this discussion, Figure 6.1 shows architecture for global security policy generation and 

utilization (see Defns. 37-44 of Section 4.6). The global security policy generation process consists 

of four main phases: generating global RBAC, see the RBAC Integration and Review & Correct 

Role Names boxes in the middle of Figure 6.1, generating global MAC, see the MAC Integration 

and Building Global MAC boxes in the middle of Figure 6.1, generating global DAC, see the DAC 

Integration box in the middle of Figure 6.1, and global policies combination. Pure and mixed 

systems (see Defn. 7 of Section 4.2) at the bottom of Figure 6.1 and mixed clients (see Defn. 6 of 
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Section 4.2) at the top left of Figure 6.1 use the global security policy generation process to add 

their security policies and services into the FSICC as indicated by the dash lines in the figure. Pure 

clients and mixed servers are free to utilize the global security policy to call authorized services as 

indicated by the solid lines in Figure 6.1.  The generating global RBAC phase has two tasks.  First, 

RBAC integration takes all of the RBAC policies from pure and mixed systems and mixed clients 

(dashed lines) and through the RBAC Integration box combines them into one RBAC policy. 

Second, review and correct role names, which corrects and updates the name of a number of global 

roles through the RBAC Integration box to the Review and Correct Role Names box. Using input 

from the FSICC’s security engineer in conjunction with the two tasks, then the global RBAC 

instance, the Global RBAC Instance cylinder in the middle of Figure 6.1 is generated. 

The generating global MAC phase also has two tasks.  First, MAC Integration requires human 

interaction to map sensitivity levels of pure and mixed systems and mixed clients (dashed lines) via 

the MAC Integration box in Figure 6.1 to the sensitivity levels of the global MAC. Second, global 

MAC is designed and constructed, in which users and services of the system are utilized to generate 

the global MAC in which users’ clearances and services’ classifications are assigned based on the 

global sensitivity levels (solid line) from the MAC Integration box to the Building Global MAC 

box.  Using input from the FSICC’s security engineer, the global MAC instance via the Global 

MAC Instance cylinder in the middle of Figure 6.1 is generated. The generating global DAC phase 

has one main task. DAC integration takes all of the DAC policies from pure and mixed systems and 

mixed clients (dashed lines) to the DAC Integration box in Figure 6.1 and combines them into one 

DAC policy and then generates the global DAC instance via the Global DAC Instance cylinder in 

the middle of Figure 6.1. Finally, in the last phase, the Combine Global Security Policies Instances 

box in the middle of Figure 6.1 combines the generated global RBAC instance, global MAC 
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instance, and global DAC instance into one global security policy model instance, in which the data 

updating and retrieving actions are also controlled.  To complete the process, the security engineer 

of FSICC insures that all of the policy requirements are define that are capable of controlling the 

services of pure and mixed clients and mixed systems via the solid lines to the Global Security 

Policy Model Instance cylinder in Figure 6.1. 
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Figure 6.1. An Architecture for Global Security Policy Generation & Utilization 

The remainder of this section presents and discusses a set of algorithms and human process for 

the Global Security Policy Generation in four parts.  In Section 6.1.1, we discuss the way that the 

global RBAC generation phase processes each RBAC policy from each pure or mixed system or 

mixed client, and generates the global RBAC policy. In Section 6.1.2, the global MAC generation 

phase is presented to show the way that each MAC policy from each pure or mixed system or mixed 
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client is processed to generate the global MAC policy. Section 6.1.3 explains the way that the global 

DAC generation phase uses to process each DAC policy from each pure or mixed system or mixed 

client and to generate the global DAC policy. Finally, in Section 6.1.4, we describe the way that the 

global policies combination phase uses the global RBAC policy, global MAC policy, and global 

DAC policy to build the global security policy. Note that in the rest of this section we  use the term 

“system” to indicate pure systems, mixed systems (services registering part) and mixed clients 

(services registering part), and the term “client” to indicate pure clients, mixed clients (services 

utilization part) and mixed systems (services utilization part). 

 

6.1.1 Global RBAC Generation 

The Global RBAC (GRBAC) Generation phase is divided into two tasks, each of which consists 

of one or more algorithms:  RBAC Integration in Figure 6.1; and, Review and Correct Role Names 

in Figure 6.1. First, the RBAC Integration task, integrates any number of systems’ RBAC policies 

into one global RBAC policy that can be utilized to restrict access to services of all of the 

participated systems, where the presented approach makes policy integration decisions based on 

permissions similarity. Since each system may define an RBAC policy against a common set of 

services (the integration layer e.g., FHIR in HITs case), the similarity between two systems’ RBAC 

policies, or between a system’s RBAC policy and a global RBAC policy, can be determined based 

on the similarity of the permissions. For the purposes of our examples, assume that we have two 

roles Srs and Grg where  Srs ϵ {
S

i

RS ,
C

i

RC }  is a role of  a pure or mixed system or a mixed client and 

Grg ϵ 
G

i

RG  is a global role. Further, assume that there are two corresponding role permission sets 

Srpss ϵ { i

RPSS
S , i

RPSC
C }  and Grpsg  ϵ i

RRPSG
G .  For example, say Srs authorized to permissions Srpss 
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={(Patient, READ),  (Patient, CREATE)}, and Grg authorized to permissions  Grpss={(Patient, 

READ),  (Patient, CREATE),  (Patient, UPDATE)}.  

    When comparing Srs and Grg , our focus is on comparing permissions their respective Srpss and 

Grpsg ; in this case, there  are common permission {(Patient, READ),  (Patient, CREATE)}. Note 

that, in permissions comparison, we omit the base URL from a service URI and focus only on the 

Endpoint (i.e., permission name) and Method (i.e., access method), since the permission name and 

access method of the service are the confidential part that need to be protected. Based on this, the 

comparison between any two role permission sets (Srpss and Grpsg) have one of the five results: 

(1) Srpss ⊃ Grpsg which means all of the permissions in Grpsg are in Srpss which in the above 

example  is false; (2) Grpsg ⊃ Srpss which means all of the permissions in Srpss are in Grpsg which 

in the above example is true; (3) Srpss ∩ Grpsg ≠ ∅ (or Srpss and Grpsg overlap) which means both 

role permission sets have common permissions but no role permission set contains the other; (4) 

Srpss = Grpsg (or Srpss and Grpsg are equivalent) which means both role permission sets have the 

same set of permissions; or (5) Srpss ∩ Grpsg = ∅ (Srpss and Grpsg are not related) which means 

there is no common permissions between Srpss and Grpsg. Based on the assumptions above, the 

RBAC Integration task utilizes four algorithms: Global-RBAC, Initialize_GRBAC, 

IntegrateRBAC, and AddBasicParents. These algorithms utilize a set of primitive functions in 

Table 6.1 that simplify the explanation of the aforementioned four algorithms. Table 6.1 has two 

columns: Function Signature, that has a name and a set of parameters for each function; and 

Description, that briefly explains each function. We highlight key functions. The first three 

functions: returns the parent roles of a given role, sets a parent role, and returns permissions of a 

role (i.e., Srpss or Grpsg).  The next function, compareRolesPerm, does the comparison between a 

system role (Srs) and a global role (Grg) using two factors of each role: role permission sets (Srpss 
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and Grpsg), and inherited role permission sets from all of the parent roles (inhSrpss and inhGrpsg).  

The mapRoles function creates new entries in the global policy regarding the mapping of system 

roles to global roles.  

Table 6.1. Primitive Functions Utilized by the Algorithms for Global RBAC Generation 

Function signature  Description 
getParents(RH, r) Returns all of the parent roles of the role r according to the given role hierarchy RH 

addParent(RH, pr , r) Defines the role pr as a parent role of the role r in the given role hierarchy RH 

dirPset(r) Returns a list of permissions directly authorized to the role r 

compareRolesPerm(Grpsg , 
Srpss , inhGrpsg , inhSrpss) 

Returns one of the following:  
- not related (if simCount(Grpsg , Srpss) is 0) 
- equivalent (if simCount(Grpsg , Srpss) equals both Grpsg.size & Srpss.size and 
simCount(inhGrpsg, inhSrpss) equals both inhGrpsg.size & inhSrpss.size)  
-  contains GR (if simCount(Grpsg , Srpss) equals Grpsg.size but less than Srpss.size and 
inhGrpsg.size is 0) 
- GR contains  (if simCount(Grpsg , Srpss) equals Srpss.size but less than Grpsg.size and 
inhSrpss.size is 0) 
- overlap (if simCount(Grpsg , Srpss) is less than both Grpsg.size & Srpss.size but > 0 or 
simCount(Grpsg , Srpss) equals both Grpsg.size and Srpss.size and both inhGrpsg.size and 
inhSrpss.size > 0) 

mapRoles(Grg, Srs) Adds all of the users in users(Srs) into users(Grg), and 

adds a new entry (Grg, Srs , Srs.system name) to the role mapping list 

users(r) Returns all of the users assigned to role r 

createGlobalRole(roleName) Creates a new global role s.t. the role name = roleName; if roleName exists use roleName_X 

(where X= number of Roles with same name +1)  

comPset(r1, r2) Returns a list of common permissions between Pset(r1) and Pset(r2) 

uncomPset(r1, r2) Returns a list of permissions exist in Pset(r1) but not in Pset(r2) 

removePer(perList , r) Removes all of the permissions in perList from Pset(r) 

addPer(perList , r) Adds all of the permissions in perList into Pset(r) 

getMappedGRole(global RH, 
Srs) 

Returns the global role associated with the given system role Srs  

AllPset(r) Returns a list of all of the permissions (directly and by inheritance) authorized to the role r 

inherPset(RH, r) Returns a list of by inheritance permissions authorized to the role r according to the given role 
hierarchy RH 

exist(Srs) Returns true if the role mapping list contains the entry (*, Srs , Srs.system name), where * means 
for any Grg 

notRelatedList.add(Grg , Srs) Add an entry (Grg , Srs) that means these two roles are unrelated 

notRelatedList.cleare () Removes all of the Entries 

 

The Global-RBAC algorithm in Figure 6.2 is for generating the entire GRBAC policy for all of 

the systems in FSICC, and takes as input a set of m systems’ RBAC policies (SRBAC1, SRBAC2, 

.. SRBACm), where m is the number of the participated systems, and initializes the global RBAC 

policy (GRBAC) using SRBAC1, line 1 in Figure 6.2. Note that, SRBAC1 is arbitrarily chosen from 
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the set of systems RBAC policies. The Global-RBAC algorithm then iterates (lines 2-3) through 

RBAC policies of the remaining systems, SRBAC2 to SRBACm, by integrating one system’s RBAC 

policy at a time with the previously computed GRBAC. Finally, the Global-RBAC algorithm 

returns the final GRBAC, combined Global RBAC policy constructed from all of the constituent 

systems of FSICC, line 4 in Figure 6.2. Moreover, as Figure 6.2 shows, the Global-RBAC algorithm 

utilizes the Initialize_GRBAC and IntegrateRBAC algorithms.  

Global-RBAC 

Input: set of m Systems RBAC (SRBAC1, SRBAC2, .. , SRBACm) 

Output: Global RBAC (GRBAC) 

1. GRBAC ← Initialize_GRBAC(SRBAC1) 

2. for i ← 2 to m 
3.     GRBAC ← IntegrateRBAC(GRBAC , SRBACi)  
4. return(GRBAC) 

 

Figure 6.2. The Global-RBAC Algorithm 

The Initialize_GRBAC algorithm in Figure 6.3 is for initializing the GRBAC policy to generate 

the initial state of a global-system role mapping list, and receives SRBAC1 and performs three main 

steps.  Step 1 (line 1) copies roles (Srs), users (Sus), permissions (Sscs), role-permission 

authorizations (Srpss), user-role assignments (Surass), and role hierarchy (Srhs), see Defn. 19 of 

Section 4.3, from SRBAC1 to the GRBAC. Step 2 (lines 2-3) generates a global-system role 

mapping list by mapping each global role with the original system role.  Step 3 (lines 4-6) creates 

a new global role that has no permissions or users (i.e., RootRole) to be the parent role for each 

global role with no parents. Finally, the initialized GRBAC is returned in line 7. 

 

Initialize_GRBAC 

Input: System RBAC (SRBAC) 

Output: Global RBAC (GRBAC) 

1. GRBAC ← {SRBAC[Srs, Sus, Sscs, Srpss, Surass, Srhs]} 

2. for each Grg ∈ GRBAC and each Srs ∈ SRBAC  

3.     mapRoles(Grg, Srs) 

4. RootRole ← createGlobalRole(RootRole) 

5. for each Grg ∈ GRBAC that has no parents 
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6.     addParent(global RH , RootRole , Grg) 

7. return(GRBAC) 

 

Figure 6.3. The Initialize_GRBAC Algorithm 

 

The IntegrateRBAC algorithm in Figure 6.4 is for combining the current GRBAC policy with a 

new system’s RBAC (SRBAC) policy, and receives SRBAC and the current GRBAC and performs 

two nested loops. The first loop in line 1 iterates through each system role (Srs) in SRBAC, starting 

with each Srs with no parents, then with one parent, and so on, until each Srs reaches the bottom of 

the system role hierarchy. The second loop in line 4 iterates through each global role (Grg) in 

GRBAC, except the RootRole, starting with each Grg that only has the RootRole as its parent, then 

with one parent other than the RootRole, and so on, until each Grg reaches the bottom of the global 

role hierarchy. Then, in line 7, each Srs and Grg are compared based on two factors of each role: 

role permission sets (Srpss and Grpsg), and inherited role permission sets from all of the parent roles 

(inhSrpss and inhGrpsg), utilizing the compareRolesPerm primitive function in Table 6.1 that 

returns: equivalent, Grpsg ⊃ Srpss, Srpss ⊃ Grpsg, overlap, or not related as explained by the 

compareRolesPerm function in Table 6.1. Note that simCount, which is utilized in the description 

of the compareRolesPerm function in Table 6.1, is the similarity counter that is initiated to 0 and is 

incremented each time a global permission and system permission are equal. There are five 

comparison possibilities: 

• If the comparison result is “equivalent”, one step is performed: mapping Grg with Srs, 

lines 8-9 in Figure 6.4.  

• If the comparison result is “Grpsg ⊃ Srpss”, six steps are performed: creating a new global 

role (Grg_New); the common permissions between Grpsg and Srpss are removed from 

Grg and  added to Grg_New; adding Grg_New as a parent of Grg; adding one or more 
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parents to Grg_New utilizing the AddBasicParents algorithm in Figure 6.5; and, mapping 

Grg_New with Srs, lines 10-16 in Figure 6.4.  

 

IntegrateRBAC 

Input: System RBAC (SRBAC) & current Global RBAC (GRBAC) 

Output: Global RBAC (GRBAC) 

1. for each Srs ∈ SRBAC 

2.     Srpss ← dirPset(Srs)   

3.     inhSrpss ← inherPset(system RH, Srs)   

4.     for each Grg ∈ GRBAC except RootRole  

5.         Grpsg ← dirPset(Grg)   

6.         inhGrpsg ← inherPset(global RH, Grg)                

7.         res ← compareRolesPerm(Grpss , Srpss, inhGrpsg, inhSrpss)  

8.         If(res==equivalent) 

9.             mapRoles(Grg, Srs) 

10.         Else If(res== Grpsg ⊃ Srpss) 

11.             Grg_new= createGlobalRole(Srs.name) 

12.             removePer(comPset(Grg, Srs) , Grg) 

13.             addPer(comPset(Grg, Srs) , Grg_new) 

14.             addParent(global RH , Grg_new , Grg) 

15.             AddBasicParents(Srs , Grg_new) 

16.             mapRoles(Grg_new, Srs) 

17.         Else If(res== Srpss ⊃ Grpsg) 

18.             If(!exist(Srs)) 

19.                 Grg_new= createGlobalRole(Srs.name) 

20.                 addPer(uncomPset(Srs, Grg) , Grg_new) 

21.                 removePer(comPset(Grg, Srs) , Srs) 

22.                 addParent(global RH , Grg , Grg_new) 

23.                 AddBasicParents(Srs , Grg_new) 

24.                 mapRoles(Grg_new, Srs) 

25.             Else 

26.                 removePer(comPset(Grg, Srs) , Grg_new) 

27.                 removePer(comPset(Grg, Srs) , Srs) 

28.                 addParent(global RH , Grg , Grg_new) 

29.         Else If(res==overlap) 

30.             Grg_new_2= createGlobalRole(NEW_ROLE) 

31.             addPer(comPset(Grg, Srs) , Grg_new_2) 

32.             removePer(comPset(Grg, Srs) , Grg) 

33.             addParent(global RH , Grg_new_2 , Grg) 

34.             addParent(global RH , RootRole , Grg_new_2) 

35.             If(!exist(Srs)) 

36.                 Grg_new= createGlobalRole(Srs.name) 

37.                 addPer(uncomPset(Srs, Grg) , Grg_new) 

38.                 removePer(comPset(Grg, Srs) , Srs) 

39.                 addParent(global RH , Grg_new_2 , Grg_new) 

40.                 AddBasicParents(Srs , Grg_new) 

41.                 mapRoles(Grg_new, Srs) 

42.             Else 

43.                 removePer(comPset(Grg, Srs) , Grg_new) 

44.                 removePer(comPset(Grg, Srs) , Srs) 

45.                 addParent(global RH , Grg_new_2 , Grg_new) 

46.         Else If(res==not related) 

47.             notRelatedList.add(Grg , Srs) 

48.     If(Srs is not related to any Grg)     

49.         Grg_new = createGlobalRole(Srs.name) 

50.         addPer(Pset(Srs) , Grg_new) 
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51.         AddBasicParents(Srs , Grg_new) 

52.         mapRoles(Grg_new, Srs) 

53. return(GRBAC) 

Figure 6.4. The IntegrateRBAC Algorithm 

• If the comparison result is “Srpss ⊃ Grpsg”, there are two cases. In the first case, Srs is 

not already added to the global role hierarchy, so six steps are performed: creating a new 

global role (Grg_New); the common permissions between Grpsg and Srpss are removed 

from Srs; the uncommon permissions between Grpsg and Srpss are added to Grg_New; 

adding Grg as a parent of Grg_New; adding one or more parents to Grg_New utilizing the 

AddBasicParents algorithm in Figure 6.5; and mapping Grg_New with Srs, lines 18-24 

in Figure 6.4. In the second case, Srs is already added to the global role hierarchy, so 

three steps are performed: the common permissions between Grpsg and Srpss are 

removed from Srs and Grg_New; and adding Grg as a parent of Grg_New, lines 25-28 in 

Figure 6.4.  

• If the comparison result is “overlap”, the algorithm starts with five steps: creating a new 

global role (Grg_New_2); the common permissions between Grpsg and Srpss are 

removed from Grg and added to Grg_New_2; adding RootRole as a parent of 

Grg_New_2; and adding Grg_New_2 as a parent of Grg, lines 29-34 in Figure 6.4. Then 

the algorithm applies similar steps as in the “Srpss ⊃ Grpsg” case, except that Grg_New_2 

(instead of Grg) is added as a parent of Grg_New, lines 35-45 in Figure 6.4.  

• If the result of all of the comparisons between Srpss and all of the Grpsg is “not related”, 

four steps are performed: creating a new global role (Grg_New); adding the permission 

set of Srs to Grg_New; adding one or more parents to Grg_New utilizing the 

AddBasicParents algorithm in Figure 6.5; and mapping Grg_New with Srs, lines 48-52 

in Figure 6.4.  
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Finally, the IntegrateRBAC algorithm returns the resulted GRBAC, line 53 in Figure 6.4. Moreover, 

the AddBasicParents algorithm in Figure 6.5, that is utilized extensively by the IntegrateRBAC 

algorithm, is for adding a set of parent roles to a specific role, and receives a system role (Srs) and 

a new global role (Grg_New). Then, if Srs has no parents, the RootRole is added as a parent of 

Grg_New. However, if Srs has one or more parents, for each parent of Srs, the associated Grg is 

retrieved and added as a parent of Grg_New.  The Global-RBAC algorithm runs in polynomial time 

and has a worst-case complexity of O(m|P|), where m is the number of the participated systems and 

|P| is the total number of permissions from all of the systems RBAC’ policies. That is, the Global-

RBAC algorithm visits each RBAC of each system once in which each permission is compared 

once.   

 

AddBasicParents 

Input: a system role (Srs), and a new global role (Grg_new) 

1. parentList=getParents(system RH, Srs) 

2. If(parentList==Null) 

3.     addParent(global RH , RootRole , Grg_new) 

4. Else  

5.     for each prnt ∈ parentList  

6.         gPrnt=getMappedGRole(global RH, prnt) 

7.         addParent(global RH , gPrnt, Grg_new) 
 

Figure 6.5. The AddBasicParents Algorithm 

     The second task of the global RBAC generation phase is Review and Correct Role Names. 

The main purpose of this task is to address two issues that the generated global RBAC policy may 

have as a result of using the algorithms in Figures 6.2 to 6.5. Issue 1 can arise when a system role 

and global role comparison is “overlap” can the automatically created new role name is not real. 

Issue 2 can arise when two different Global roles are generated with very similar names but with 

dramatically different permissions. Specifically, when the IntegrateRBAC algorithm compares 

each global role Grg to each system role Srs, in which the comparison result is “overlap”, a new 

global role named “NEW_ROLE” is created, clearly this is not a real role name (issue 1). Moreover, 
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when the IntegrateRBAC algorithm processes all of the comparison cases, except the “equivalent” 

case,  a new global role is created in which its name is copied from a system role Srs followed by a 

number X, where X is 1 plus the number of global roles that share a similar role name with Srs. 

Based on this, the IntegrateRBAC algorithm may generate a GRBAC that has two global roles that 

have a similar role name but are authorized to different sets of permissions;  this is not a desirable 

situation (issue 2). For example, assume that the GRBAC had a global role named “Patient” that is 

authorized to {(Patient, READ), (Patient, CREATE)}, and the IntegrateRBAC algorithm is about 

to create a new global role named “Patient” that is authorized to {(Observation, READ), 

(Observation, CREATE)}. In this case, the IntegrateRBAC algorithm will create a new global role 

named “Patient_2”, note that the number 2 here came from 1+ number of global roles that share a 

similar role name with “Patient” which is 1, and hence the GRBAC now has two global roles: 

“Patient” with permissions {(Patient, READ), (Patient, CREATE)}, and “Patient_2” with 

permissions {(Observation, READ), (Observation, CREATE)}. Our approach to solve not a real 

role name (issue 1) and two global roles with similar role name and radically different permissions 

(issue 2) is through the Review and Correct Role Names task, which has two steps. In the first step, 

the security engineer of FSICC reviews and suggests a name for each of two conflicting global 

roles, based on the authorized permission.   The two new roles are generated as described in issue 

1 or 2 and a name list of corrected global roles in the form of (global role ID, corrected name) is 

also generated.   In the second step, the security engineer of FSICC sends the name list of corrected 

global roles to the Update Global Roles algorithm, as shown in Figure 6.6. The Update Global Roles 

algorithm iterates through the name list of corrected global roles and for each global role Grg_U in 

the list, the algorithm finds a global role Grg in GRBAC in which the id of both entries is equal. 

Then, the algorithm updates the name of the global role Grg to be the name of the corrected global 
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role Grg_U and finally returns the updated global RBAC policy GRBAC, see lines 1-4 of Figure 

6.6.    

 

Update Global Roles 

Input: Global Roles List (GRL) & current Global RBAC (GRBAC) 

Output: Global RBAC (GRBAC) 

1. for each Grg_U ∈ GRL 

2.     find Grg ∈ GRBAC s.t. Grg.id = Grg_U.id 
3.     Grg.name = Grg_U.name  
4. return(GRBAC) 

 

Figure 6.6. The Update Global Roles Algorithm 

   

6.1.2 Global MAC Generation 

The Global MAC (GMAC) Generation phase is divided into two tasks in Figure 6.1: MAC 

Integration and Building Global MAC. The MAC Integration task is conducted based on the 

assumption that the five sensitivity levels, introduced in Section 4.4, (0-Public Information, 1-Basic 

Sensitive Information, 2-Sensitive Information Summary, 3-Sensitive Information Details, and 4-

Very Sensitive Information), are available to each system to classify their data and to assign each 

user a clearance. This can be useful in a complex domain such as healthcare all of the five levels 

are expected to be utilized due to the fact that healthcare data is complex, while in other domain 

such as education only a subset of the five sensitivity levels may be needed to classify data in that 

domain. However, although all of the participating systems are using the same set of sensitivity 

levels, two systems may have different semantic and usages of each sensitivity level. To overcome 

this issue, the presented sensitivity levels mapping step can be utilized. That is, this step is a human 

interaction between the security engineer of FSICC and the security engineers of participating 

systems to map each system sensitivity levels to the global sensitivity levels so that one set of 

sensitivity levels (the global sensitivity levels) can be utilized to: assign each service from each 

system a classification; and assign each user from each system a clearance, as we explain in the 
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second task below. Note that the semantics of the global sensitivity levels is based on the sensitivity 

levels of the first participating system. The output of this task is a sensitivity levels mapping list in 

which each entry in the list has the following format {a global sensitivity level, a system sensitivity 

level, system name}.   

Second, based on the sensitivity levels mapping list that is generated in the MAC Integration 

task, in the Building Global MAC task, the global MAC, GMAC, is generated utilizing users and 

services from each participating system in which users’ clearances and services’ classifications are 

assigned based on the global sensitivity levels in which the read/write properties of each user are 

remain unchanged. To perform this task, the security engineer of FSICC needs to send the 

sensitivity levels mapping list to the global MAC algorithm, see Figure 6.7, that utilizes a set of 

primitive functions in Table 6.2 to generate the global MAC policy. These primitive functions 

simplify the explanation of the global MAC algorithm. Table 6.2 has two columns: Function 

Signature, that has a name and a set of parameters for each function; and Description, that briefly 

explains each function. The global MAC algorithm takes as input: the sensitivity levels mapping 

list (SLML) and a set of m MAC policies from each participating system. The algorithm goes 

through each MAC policy of each system to add users and services of that MAC policy. First, in 

lines 2-6, the first loop iterates through each user of each system MAC policy to: find the global 

clearance that is associated with the user system’s clearance; retrieve the read and write properties; 

and, add the user into the global MAC policy as a global user. Second, in lines 7-9, the second loop 

iterates through each service of each system MAC policy to: find the global classification that is 

associated with the service system’s clearance; and, add the service into the global MAC policy as 

a global service. Third, the algorithm returns the GMAC. The global MAC algorithm runs in linear 
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time and has a worst-case complexity of O(m), where m is the number of the participated systems. 

That is, the global MAC algorithm visits each MAC of each system once. 

 

Global-MAC  

Input: set of m Systems MAC (SMAC1, SMAC2, .. , SMACm) and  

           sensitivity levels mapping list (SLML) 

Output: Global MAC (GMAC) 

1. for i ← 1 to m 
2.     for each user u in SMACi[Sus] 
3.         u.gCLR=globalClearance(SLML, u.CLR, SMACi.Name) 

4.         u.gRP= u.RP 

5.         u.gWP= u.WP 

6.         addUser(GMAC, u) 

7.     for each service s in SMACi[Sscs] 
8.         s.gCLS=globalClassification(SLML, s.CLS, SMACi.Name) 

9.         addService(GMAC, s) 

10. return(GMAC) 

 

Figure 6.7. The Global-MAC Algorithm 

 

Table 6.2. Primitive Functions Utilized by the Algorithms for Global MAC Generation 

Function signature Description 
globalClearance(SLML, u.CLR, SMACi.Name) Returns a global sensitivity level in SLML that is mapped to u.CLR of the 

SMACi.Name system 

globalClassification(SLML, s.CLS, SMACi.Name) Returns a global sensitivity level in SLML that is mapped to s.CLS of the 
SMACi.Name system 

addUser(GMAC, u) Adds the user u to the global MAC 

addService(GMAC, s) Adds the service s to the global MAC 

 

6.1.3 Global DAC Generation 

 The Global DAC (GDAC) Generation phase has one main task and one algorithm, DAC 

Integration in Figure 6.1. This task takes all of the DAC policies from each system and combines 

them into one global DAC policy. The DAC Integration task is performed through the global DAC 

algorithm, see Figure 6.8, that utilizes a set of primitive functions in Table 6.3 to generate the global 

DAC policy. These primitive functions simplify the explanation of the global DAC algorithm. Table 

6.3 has two columns: Function Signature, that has a name and a set of parameters for each function; 

and Description, that briefly explains each function. The global DAC algorithm takes as input: the 

global RBAC, the global MAC, and a set of m DAC policies from each participating system. The 
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algorithm iterates through each DAC policy of each system to retrieve and add role and/or clearance 

delegations into the global DAC policy. First, in lines 2-4, the first loop iterates through each role 

delegation rd of each system DAC policy to: find the global IDs of delegator user, delegated user, 

and delegated role using the getGobalIDs primitive function in Table 6.3; and, add a new role 

delegation into the global DAC policy using the retrieved global IDs. Next, in lines 5-7, the second 

loop iterates through each clearance delegation cd of each system DAC policy to: find the global 

IDs of delegator user, delegated user, and delegated clearance using the getGobalIDs primitive 

function; and, add a new clearance delegation into the global DAC policy using the retrieved global 

IDs. Finally, the algorithm returns the global DAC policy. The global DAC algorithm runs in 

polynomial time and has a worst-case complexity of O(m|d|), where m is the number of the 

participated systems and |d| is the total number of all of the role and clearance delegations from all 

of the systems DAC’s policies. That is, the global DAC algorithm visits each DAC of each system 

once. 

 

Global-DAC  

Input: set of m Systems DAC (SDAC1, SDAC2, .. , SDACm), 

           GMAC, and GRBAC 

Output: Global DAC (GDAC) 

1. for i ← 1 to m 
2.     for each role delegation rd in SDACi[Sdss] 
3.         global_rd =getGlobalIDs(rd) 

4.         addGlobalDel(GDAC, global_rd) 

5.     for each clearance delegation cd in SDACi[Sdss] 
6.         global_cd =getGlobalIDs(cd) 

7.         addGlobalDel (GDAC, global_cd) 

8. return(GDAC) 

 

Figure 6.8. The Global-DAC Algorithm 

 

Table 6.3. Primitive Functions Utilized by the Algorithms for Global DAC Generation 

Function signature Description 
getGlobalIDs(rd/cd) Returns global IDs of delegator, delegated, and role/sensitivity level 

addGlobalDel(GDAC, global_rd/cd) Adds a global role/clearance delegation to global DAC 

 



163 
 

6.1.4 Global Policies Combination 

 The results from the algorithms in Sections 6.1.1-6.1.3 serve as input to the combine global 

security policies instances phase that is divided into two tasks: combining the generated global 

RBAC instance, global MAC instance, and global DAC instance into one global security policy 

model instance which can be utilized by any interested clients to control their own services; and, 

controlling the way that data that global services can access are read and/or writtenn. The first task 

generates one policy document that concatenates all of the separate policies (i.e., GRBAC, GMAC, 

and GDAC) into one Global policy. The second task is intended to restrict clients at the data level. 

That is, while the global RBAC, MAC and DAC policies control who can access what set of global 

services, the controlling data task is intended to control what set of data, that global services can 

access and what each user can read/write. To control reading data actions, there are three read data 

access types that the security engineer of FSICC needs to choose from: 

1. Open to All (default): This read data access type is for the case where two or more 

users, from different systems, who are assigned to the same global role can read any data 

that the global role can retrieve. 

2. Open to Same System Users:   This read data access type is for the case where a user from 

system X who is assigned to a global role can only read a subset of data (only data 

from system X) that the global role can retrieve. 

3. Customize Data Read:  This read data access type is for the case in which for each global 

service, the security engineer of FSICC needs to specify which systems that their users can 

read the retrieved data.    

 Moreover, to control writing data actions, there is one write data access type:  
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1. Open to Same System Users: This write data access type is for the case where a user from 

system X who is assigned to a global role can only write data (only data from system X) 

that the global role can write. 

The output of the global policies combination step is a single unified security policy document that 

has global RBAC, global MAC, and global DAC coupled with one read data access type and one 

write data access type.  

 

6.2 HAPI FHIR Implementation and RBAC/MAC/DAC Interceptors 

 

In this section, we demonstrate the realization of UCCACM of FSICC via a HAPI FHIR 

Implementation and the underlying RBAC/MAC/DAC Interceptors. These are represented by the 

Security Enforcement via the Interceptors box of the GSP and GAPI Utilization and the Security 

Enforcement horizontal box in Figure 1.3 from Chapter 1, utilizing the healthcare scenario of 

Section 2.4 of Chapter 2. This leads to that the implementation of HAPI FHIR APIs and its server 

interceptor to support UCCACM checks with three different algorithms to support three different 

HAPI FHIR interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. This section 

involves the implementation of FHIR APIs and the customization and adaptation of the HAPI 

server interceptor to support UCCACM checks: Defns. 50 and 51 that determine if a service is 

authorized by a user/role pair; Defn. 55 that determines if a service is authorized by a 

user/clearance pair; and Defns. 57, 58, and 59 that determine if a service is authorized by a 

user/(delegated_role/delegated_service /delegated_clearance) pair (see Section 4.7). Three 

integration layers were implemented utilizing the HAPI FHIR reference library (HAPI community, 

2016), namely: Clients, top of Figure 1.1  and Involved Parties component  of Figure 1.2; Systems, 
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bottom of Figure 1.1 and Involved Parties component  of Figure 1.2; and FSICC, the Global 

Services in the middle of Figure 1.1.  

The remainder of this section has five subsections. Section 6.2.1 provides a more detailed 

discussion than Section 2.3 of Chapter 2 on HAPI-FHIR Concepts and Background.  Using this as 

a basis, Sections 6.2.2, 6.2.3, and 6.2.4 review and explain, respectively, the RBAC interceptor, 

MAC interceptor, and DAC interceptor. Finally, Section 6.2.5 presents two usage scenarios 

utilizing the global security policy sample from Sections 6.2.2, 6.2.3, and 6.2.4.  

 

 

6.2.1 HAPI-FHIR Concepts and Background  

 
As discussed in Section 2.3, the HAPI-FHIR library provides a general HAPI server interceptor 

(University Health Network, 2016) which is a programmatic approach that allows a developer to 

examine each incoming HTTP request to add useful features to the HAPI ResfulServer such as 

authentication, authorization, auditing, logging, etc. This is accomplished by implementing a 

number of methods: incomingRequestPreProcessed that is invoked before performing any action 

to the request; incomingRequestPostProcessed that is invoked after determining the request type 

by classifying the request; incomingRequestPreHandled which is invoked before sending the 

request to the Resource Provider; and, outgoingResponse which is invoked after the request is 

handled by the appropriate Resource Provider.  To implement each of these HAPI FHIR APIs, the 

HAPI RestfulServer and HAPI IResourceProvider classes were utilized. 

To support cloud computing capability 3 (Global Registration, Authentication, Authorization, 

and Service Discover for Consumers) of FSICC (see Section 3.2), the Clients Registry, Systems 

Registry, and Global Security Policy components in Figure 1.1 are developed as simple RESTful 

APIs, which were implemented using the JAX-RS Java library (Hadley & Sandoz, 2009). The 
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Clients Registry and Systems Registry components supports adding systems/clients HAPI-FHIR 

APIs and discovering corresponding FHIR APIs, while the Global Security Policy component 

enables the security engineer of FSICC to add/modify the global policy in Section 4.6 of Chapter 

4 (see Defn. 39 of UCCACM). In addition, the RBAC, MAC, and DAC interceptors presented in 

Section 4.7 of Chapter 4 (see Defns. 52, 56, and 60 of UCCACM respectively - middle of Figure 

1.1), were implemented by extending the HAPI InterceptorAdapter class to retrieve the global 

security policy from the Global Security Policy component and then extract the appropriate part 

(i.e., global RBAC for the RBAC Interceptor, global MAC for the MAC Interceptor, and global 

DAC for the DAC Interceptor) in order to performing enforcement check  on each access request 

at runtime. Although each of the RBAC interceptor, MAC interceptor, and DAC interceptor is 

designed to enforce the appropriate global security policy separately, the handleRequest method 

of the RestfulServer class works as a monitor that makes sure each part of the global security 

policy (RBAC, MAC, and DAC) is checked and enforced, via the three interceptors, before 

allowing any access request. 

 

6.2.2 RBAC Interceptor 
 

To support security requirement 2 of FSICC, Control Access to Cloud Services Using RBAC, 

in this section, we present and explain the pseudo-code of the RBAC interceptor (see Defn. 52 of 

UCCACM) that is utilized at runtime to check security permissions (see Defns. 50 and 51 of 

UCCACM) of all of the calls to global services. To facilitate our explanation on the RBAC 

interceptor, Figure 6.9 presents a global RBAC policy example in JSON format that consists of: 

USERS, ROLES, RESOURCES, USER_ROLE_ASSIGNMENTS, 

ROLE_RESOURCE_AUTHORIZATIONS, ROLE_HIERARCHY, & ROLES_MAPPINGS. 

Each user is represented by three fields: id, name, and system_name. Each role is represented by 
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two fields: id and name. Each resource is represented by three fields: id, name, and method. Each 

user_role_assignment is represented by two fields: user_id and role_id. Each 

role_resource_authorization is represented by two fields: role_id and resource_id. Each 

role_hierarchy relationship is represented by two fields: role_id and parent_id. Finally, each 

role_mapping is represented by three fields: global_role_id, system_role_id, and system_name. 

As shown in Figure 6.9, the global SECURITY_POLICY is based on the healthcare scenario 

example from Section 2.4 of Chapter 2.  Notice that there are users, Defn. 14, defined for the 

systems OpenEMR and MyGoogle and the client app SMH.  Likewise, there are roles, Defn. 8, 

that include roles from OpenEMR and MyGoogle systems, roles form the SMH client app, and 

new roles generated as during combining roles of OpenEMR and MyGoogle systems, and SMH 

client app. The Global RBAC example, Figure 6.9, also has a set of resources, Defn. 2, that are 

created from OpenEMR and MyGoogle systems, and SMH client app. The user role assignment 

set, Defn. 16, in the Global RBAC example is generated based on user role assignment sets from 

OpenEMR and MyGoogle systems, and SMH client app. Similarly, the role resource authorization 

set, Defn. 13, in the Global RBAC example is compiled based on role resource authorization sets 

from OpenEMR and MyGoogle systems, and SMH client app. The role hierarchy, Defn. 19, in the 

figure describes how roles in the Global RBAC example relate to each other using the parent-child 

relationship. Finally, the role mapping, Defn. 45, in the figure shows how each role in the Global 

RBAC example is mapped to the original role in OpenEMR or MyGoogle systems, or SMH client 

app.    

In the Global RBAC example, 5 different global users are shown, three from systems (John, 

Sara, ShareMyHealth) and two from clients (Sarah and Nasser). There have been 11 global roles 

created, that have different origins: Physician with role id 1 was an original role of OpenEMR, 
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Patient_2 with role id 4 was an original role of CT2, and RootRole with role id 3 was created as a 

parent role for all of the root roles from each system and client. Note that a root role in a system 

or client is the role that has no parents but has at least one child. The Global RBAC example also 

has 5 global resources: Observation with resource id 1 and GET method name; Patient with 

resource id 2 and PUT method name; Observation with resource id 3 and PUT method name; 

Patient with resource id 4 and GET method name; and Person with resource id 5 and PUT method 

name. Each user is assigned a role based on their ids. For example, the user with id 1 is assigned 

the role with id 1, the user with id 3 is assigned the role with id 4, and the user with id 5 is assigned 

the role with id 10. Likewise, some roles are authorized to access some resources based on their 

id. For example, the role with id 6 is authorized to access the resource with id 1, the role with id 8 

is authorized to access the resource with id 2, and the role with id 11 is authorized to access the 

resource with id 5. Based on the role hierarchy presented in Figure 6.9: the role with id 3 is a parent 

of roles with id 6, 7, 8, 9 and 11; the role with id 9 is a parent of roles with id 2, 4, and 10; and, the 

role with id 11 is a parent of roles with id 4, and 10. Finally, the role mapping in the Figure 6.9 

shows that: the global role with id 1 is originated from the OpenEMR’s system role with id 1; the 

global role with id 4 is originated from the SMH’s client role with id 1; and, the global role with 

id 10 is originated from the MyGoogle’s system role with id 1.  
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Figure 6.9. A Global RBAC Policy Example in JSON 

 

Figure 6.10 presents the RBAC enforcement code realized within the 

incomingRequestPostProcessed method of the RBAC Interceptor as introduced in Section 6.2.1, 

which is an extension of the HAPI InterceptorAdapter class, which is registered in the 

RestfulServer class. This method starts by retrieving a secure Token (line 3) from a HTTP header 

(Authorization) of the request parameter, that is then passed to the extractUser function that can 

obtain the user credentials (user Id, see Defn. 15v2, and role Id, Defn. 9v2) from the Token (line 
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5). Next, the Global Policy (see Defn. 39), which is in JSON format, is retrieved by calling the 

Global Policy URL (line 7). The global RBAC policy example in Figure 6.9, is then extracted from 

the Global Policy through the extract_RBAC function (line 8). Then, the details of the requested 

resource (resource name, see Defn. 2, and HTTP method, see Defn. 4) are obtained from the 

requestDetails and request parameters, respectively, and passed along with the RBAC policy to 

the getResourceId function that returns the Id of the requested resource (lines 9 to 11). In line 14, 

the user credentials and the RBAC policy are passed to the checkCredentials function (see Defn. 

50) to determine whether the user has the claimed role (see Defn. 9v2). If the check fails, the value 

of the accessDecision variable becomes false (lines 27-30). If the user passes the check, the 

associated role Id, the resource Id, and the RBAC policy are passed to the checkPerm function (see 

Defn. 51 - line 19) that returns true if the user with such a role can access the requested resource 

or false otherwise. Note that the checkPerm function works by retrieving a list of parent roles of 

the user role (passed) based on the global role hierarchy, part of RBAC policy, in which the user 

can access all of the resources that are authorized to the user role of any of its parents. Based on 

the result of the checkPerm function, the variable accessDecision is assigned (true or false) and 

returned as the result of the incomingRequestPostProcessed method (lines 20-25 and 31).  
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1  //Serves as Access Control Interceptor function

2  public boolean incomingRequestPostProcessed(requestDetails, request, response){

3 secToken = request.getHeader(“Authorization”);

4 // Retrieves the user id and role id of the current user

5 [userId,roleId] = extractUser(secToken);

6 // Retrieves the RBAC policy from the Global Policy URL

7 Global_Policy= HttpGet(Global_Policy_URL);

8 RBAC_Policy= extract_RBAC(Global_Policy);

9 resourceName = requestDetails.getResourceName();

10 httpMethod = request.getMethod();

11 resourceId = getResourceId(httpMethod, resourceName, RBAC_Policy);

12 // check if the user has the claimed role

13 verifiedUser=false;

14 verifiedUser=checkCredintals(userId, roleId, RBAC_Policy); // true or false

15 // check if the user (role) can access the requested resource and method

16 verifiedPerm=false;

17 accessDecision=false;

18 if(verifiedUser==true){

19 verifiedPerm=checkPerm(roleId, resourceId, RBAC_Policy); // true or false

20 if(verifiedPerm==true){

21 accessDecision=true; // allow user request

22 }

23 else {

24 accessDecision=false; // deny user request

25 }

26 }

27 else{

28 // Error Message: User could not be verified

29 accessDecision=false; // deny user request

30 }

31 Return accessDecision; 

32 }
 

Figure 6.10. RBAC Interceptor Pseudo Code. 

 

6.2.3 MAC Interceptor 
 

To support security requirement 4 of FSICC, Control Access to Cloud Services Using MAC, 

in this section we present and explain the pseudo-code of the MAC interceptor (see Defn. 56 of 

UCCACM) that is utilized at runtime to check security permissions (see Defn. 55 of UCCACM) 

of all of the calls to global services. To facilitate our explanation, Figure 6.11 presents a global 

MAC policy example in JSON format that consists of three parts: USERS, RESOURCES, and 

SENSITIVITY_LEVELS_MAPPING_LIST. Each user is represented by six fields: id, name, 

clearance, read property, write property, and system_name. Each resource is represented by four 

fields: id, name, method, and classification. Finally, each sensitivity level mapping is represented 

by four fields: id, global_level, system_level, and system_name.  Notice that there are users, Defn. 

10, defined for the systems OpenEMR and MyGoogle and the client app SMH. The Global MAC 

example, Figure 6.11, also has a set of resources, Defn. 2, that are created from OpenEMR and 

MyGoogle systems, and SMH client app. Finally, the sensitivity levels, Defn. 10, mapping list in 



172 
 

the figure shows how each sensitivity level in the Global MAC example is mapped to the original 

sensitivity level in OpenEMR or MyGoogle systems, or SMH client app.  

In the Global MAC example, 5 different global users are shown, three from systems (John, 

Sara, ShareMyHealth) and two from clients (Sarah and Nasser). Moreover, the user John has: level 

3 or Sensitive Information Details clearance; SS read property; and SI write property. The user 

Sara has level 2 or Sensitive Information Summary clearance; SS read property; and SI write 

property. The user Sarah has level 4 or Very Sensitive Information clearance; SS read property; 

and SI write property. In addition, each of users Nasser and ShareMyHealth has level 3 or Sensitive 

Information Details clearance; SS read property; and L* write property. There are 5 global 

resources: Observation with resource id 1 and GET method name; Patient with resource id 2 and 

PUT method name; Observation with resource id 3 and PUT method name; Patient with resource 

id 4 and GET method name; and Person with resource id 5 and PUT method name. Note that all 

resources have level 1 or Basic Sensitive Information clearance. Finally, the sensitivity levels 

mapping list in the Figure 6.11 shows that: global level 0 (Public Information) is mapped to level 

0 (Public Information) of OpenEMR; SMH; and MyGoogle. Global level 3 (Sensitive 

Information Details) is mapped to: level 3 (Sensitive Information Details) of OpenEMR; level 2 

(Sensitive Information Summary) of SMH and level 4 (Very Sensitive Information) of MyGoogle. 

Global level 4 (Very Sensitive Information) is mapped to level 4 (Very Sensitive Information) of 

OpenEMR and SMH but is not mapped to any level of MyGoogle. 
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Figure 6.11. A Global MAC Policy Example in JSON 

 

Figure 6.12 has the MAC enforcement code realized within the incomingRequestPostProcessed 

method of the MAC Interceptor, which is an extension of the HAPI InterceptorAdapter class, 

which is registered in the RestfulServer class. This method starts by retrieving a secure Token (line 

3) from a HTTP header (Authorization) of the request parameter, that is passed to the extractUser 

function that can obtain the user credentials (user Id, see Defn. 15v3) from the Token (line 5). 

Then, the Global Policy (see Defn. 39), which is in the JSON format, is retrieved by calling the 

Global Policy URL (line 7). The MAC policy, see the global MAC policy example in Figure 6.11, 

is then extracted from the Global Policy through the extract_MAC function (line 8).  Next, in line 

10, the user Id and MAC policy are passed to the getUserDetails function that returns the user 

details (i.e., user clearance, Read property, and Write property). Then, the details of the requested 

resource (resource name, see Defn. 2, and HTTP method, see Defn. 4) are obtained from the 

requestDetails and request parameters, respectively, and passes along with the MAC policy to the 

getResourceId function that returns the Id of the requested resource (lines 11 to 13). In line 15, the 
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resource Id and MAC policy are passed to the getResourceCLS function to find the resource 

classification level. Then, using the user details and the requested resource details, the 

accessDecision variable is set to true, if the user clearance satisfies the user’s predefined read or 

write properties on the requested resource and method, or false, otherwise (lines 17 to 41). Finally, 

in line 42, the value of the accessDecision variable is returned as the result of the 

incomingRequestPostProcessed method.  

1  //Serves as Access Control Interceptor function

2  public boolean incomingRequestPostProcessed(requestDetails, request, response){

3 secToken = request.getHeader(“Authorization”);

4 // Retrieves the user id of the current user

5 userId = extractUser(secToken);

6 // Retrieves the MAC policy from the Global Policy URL

7 Global_Policy= HttpGet(Global_Policy_URL);

8 MAC_Policy= extract_MAC(Global_Policy);

9 // Retrieves the Clearance level, Read, and Write properties of the current user

10 [UserCLR, RP, WP] = getUserDetails(userId , MAC_Policy);

11 resourceName = requestDetails.getResourceName();

12 httpMethod = request.getMethod();

13 resourceId = getResourceId(httpMethod, resourceName, MAC_Policy);

14 // Retrieves the classification level of the requested resource

15 ResourceCLS = getResourceCLS(resourceId , MAC_Policy);

16 // check if user with a CLR, Read, & Write properties can access requested resource and method

17 accessDecision=false;

18 if(httpMethod==“GET”){

19 if(RP==“SS”){

20 if(UserCLR < ResourceCLS ){   accessDecision=false; }

21 else{   accessDecision=true;   }

22 }

23 else if(RP==“SSR”) {

24 if(UserCLR != ResourceCLS ){   accessDecision=false;   }

25 else{   accessDecision=true;   }   

26 }

27 }

28 elseif(httpMethod==“POST” || httpMethod==“PUT” || httpMethod==“DELETE”){

29 if(RP==“SI”){

30 if(UserCLR < ResourceCLS ){   accessDecision=false;   }

31 else{   accessDecision=true;   }

32 }

33 else if(RP==“LS”) {

34 if(UserCLR > ResourceCLS ){   accessDecision=false;   }

35 else{   accessDecision=true;   }

36 }

37 else if(RP==“SSW”) {

38 if(UserCLR != ResourceCLS ){   accessDecision=false;   }

39 else{   accessDecision=true;   }

40 }

41 }

42 Return accessDecision; 

43 }

 
Figure 6.12. MAC Interceptor Pseudo Code. 

 

6.2.4 DAC Interceptor 
 

To support security requirement 3 of FSICC, Support Delegation of Cloud Services Using 

DAC, in this section, we present and explain the pseudo-code of the DAC interceptor (see Defn. 

60 of UCCACM) that is utilized at runtime to check security permissions (see Defns. 57, 58, and 

59 of UCCACM) of all of the calls to global services. To facilitate the explanation, Figure 6.13 
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presents a global DAC policy example in JSON format that consists of one main part, 

PERMISSION_DELEGATION, that can have role delegation, or clearance delegation. Each role 

delegation is represented by three fields: delegator_id, delegated_id, and role_id. Each clearance 

delegation is represented by three fields: delegator_id, delegated_id, and clearance. Notice that the 

role delegation set, Defn. 25, in Figure 6.13 is based on a set of role delegations from OpenEMR 

and MyGoogle systems, and SMH client app. Likewise, the clearance delegation set, Defn. 24, in 

the figure is based on a set of clearance delegations from OpenEMR and MyGoogle systems, and 

SMH client app. For example, the first permission delegation in the Global DAC example, is a 

role delegation in which the user with id 2, see Figure 6.9, passed on the authorization of the role 

(Patient) with id 2 to the user with id 1. 

  

 

Figure 6.13. A Global DAC Policy Example in JSON 

 

Figure 6.14 has the DAC enforcement code realized within the incomingRequestPostProcessed 

method of the DAC Interceptor, which is an extension of the HAPI InterceptorAdapter class, which 

is registered in the RestfulServer class. Basically, the DAC enforcement code is a combination of 

both the RBAC enforcement code, lines 3-11 and line 19, and the MAC enforcement code, lines 

21-22, 24-25, and 27-50, with role delegation and clearance delegation checks. This method starts 

by retrieving a secure Token from a HTTP header (Authorization) of the request parameter, that is 

passed to the extractUser function that can obtain the user credentials (i.e., user Id, see Defn. 15v2, 
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and role Id, see Defn. 9v2) from the Token (line 4).  Then, the Global Policy (see Defn. 39), which 

is in JSON format, is retrieved by calling the Global Policy URL (line 5). The global RBAC policy 

example in Figure 6.9 is then extracted from the Global Policy through the extract_RBAC function 

(line 6). Next, the details of the requested resource (resource name, see Defn. 2, and HTTP method, 

see Defn. 4) are obtained from the requestDetails and request parameters, respectively, and are 

passed along with the RBAC policy to the getResourceId function that returns the Id of the 

requested resource (lines 7 to 9). In line 11, the user credentials and the RBAC policy are passed 

to the checkCredentials function (see Defn. 50) to determine whether the user has the claimed role 

(see Defn. 9v2). Then, the global DAC policy example in Figure 6.13 is extracted from the Global 

Policy through the extract_DAC function (line 12). If the checkCredentials check fails, another 

check (lines 13-15) is performed to determine whether such a role is delegated to the current user 

by another user. This is done by passing the user Id, the claimed role Id, and the DAC policy to 

the checkRoleDelegation function that returns true if the entry delegated_id(user Id)/claimed role 

exists or false otherwise to the verifiedRoleDelegation variable.  

If both checks fail (line 18), the value of the accessDecision variable becomes false (lines 57-

59). However, if the user passed at least one of these checks, the associated role Id, the resource 

Id, and the RBAC policy are passed to the checkPerm function (see Defn. 51 - line 19) that returns 

true if the user with such role (or delegated role) can access the requested resource or false 

otherwise. Note that the checkPerm function first retrieves a list of parent roles of the user role 

(passed) based on the global role hierarchy, part of RBAC policy, in which the user can access all 

of the resources that are authorized to the user role of any of its parents. If the checkPerm function 

returns false, then the variable accessDecision is set to false (lines 53-54). However, if the 

checkPerm function returns true, then the global MAC policy example in Figure 6.11 is extracted 
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from the Global Policy through the extract_MAC function (line 21). Then, in line 22, the user Id 

and MAC policy are passed to the getUserDetails function that returns the user details (i.e., user 

clearance, Read property, and Write property). Next, a user clearances list is created to include the 

user clearance, from the previous step, and a set of delegated clearances to the current user that is 

obtained from the getUserDelegatedCLR function that takes as inputs the user id and the DAC 

policy (line 23). Then, in line 24, the resource Id and MAC policy are passed to the 

getResourceCLS function to find the resource classification level. After that, for each user 

clearance in the user clearances list, the following procedure is performed: utilizing the user details 

and the requested resource details the accessDecision variable is set to true if the user clearance 

satisfies the user’s predefined read or write properties on the requested resource and method, or 

false, otherwise (lines 26 to 51). Finally, in line 61, the value of the accessDecision variable is 

returned as the result of the incomingRequestPostProcessed method.  
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1  //Serves as Access Control Interceptor function

2  public boolean incomingRequestPostProcessed(requestDetails, request, response){

3 secToken = request.getHeader(“Authorization”);

4 [userId,roleId] = extractUser(secToken);

5 Global_Policy= HttpGet(Global_Policy_URL);

6 RBAC_Policy= extract_RBAC(Global_Policy);

7 resourceName = requestDetails.getResourceName();

8 httpMethod = request.getMethod();

9 resourceId = getResourceId(httpMethod, resourceName, RBAC_Policy);

10 verifiedUser=false;

11 verifiedUser=checkCredintals(userId, roleId, RBAC_Policy); // true or false

12 DAC_Policy= extract_DAC(Global_Policy);

13 if(verifiedUser==false){

14 verifiedRoleDelegation=checkRoleDelegation (userId, roleId, DAC_Policy); // true or false

15 }

16 verifiedPerm=false;

17 accessDecision=false;

18 if(verifiedUser==true || verifiedRoleDelegation==true){

19 verifiedPerm=checkPerm(roleId, resourceId, RBAC_Policy); // true or false

20 if(verifiedPerm==true){

21 MAC_Policy= extract_MAC(Global_Policy);

22 [UserCLR, RP, WP] = getUserDetails(userId , MAC_Policy);

23 UserCLRList = getUserDelegatedCLR(userId , DAC_Policy) + UserCLR;

24 ResourceCLS = getResourceCLS(resourceId , MAC_Policy);

25 accessDecision=false;

26 for each UserCLR in UserCLRList {

27 if(httpMethod==“GET”){

28 if(RP==“SS”){

29 if(UserCLR < ResourceCLS ){   accessDecision=false;   }

30 else{   accessDecision=true;   }

31 }

32 else if(RP==“SSR”) {

33 if(UserCLR != ResourceCLS ){   accessDecision=false;   }

34 else{   accessDecision=true;   }   

35 }

36 }

37 else if(httpMethod==“POST” || httpMethod==“PUT” || httpMethod==“DELETE”){

38 if(RP==“SI”){

39 if(UserCLR < ResourceCLS ){   accessDecision=false;   }

40 else{   accessDecision=true;   }

41 }

42 else if(RP==“LS”) {

43 if(UserCLR > ResourceCLS ){   accessDecision=false;   }

44 else{   accessDecision=true;   }

45 }

46 else if(RP==“SSW”) {

47 if(UserCLR != ResourceCLS ){   accessDecision=false;   }

48 else{   accessDecision=true;   }

49 }

50 }

51 }

52 }

53 else {

54 accessDecision=false; // deny user request

55 }

56 }

57 else{

58 // Error Message: User could not be verified

59 accessDecision=false; // deny user request

60 }

61 Return accessDecision; 

62 }

 
Figure 6.14. DAC Interceptor Pseudo Code. 

 

6.2.5 Two Usage Scenarios 

 

This section presents two access scenarios, to access global services of FSICC, of usage that 

can be initiated by ShareMyHealth and MyGoogle, from Section 2.4, in order to demonstrate the 

way that the three interceptors operate. The FSICC allows or rejects requests from ShareMyHealth 

and MyGoogle to access the global services based on the enforcement codes that are generated by: 

the RBAC Interceptor (Figure 6.10), the MAC Interceptor (Figure 6.12), and the DAC Interceptor 
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(Figure 6.14) that use the defined global security policy (see Defn. 39 - Figures 6.9 with global 

RBAC, 6.11 with global MAC, and 6.13 with global DAC). That is, FSICC receives each request 

which is forwarded to all three interceptors for RBAC, MAC, and DAC in which each interceptor 

retrieves the appropriate security policy and returns a reject or allow decision to FSICC based on 

that security policy. Note that the two requests were made with the Postman tool (Postman, 2013) 

instead of directly made them from ShareMyHealth and MyGoogle in order to present a clear view 

of the response the requests can have in different scenarios. In the first scenario, Figure 6.15, 

FSICC rejects a request from the user (Sarah) via the ShareMyHealth (SMH) app to access the 

global service (PUT Encounter). This is since the user (SSincs) with user Id (3) is assigned a role 

(Patient_2) with role Id (4) that is authorized to access global services 1-5, see global RBAC in 

Figure 6.9 what does not have access to the global service (PUT Encounter). Also, the access will 

also fail since the user (Sarah) has no delegated roles, see global DAC in Figure 6.13. 

 

 
Figure 6.15. Access Scenario One (Rejected). 

 

In the second scenario, Figure 6.16, the request from the user (ShareMyHealth) with id (5) via 

MyGoogle to access the global service (GET Patient), would be allowed by FSICC. This is since 

the user (ShareMyHealth) with user Id (5) is assigned a role (SMH) with role Id (10) that is 

authorized to access global services 1-5 that includes (GET Patient), as was shown in the global 
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RBAC in Figure 6.9. in summary, the three interceptors are utilized in conjunction to dynamically 

check each time a user tries to invoke a global Service. All of the conditions must be satisfied in 

terms of permissions against the global RBAC, MAC or DAC in order for the service to be 

invoked.   

 

 
Figure 6.16. Access Scenario Two (Allowed). 

 
 
 

 

 

6.3. Related work in Security Policy Integration and Enforcement 
 

In this section, we present related work in two areas: security policy integration and security 

policies enforcement on FHIR API. For the first area, we review five related works on security 

policy integration comparing and contrasting their work to our security policy integration approach. 

The first effort (Shafiq, B, Joshi, B, Bertino, E, & Ghafoor, A, 2005) proposed a set of mapping 

algorithms that can be utilized to combine RBAC policies from different sources into a conflict-



181 
 

free global policy. This work is similar to our RBAC integration approach by providing an RBAC 

integration solution.  However, this work assumes that all of the RBAC policies from different 

systems are defined and stored using the same format which is an unrealistic assumption, while in 

our approach we require each system to provide an RBAC policy using a specific format in JSON.  

The second effort (Gouglidis, A, Ioannis, M, & Vincent, C, 2014) extended NIST-RBAC 

to define a checking technique that can be utilized as a management service/tool for the verification 

of multi-domain cloud policies. This technique is capable of detecting whether a user with a role 

from one domain can access an object from another domain. This effort, unlike our approach, does 

not define a complete global RBAC policy for all of the integrated systems and performs an on-the-

fly authorization query for every object access request that generates an undesirable overhead.  

The third effort (Bonatti, P, Maria, L, & Subrahmanian, V, 1997) focused on the issue of 

integrating sensitivity levels of different systems under the assumption that one sensitivity level in 

one system may have a different semantic interpretation of the same sensitivity level in another 

system. To solve this issue, this effort proposed to map each sensitivity level of each system with a 

sensitivity level that has similar semantics but not the same name in another system. This effort is 

similar to our MAC integration approach in the way they map a number of sensitivity levels of 

different systems which is similar to our mapping of classification levels. However, the way users 

and objects of each system assigned clearance and classification, respectively, in the presence of 

the global sensitivity levels, is not clearly articulated.  

The fourth effort (Dawson, S, Shelly, Q, & Pierangela, S, 2000) proposed an approach for MAC-

based polices integration by introducing two main concepts: the wrapper and the mediator. A 

wrapper is a mechanism that is associated with each system to provide a uniform data interface and 

a mapping between the system’s sensitivity levels and sensitivity levels of other systems in order 
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to generate a global MAC policy. The mediator is an enforcement technique that processes global 

access requests based on the generated global MAC policy. This work is similar to our MAC 

integration approach as they provide a MAC integration solution and also provide a technique to 

enforce the global MAC policy. However, their work assumes that each user of each system can 

only be assigned to one specific read property (SS) and one specific write property (SI), unlike our 

approach where any user may be assigned to any of the read properties (SS, S* read) and to any of 

the write properties (SI, L*, S* write). 

The last effort (Joshi, BD & Elisa, B, 2006) proposed a solution for defining RBAC-based 

delegation in an integrated environment. Specifically, in this work a delegation framework is 

proposed that provides two types of delegation, role delegation and permissions (sub-set of 

permissions of a role) delegation, that can be user-to-user, user-to-role, role-to-role or role-to-user. 

This work is similar to our DAC integration approach as they also provide a DAC integration 

solution. However, their work is limited to a specific type of RBAC (i.e., GTRBAC), unlike our 

approach for RBAC-based delegation. Also, their work does not support the integration of MAC-

based delegation in which our approach provides it. Note that all of the above five efforts try to 

integrate policies that are defined against objects (traditional) and just target one access control 

model, while our security policy integration approach provides solutions to integrate policies which 

are defined against services that access objects in which such policies can be any combination of 

RBAC, MAC, and DAC.  

    For the second area, we review four related works on the topic of security enforcement that 

utilizes FHIR. The first effort, SMART on FHIR (SMART on FHIR, 2015), proposed a standard 

for authentication and authorization that controls Apps access to FHIR resources based on the 

OAuth2 authentication protocol (Cook, 2012). Each App is given a cryptographic Token that has a 
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number of claims. A claim can be a scope (each App may have one or more scopes) or patient ID, 

and the information in the Token is encrypted using the JWT library (JWT Team, 2012).  A scope, 

such as (scope=user/Patient.read), defines what type of FHIR API an App can access which allows  

an App to retrieve all of the Patient data and  can be further restricted to only return the Patient 

record that matches the patient ID in the App's Token. This effort is similar to our approach for 

enforcing security policies since they support security interceptors that perform authentication and 

authorization against each request to access services. However, the authorization interceptor 

presented by this effort is different from our approach since the authorization interceptor cannot be 

used to enforce advanced security policies to control access to FHIR resources using roles (RBAC), 

sensitivity levels (MAC), and roles/sensitivity levels delegations (DAC). 

     The second effort, Vonk (Simplifier.net, 2018), is an extension of the access control approach 

of SMART on FHIR, an implementation of SMART on FHIR standard in which the default 

processes for Apps authentication and authorization is based on SMART on FHIR standard. 

However, in Vonk, the authentication implementation can be changed from the default OAuth2 

authentication protocol to any other authentication implementations and the authorization process 

of SMART on FHIR can be replaced with any other authorization implementations. This effort is 

similar to our approach for enforcing security policies as their approach provide authentication and 

authorization capabilities. However, the authorization process of this effort is different from our 

approach as it does not support advanced security requirements to control access to FHIR resources 

using roles (RBAC), sensitivity levels (MAC), and roles/sensitivity levels delegations (DAC).    

The third effort, SecFHIR (Altamimi, 2016), proposed a security standard that may be adopted 

to extend the FHIR standard with access control specifications. Specifically, SecFHIR suggested to 

define permissions on FHIR resources as an XML schema so that the defined XML schema can be 
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integrated into the XML schemas of different FHIR resources. In this way, the permissions defined 

in each FHIR resource’s XML schemas can be utilized by any access control mechanism to enforce 

such permissions. Clearly this approach is different from our approach since SecFHIR does not 

provide any authentication capabilities that can be utilized to verify the identity of Apps. Also, 

SecFHIR doesn’t provide any mechanisms to support enforcing security policies on Apps’ access 

requests for important access control models such as RBAC, MAC, and DAC.  

Finally, the fourth effort, HAPI FHIR reference implementation (HAPI community, 2017), 

provides two security mechanisms: one to verify Apps identity using an authentication interceptor; 

and another one to enforce security policies using the rule-based access control model using the 

authorization interceptor. The authentication interceptor utilizes the HTTP Basic Auth protocol for 

Apps authentication purposes. In addition, the rule-based access control model defines a set of rules 

within the interceptor and utilizes if/else statements in order to whitelist/blacklist Apps access 

requests to FHIR resources. This approach is similar to our approach for enforcing security policies 

as their approach provides authentication and authorization capabilities, via the authentication and 

authorization interceptors. However, the authorization interceptor of their approach is different 

from our approach as they do not support advanced security requirements to control access to FHIR 

resources using roles (RBAC), sensitivity levels (MAC), and roles/sensitivity levels delegations 

(DAC).    
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Chapter 7 

SOA-based Security Engineering for FSICC 
 

 

This chapter presents and explains an SOA-based security engineering and global security policy 

generation process for FSICC that involves all of the horizontal boxes in Figure 1.3 that contain the 

main research foci of this dissertation: Architectural Blueprints as reviewed in Chapter 5; Unified 

Cloud Computing Access Control Model as presented in Chapter 4; Access Control Models in 

Section 1.3 of Chapter 1 and Section 2.2 of Chapter 2; and, GSP  (Global Security Policy) 

Generation and GAPI (Global API) Generation  and Global Security Policy and Global API 

Utilization and Security Enforcement in Chapter 6. GSP  (Global Security Policy) Generation and 

GAPI (Global API) Generation is for generating the security policy from multiple systems to make 

global APIs available to clients what’s showing in the lower portion of Figure 1.2 of Chapter 1. 

Global Security Policy and Global API Utilization and Security Enforcement that utilizes security 

interceptors that was shown in the bottom of Figure 1.2 to allow/deny clients from access global 

services of FSICC.  A SOA-based security engineering process (SSEP) for FSICC is intended to 

assist security engineers of systems and clients and security engineers of FSICC with a 

structured process to define and maintain secure interoperable services for RBAC, MAC, and 

DAC.  

     To support SSEP, the Unified Cloud Computing Access Control Model (UCCACM), from 

Chapter 4, has a set of definitions for global security policy generation and utilization (see Defns. 

41-48 of Section 4.6). This set of definitions ensure that such global security policy can control 

access to a set of global services that are generated using one or more of integration architecture 

blueprints: Basic Architecture, Alternative Architecture, or Radical Architecture from Chapter 
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5. Based on this, this chapter introduces and discusses a SOA-based security engineering and 

global security policy generation process for FSICC; this addresses Contribution EC-C: Security 

Mapping/Enforcement Algorithms and SSEP from Section 1.5, this is represented by the left 

vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 from Chapter 1 that spans all 

of the five horizontal boxes: Architectural Blueprints, Unified Cloud Computing Access Control 

Model, Access Control Models, Global Security Policy and Global API Generation, and Global 

Security Policy and Global API Utilization and Security Enforcement. 

In the remainder of this chapter, a SOA-based security engineering and global security policy 

generation process for FSICC is presented in three main sections. In Section 7.1,   a Pre-Process 

Step briefly describes what each system and client need to do before joining the FSICC. In Section 

7.2, a SOA-based security engineering process (SSEP) for FSICC is presented that is intended to 

assist security engineers of systems and clients and security engineers of FSICC with a structured 

process to define and maintain secure interoperable services for RBAC, MAC, and DAC. In Section 

7.3, a complete and detailed example that illustrates the SOA-based security engineering process 

of Section 7.2 is provided to demonstrate the phases and tasks of SSEP coupled with security policy 

integration algorithms of Section 6.2 of Chapter 6 that can be utilized to establish and utilize security 

for interoperable services via FSICC.  

 

7.1. A Pre-Process Step for Joining FSICC 

As discussed in Chapter 3, one key feature of the FSICC is to enable multiple systems to provide 

their services, which can be web-based, cloud-based, or traditional API, via registering into FSICC. 

This was introduced in Section 3.2 as cloud computing capability 1: Local Service Registration and 

Mapping to Global Services. These web-based, cloud-based, or traditional API that are provided by 
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a system are transitioned to a set of equivalent and unified into a set of global services, via FSICC, 

by utilizing cloud computing capability 1. However, as discussed in Chapter 5, each system that 

provides services needs to perform a pre-process step before joining the FSICC which is creating 

an integration layer utilizing a standard integration framework (IFMWK), such as FHIR API for 

the healthcare domain, which is a standard API that converts system’s data from/to the integration 

layer format. Such an integration layer is specified and utilized by the FCICC. To support this step, 

Section 5.3 provided a specific set of instructions using the HIT IFMWK Blueprint that a system 

may utilize to build its own integration layer.   

From a client perspective, FSICC   provides the unified Global Services so that clients can easily 

create application functionality without the need to consider heterogeneous types of systems’ 

services. This was introduced in Section 3.2 as cloud computing capability 3: Global registration, 

authentication, authorization, and service discover for Consumers. These mobile, web, or desktop 

client apps then can be developed using a subset of the available unified global services, via FSICC, 

by utilizing cloud computing capability 3. However, as discussed in Chapter 5, each client that is 

interested in utilizing such global services may need to perform a pre-process step before joining 

the FSICC to   create an integration layer which is a standard API that converts a client’s data 

from/to the integration layer format. To support this step, Section 5.3 provided three sets of 

instructions via three architectural blueprint options that a client may utilize to build its own 

integration layer: the Basic Architecture Blueprint, the Alternative Architecture Blueprint, and the 

Radical Architecture Blueprint). 

 

7.2. An SOA-based Security Engineering Process (SSEP) for FSICC  
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The SOA-based security engineering process (SSEP) is intended to help security engineers of 

systems and clients, on one side, and the security engineer of FSICC, on the other side, to establish 

and maintain secure interoperable services via RBAC, MAC, and DAC per security requirements 

2, 4, and 3 of Section 3.1, respectively, as shown in Figure 7.1. This occurs via four main phases 

(i.e., 1.a, 1.b, 2.a, and 2.b) in which the phases 2.a, and 2.b are further explained in Figures 7.2 and 

7.3, respectively. This allows SSEP to enable the security engineer: of each participating system to 

integrate its services into FSICC (see cloud computing capability 1 of Section 3.2) in which the 

system’s security policy is enforced; of each interested client to enable the client’s users to leverage 

a set of global services and global security policy (see cloud computing capability 3 of Section 3.2); 

and of the FSICC to integrate all of the security policies from all of systems that are to be defined 

against the global services (see cloud computing capability 2 of Section 3.2) and to control the way 

that interested clients utilize the services. In the remainder of this section, we explore SSEP in 

Figure 7.1, along with Figures 7.2 and 7.3, utilizing Figure 6.1 from Chapter 6 that showed the 

architecture for global security policy generation and utilization, and explaining the tasks for 

security engineers of systems, clients, and FSICC.  

To begin, the SSEP, in Figure 7.1, is divided into four phases. In Section 7.2.1, we present the 

Constructing Systems Requests phase, labeled (1.a) in the top left of Figure 7.1, that needs to be 

performed by security engineers of systems. In Section 7.2.2, we describe the Constructing Clients 

Requests phase, labeled (1.b) in the top right of Figure 7.1, that needs to be performed by security 

engineers of clients. In Section 7.2.3, we present the Registering Requests Processing phase, labeled 

(2.a) in the bottom left of Figure 7.1, that needs to be performed by the security engineers of FSICC 

in which the specific tasks of this phase are depicted in Figure 7.2. In Section 7.2.4, we discuss the 

Usage Requests Processing phase, labeled (2.b) in the bottom right of Figure 7.1, that needs to be 



189 
 

performed by the security engineers of FSICC in which the specific tasks of this phase are depicted 

in Figure 7.3. Note that in the rest of this section, the term “system” indicates a pure system, mixed 

system (services registering part) or mixed client (services registering part), and the term “client” 

indicates a pure client, mixed client (services utilization part) or mixed systems (services utilization 

part). 

     

7.2.1 Constructing Systems Requests Phase  

The Constructing Systems Requests phase labeled (1.a)   in Figure 7.1 allows security engineers 

of pure or mixed systems to provide their services via FSICC and for mixed systems to request 

services.  From a registering perspective, security engineers of both pure and mixed systems can 

select to Register System’s Integration Layer and Security Policy, labeled (1.a.1) which utilizes the 

cloud computing capabilities of FSICC to provide the system’s integration layer and security policy 

that enables FSICC to recognize and integrate: a system’s integration layer with the global services; 

and, a system’s security policy with the global security policy. This is indicated by the dashed line 

from the Constructing Systems Requests box to the Registering Requests Processing box labeled 

(2.a) at the bottom left of Figure 7.1. As part of this process, the system’s integration layer (e.g., 

FHIR for HITs) can be designed by utilizing the HIT IFMWK Blueprint from Section 5.3, as 

described in Section 7.1. In addition, the system’s security policy is defined by the system’s security 

engineer to control access to the system’s integration layer via one or more access control models 

such as RBAC, MAC, and/or DAC that specify which services (of the system’s integration layer) 

each user in that system may access. This is indicated by the RBAC Integration and Review & 

Correct Role Names, the MAC Integration and Building Global MAC, and the DAC Integration 

boxes of pure and mixed systems at the bottom of Figure 6.1 from Chapter 6. 
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From a usage perspective, security engineers of mixed systems can select to Utilize GSP & 

GAPI labeled (1.a.3) and since they are interested in using the Global Services in order to 

accomplish some of the functionalities, they need to go through a number of tasks based on the 

answers to two questions: 

• Question 1: Does the mixed system need to utilize a subset of the global services (i.e., 

global API) and a subset of the global security policies, labeled (1.a.q1)? If yes, then ask 

Question 2. 

• Question 2: Does the mixed system need to customize a subset of the global security 

policies, labeled (1.a.q2)? That is, a security engineer of the system has found a global 

security policy that has too few/many permissions than needed, thereby needing a 

customization. 

➢ If the answer to Question 2 was yes, then the security engineer of the system 

would need to have human intervention with the security engineer of FSICC, 

labeled (1.a.2), to customize a subset of the global security policy in which both 

parties discuss and agree about adding a new customized security policy, the 

global security policy is updated after this task, or to use an existing security 

policy.  

➢ If the answer to Question 2 was no, the security engineer of the system would 

use some capabilities of FSICC to send a global security policy and global 

services utilization request to FSICC, labeled (1.a.3) as indicated by the solid 

line from the Constructing Systems Requests box to the Usage Requests 

Processing box at the bottom of Figure 7.1.   
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Figure 7.1. A High-Level View of SOA-Based Security Engineering Process for FSICC. 

 

 

 

7.2.2 Constructing Clients Requests Phase 

 

 

The Constructing Clients Requests phase labeled (1.b) in Figure 7.1 allows security engineers 

of mixed clients to provide their services via FSICC and for pure and mixed clients to request 

services. From a registering perspective, security engineers of mixed clients can select to Register 

System’s Integration Layer and Security Policy, labeled (1.b.1) which utilizes the cloud computing 

capabilities of FSICC to provide the client’s integration layer and security policy that enables 

FSICC to recognize and integrate: a system’s integration layer with the global services; and, a 

system’s security policy with the global security policy. This is indicated by the dashed line from 



192 
 

the Constructing Clients Requests box to the Registering Requests Processing box at the bottom of 

Figure 7.1. As part of this process, the client’s integration layer (e.g., FHIR for HITs) can be 

designed by utilizing the HIT IFMWK Blueprint from Section 5.3, as described in Section 7.1.  

Moreover, the client’s integration layer (e.g., FHIR for HITs) can be designed by utilizing one of 

the three integration options: Basic Architecture, Alternative Architecture, or Radical Architecture 

as discussed in Section 5.2, as described in Section 7.1. In addition, the client’s security policy is 

defined by the client’s security engineer to control access to the client’s integration layer via one or 

more access control models such as RBAC, MAC, and/or DAC that specify which services (of the 

client’s integration layer) each user in that client may access, this is indicated by the RBAC 

Integration and Review & Correct Role Names, the MAC Integration and Building Global MAC, 

and the DAC Integration boxes of mixed clients at the top of Figure 6.1.  

From a usage perspective, security engineers of pure and mixed clients that are interested in 

utilizing the FSICC’s global services and global security policy in order to accomplish some of the 

functionalities, need to go through a number of tasks based on the answers to three questions.  

• Question 1: Does the client have a defined security policy that the client’s security 

engineer prefers to use instead of the global security policy (1.b.q1)?  

➢ If the answer to Question 1 was yes, then the security engineer of the client has 

human intervention with the security engineer of FSICC to map the client’s security 

policy to the global security policy labeled (1.b.2) in which both parties discuss and 

agree about a way to map the client’s security policy to the global security policy 

which is updated after this task.  

➢ If the answer to Question 1 was no, the client’s security engineer needs to answer 

Question 2.  
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• Question 2: Does the client need to utilize a subset of the global services (i.e., global 

API) and a subset of the global security policies, labeled (1.b.q2)? If the answer to 

Question 2 was no, the client’s security engineer needs to answer Question 3.  

• Question 3: Does the client need to customize a subset of the global security policies, 

labeled (1.b.q3)? That is, a security engineer of a client has found a global security 

policy that has too few/many permissions than needed, thereby needing a customization. 

➢ If the answer to Question 3 was yes, then the security engineer of the client would 

need to have human intervention with the security engineer of FSICC to customize 

a subset of the global security policy, labeled (1.b.3), in which both parties discuss 

and agree about adding a new customized security policy, the global security policy 

is updated after this task, or to use an existing security policy. 

➢ If the answer to Question 3 was no, the security engineer of the client would use 

some capabilities of FSICC to send a global security policy and global services 

utilization request to FSICC, labeled (1.b.4) indicated by the solid line from the 

Constructing Clients Requests box to the Usage Requests Processing box at the 

bottom of Figure 7.1.  

 

7.2.3 Registering Requests Processing Phase 

 

The Registering Requests Processing phase labeled (2.a) in Figure 7.1 needs to be performed 

by the security engineers of FSICC to achieve two main objectives. First, to build the global 

services, which is primarily a human-based process, based on the integration layer of each system. 

Second, to construct the global security policy, which is mostly an algorithm-based process, based 

on security policy of each system. The Registering Requests Processing phase has three tasks and 

executed for each system that is being integrated into the global policy:  
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• Task 1: The first task is to configure the global services (global API), labeled (2.a.1) at 

the top of Figure 7.2, in which the FSICC’s security engineer is required to configure 

each global service of the FSICC so that CRUD methods of the services can send and 

receive data to/from each system’s integration layers. This is based on integration layers 

provided by different systems in the phases 1.a and 1.b of Figure 7.1.  

• Task 2:  In the second task, the FSICC’s security engineer has three task options to 

perform RBAC, MAC, and/or DAC integration on each system, which may have no 

access control, only one access control, any combination of two access controls, or all 

three access controls:  

➢ The first task option, labeled (2.a.2) in Figure 7.2, is to send each RBAC policy of 

each system to the RBAC integration algorithm. This task option is performed if 

there is a system’s RBAC policy that needs to be integrated with the global security 

policy. As part of this process, the generated RBAC policy is submitted to Review 

and Correct Role Names Algorithm labeled (2.a.2.a) with any other required input. 

➢ The second task option, labeled (2.a.3) in Figure 7.2, is to send each MAC policy of 

each system to the MAC integration algorithm. This task option is performed if there 

is a system’s MAC policy that needs to be integrated with the global security policy. 

As part of this process, the generated Sensitivity Levels Mapping List is submitted 

to the Building Global MAC Algorithm with any other required inputs, labeled 

(2.a.3.a). 

➢ The third task option, labeled (2.a.4) in Figure 7.2, is to send each DAC policy of 

each system to the DAC integration algorithm. This task option is performed if there 

is a system’s DAC policy that needs to be integrated with the global security policy. 
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• Task 3:  In third task, labeled (2.a.5) at the bottom of Figure 7.2, the FSICC’s security 

engineer needs to send the resulted global RBAC policy from (2.a.2), global MAC 

policy from (2.a.3), and global DAC policy from (2.a.4) to Combine Updated Global 

RBAC, Global MAC, and Global DAC and Control Data algorithm that concatenates 

all of the three global polices to generate one global security policy. The FSICC’s 

security engineer also needs to specify one read data access type, as described in Section 

6.1.4 of Chapter 6, to control the way that data are read. Note that there is one write data 

access type that is used by default to control the way that data are written. The third task 

marks the final part of the Registering Requests Processing phase in which the global 

services and global security policy are ready to be utilized by FSICC’s clients. 

Moreover, at this point the complete details of the generated global security policy and 

global services, such as the way to utilize the global services and global security policy 

and what is the exact web location, will not be published to public.  
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Figure 7.2. A Detailed View of Phase 2.a of the SSEP 

 

7.2.4 Usage Requests Processing Phase 

 

The Usage Requests Processing phase labeled (2.b) in Figure 7.1 is performed by the security 

engineers of FSICC to enable clients to leverage available global services and the corresponding 

global security policy, which are built based on the tasks of the Registering Requests Processing 

phase and is a human-based process. The FSICC’s security engineer has four tasks to perform the 

Usage Requests Processing phase:  
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• Task 1:  In the first task, the FSICC’s security engineer has three task options to process 

clients’ requests:  

➢ The left task option, labeled (2.b.1) in Figure 7.3, is to check the Global Security 

Policy (GSP) to Find Permissions Similar to Client Security Policy (CSP). This task 

option is performed if there is a client that requests to map its security policy with 

the global security policy. 

➢ The center task option, labeled (2.b.2) in Figure 7.3, is to assign an ID and Token to 

a Client which is needed for authentication and authorization purposes. This task 

option is performed if there is a client (basically all of the clients) that requests to 

utilize a subset of the global security policy and global services.  

➢ The right task option, labeled (2.b.3) in Figure 7.3, is to Add needed Customized 

Policy to GSP as a New Policy. This task option is performed if there is a client that 

requests to customize a subset of the global security policy.  

• Task 2:  In the second task, the FSICC’s security engineer also has three task options: 

➢ The left task option, labeled (2.b.1.a) in Figure 7.3, is to map the Client Security 

Policy (CSP) and Global Security Policy (GSP). This task option is performed if the 

output of the task option (2.b.1) was yes, which means that the Global Security 

Policy (GSP) has permissions similar to Client Security Policy (CSP). 

➢ The center task option, labeled (2.b.1.b) in Figure 7.3, is to add the Client Security 

Policy (CSP) to Global Security Policy (GSP). This task option is performed if the 

output of the task option (2.b.1) was no, which means that the Global Security Policy 

(GSP) does not have permissions similar to Client Security Policy (CSP).  
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➢ The right task option, labeled (2.b.2.a) in Figure 7.3, is to Find One Suitable System 

for a Client as a Repository. This can be done by finding a registered system that 

provides services similar to the set of global services the client is interested in.  

• Task 3: In the third task, labeled (2.b.4) in Figure 7.3, the FSICC’s security engineer 

should update the Global Security Policy (GSP,) that may have been changed as a result 

of performing the tasks (2.b.1.a), (2.b.1.b) and/or (2.b.3). 

• Task 4: In the fourth task, labeled (2.b.5) in Figure 7.3, the FSICC’s security engineer 

can Send to the client: the Client’s ID, the Client’s Security Token, the available Global 

API (services), the available Global Security Policy (GSP), and instructions on the way 

to utilize such global services and global security policy. This allows the client to begin 

building an App utilizing the retrieved global services and global security policy. 
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(2.b) Usage Requests Processing

(2.b.2) Assign ID & Token to a Client
(2.b.1) Check GSP to Find 

Permissions Similar to CSP

[CLIENT REQUEST TO MAP CSP WITH GSP]

(2.b.3) Add Needed Customized 
Policy to GSP as a New Policy

[CLIENT REQUEST TO CUSTOMIZE GSP]
[CLIENT REQUEST TO UTILIZE GSP & Global API]

FOUND

[YES]

[NO]

(2.b.2.a) Find One Suitable System 
for a Client as Repository

(2.b.4) Update GSP if Needed

(2.b.1.b) Add CSP to GSP

(2.b.5) Send: Client ‘s ID & Token, 
the Available Global API, and the 

Available GSP to a Client [DONE]

[NOT DONE]

[NEEDS REVISION]

(2.b.1.a) Map CSP and 
GSP

Legend
CSP      Client Security Policy GSP   Global Security Policy

 
Figure 7.3. A Detailed View of Phase 2.b of the SSEP 

 

 

7.3. Demonstrating the SOA-based Security Engineering Process 
 

To provide a hands-on experiment on the SOA-based security engineering process (SSEP), this 

section presents a complete and detailed example that demonstrates: the way that each phase and 

task of SSEP from Section 7.2 in applied, as was shown in Figures 7.1, 7.2, and 7.3; the usage of 

the  security policy integration algorithms from Section 6.1 from Chapter 6, see Figures 6.1-6.8; 

and,  the establishment  and utilization of security for interoperable services via FSICC. In the 

remainder of this section, our healthcare scenario from Section 2.4 is used for explaining all of the 

phases and tasks of SSEP, where we assume that the CT2 client does not provide services or a 

security policy. Based on this assumption, we can categorize: CT2  App as a pure client that only 

utilizes services from OpenEMR system; SMH  App as a mixed client that utilizes  services from 
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MyGoogle system and provides a number of services; OpenEMR  as a pure system that only 

provides services; and, MyGoogle  as a mixed system that provides services and utilizes services 

from OpenEMR.  

Using this setting, we apply the SSEP’s phases and tasks of Section 7.2 in the following order. 

First, the Constructing Systems Requests phase, labeled (1.a) in the top left of Figure 7.1, is applied 

to OpenEMR system, MyGoogle system, and SMH client App, since each of them has services and 

security policy to register. Second, the Registering Requests Processing phase, labeled (2.a) in the 

bottom left of Figure 7.1, is applied to OpenEMR system, MyGoogle system, and SMH client App, 

since each of them has sent services and security policy registering requests to FSICC. Third, the 

Constructing Clients Requests phase, labeled (1.b) in the top right of Figure 7.1, is applied to 

MyGoogle system, SMH, and CT2 client Apps, since each of them is interested in utilizing the 

global services and the global security policy. Finally, the Usage Requests Processing phase, labeled 

(2.b) in the bottom right of Figure 7.1, is applied to MyGoogle system, SMH, and CT2 client Apps,  

since each of them has sent global services and global security policy utilization requests to FSICC. 

Note that in the remainder of this section, only a subset of actual services and security policies of 

each system and client is used, since these subsets are enough for explaining all of the phases and 

tasks of SSEP.  

The remainder of this section is organized into four subsections. In Section 7.3.1, we explain the 

way that the three systems OpenEMR, MyGoogle, and SMH can utilize the Constructing Systems 

Requests phase from Section 7.2. In Section 7.3.2, we apply the Registering Requests Processing 

phase from Section 7.2 to the three requests from OpenEMR, MyGoogle, and SMH systems. In 

Section 7.3.3, we explain the way that three clients: MyGoogle, SMH, and CT2 can utilize the 

Constructing Clients Requests phase from Section 7.2. Finally, in Section 7.3.4, we apply the Usage 
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Requests Processing phase from Section 7.2 to the three requests from MyGoogle, SMH, and CT2 

clients.   

 

7.3.1 Applying the Constructing Systems Requests Phase on OpenEMR, MyGoogle, and SMH 

In this section, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, 

to the OpenEMR and MyGoogle systems and the SMH client.  Since OpenEMR is a pure system, 

the security engineer of OpenEMR must register: OpenEMR’s integration layer  which are  

OpenEMR’s FHIR services in Table 2.5 of Section 2.4 and Example 4.4 with Figure 4.1 in Section 

4.4;  and, OpenEMR’s security policy which are OpenEMR’s RBAC, MAC, and DAC in Table 2.6 

of Section 2.4 and Example 4.4 with Figure 4.1 in Section 4.4. Note that the security engineer of 

the OpenEMR system designed the OpenEMR’s integration layer by utilizing the HIT IFMWK 

Blueprint in Section 5.4.1. This can be achieved by constructing three JSON documents, one for 

OpenEMR’s FHIR services from Figure 7.4, one for OpenEMR’s RBAC/DAC from Figure 7.5, 

and one for OpenEMR’s MAC/DAC from Figure 7.6, and then sending them to the System Registry 

component of FSICC in Figure 7.22.     

 

 

 

Figure 7.4. OpenEMR’s FHIR services in JSON 
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Figure 7.5. OpenEMR’s RBAC/DAC policy in JSON 

 

 

Figure 7.6. OpenEMR’s MAC/DAC policy in JSON 

 

Second, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, to the 

MyGoogle system. Since MyGoogle is a mixed system, the security engineer of MyGoogle, must 

register: MyGoogle’s integration layer which are the MyGoogle’s FHIR services in Table 2.7 of 

Section 2.4 and Example 4.4 with Figure 4.1 in Section 4.4; and MyGoogle’s security policy which 

are the MyGoogle’s RBAC and MAC in Table 2.8 of Section 2.4 and Example 4.4 with Figure 4.1 
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in Section 4.4. Note that the security engineer of the MyGoogle system designed the MyGoogle’s 

integration layer by utilizing the HIT IFMWK Blueprint in Section 5.4.1. This can be achieved by 

constructing three JSON documents, one for MyGoogle’s FHIR services from Figure 7.7, one for 

MyGoogle’s RBAC from Figure 7.8, and one for MyGoogle’s MAC from Figure 7.9, and then 

sending them to System Registry component of FSICC see Figure 7.22. 

 

Figure 7.7. MyGoogle’s FHIR services in JSON 

 

Figure 7.8. MyGoogle’s RBAC policy in JSON 
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Figure 7.9. MyGoogle’s MAC policy in JSON 

 

Finally, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, to the 

SMH client App. Since SMH is a mixed client, the security engineer of SMH must register: SMH’s 

integration layer which are SMH’s FHIR services see Table 2.3 in Section 2.4 and Example 4.5 

with Figure 4.2 in Section 4.4; and, SMH’s security policy which are SMH’s RBAC, MAC, and 

DAC see Table 2.4 in Section 2.4 and Example 4.5 with Figure 4.2 in Section 4.4. Note that the 

security engineer of the SMH designed the SMH’s integration layer by utilizing the Basic 

Architecture Blueprint in Section 5.4.1. This can be achieved by constructing three JSON 

documents, one for SMH’s FHIR services from Figure 7.10, one for SMH’s RBAC/DAC from 

Figure 7.11, and one for SMH’s MAC from Figure 7.12, and then sending them to the System 

Registry component of FSICC see Figure 7.22. 

 

Figure 7.10. SMH’s FHIR services in JSON 
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Figure 7.11. SMH’s RBAC/DAC policy in JSON 

 

Figure 7.12. SMH’s MAC policy in JSON 

 

7.3.2 Applying the Registering Requests Processing Phase on OpenEMR, MyGoogle, and 

SMH 

In this section, we apply the Registering Requests Processing Phase, labeled (2.a) in Figure 7.1, 

to the OpenEMR, MyGoogle systems and the SMH client. In Section 7.3.1, OpenEMR, MyGoogle, 

and SMH were constructed and sent a registering request in JSON format to the FSICC, see Figures 

7.4, 7.7, and 7.10 respectively. In this phase, the security engineer of FSICC, as described in Section 



206 
 

7.2.3 and Figure 7.2, processes each of these registering requests through the three tasks as 

described in Section 7.2.3.  

In task 1, the security engineer of FSICC needs to configure each global service of the FSICC 

so that CRUD methods of the global services can send and receive data to/from the integration 

layers of OpenEMR, MyGoogle, and SMH. In this task, the security engineer of FSICC reads the 

JSON documents that include the registering requests of OpenEMR, MyGoogle, and SMH and 

initializes the global services of FSICC with five services as presented in Table 7.1. For example, 

the service (gs2) is a global service (Observation[GET]) that whenever triggered calls the mapped 

services ls2 of OpenEMR, ls2 of MyGoogle, and ls2 of SMH. Similarly, the services (gs1, gs3, gs4, 

gs5) are created and configured as described in Table 7.1. Note that for each created global service, 

only the specified CRUD methods of the mapped service are implemented. For example, only PUT 

and GET methods are implemented for the first global service (gs1) but not POST or DELETE 

methods.    

Table 7.1. Initial Set of FSICC’s Global Services   

Service ID Service Name Method Name Mapped to 

gs1 FSICC/Observation PUT ls1 (OpenEMR), ls1 (MyGoogle), and ls1 (SMH) 

gs2 FSICC/Observation GET ls2 (OpenEMR), ls2 (MyGoogle), and ls2 (SMH) 

gs3 FSICC/Patient PUT ls3 (OpenEMR), ls3 (MyGoogle), and ls3 (SMH) 

gs4 FSICC/Patient GET ls4 (OpenEMR), ls4 (MyGoogle), and ls4 (SMH) 

gs5 FSICC/Person PUT ls5 (MyGoogle), and ls5 (SMH) 

 

In task 2, to establish the global security policy the security engineer of FSICC needs to send the 

registered security policy of OpenEMR, MyGoogle, and SMH to the appropriate task 2 option based 

on the type of the registered security policy (RBAC, MAC, or DAC). First, as described in the first 

task option of task 2 labeled 2.a.2 in Section 7.2.3, the security engineer of FSICC sends the 

OpenEMR’s RBAC policy, Figure 7.5, MyGoogle’s RBAC policy, Figure 7.8, and SMH’s RBAC 

policy, Figure 7.11, to the RBAC integration algorithm that generates the initial global RBAC 
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policy as shown in Figure 7.14. Moreover, Table 7.2 has some information that the Global-RBAC 

algorithm uses to generate the initial global RBAC policy given in Figure 7.14. First, the algorithm 

uses the RBAC policy of OpenEMR to initialize the global RBAC policy so that OpenEMR’s roles, 

Physician and Patient, are added as the first two global roles. Then, the RBAC policy of SMH is 

integrated to the global RBAC policy so that six global roles, Physician_2, Patient_2, New_Role_1, 

New_Role_2, New_Role_3 and New_Role_4, are added (see the first four comparisons in Table 

7.2). Finally, the RBAC policy of MyGoogle is integrated to the global RBAC policy so that two 

global roles, SMH and New_Role_5, are added (see the last eight comparisons in Table 7.2). Note 

that roles New_Role_1, New_Role_2, New_Role_3, New_Role_4 and New_Role_5 are abstract 

roles in which no users are assigned to them. Figure 7.13 provides a clear view of the role hierarchy 

of the global RBAC policy. 

Table 7.2. Comparisons Information of the RBAC Integration Step 

ID System Role Global Role Direct Common 
Permissions 

Comparison 
Result 

Created Global Roles 

1 Physician Physician Observation [GET] Overlap Physician_2, New_Role_1 

2 Physician Patient Patient [GET] Overlap New_Role_2 

3 Patient Physician Patient [PUT] Overlap Patient_2, New_Role_3 

4 Patient Patient Observation [PUT] Overlap New_Role_4 

5 SMH New_Role_1 Observation [GET] SR contains GR SMH 

6 SMH New_Role_2 Patient [GET] SR contains GR Nothing 

7 SMH New_Role_3 Patient [PUT] SR contains GR Nothing 

8 SMH New_Role_4 Observation [PUT] SR contains GR Nothing 

9 SMH Physician Nothing Not related Nothing 

10 SMH Physician_2 Nothing Not related Nothing 

11 SMH Patient Nothing Not related Nothing 

12 SMH Patient_2 Person [PUT] Overlap New_Role_5 
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RootRole

NewRole_4 NewRole_1NewRole_3 NewRole_2

Physician Physician_2

Patient
Patient_2

SMH

NewRole_5

 

Figure 7.13. The Role Hierarchy of the Global RBAC Policy 
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Figure 7.14. The Initial Global RBAC Policy in JSON 

 

Second, as described in the second task option of task 2 labeled (2.a.3) in Section 7.2.3, the 

security engineer of FSICC and each of the security engineers of OpenEMR, SMH, and MyGoogle 

systems have a discussion in order to understand the semantic and usages of each sensitivity level 

of each system. In this case, the assumption is that all of the security engineers of systems and 
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FSICC have agreed to use different semantics of sensitivity levels, see Section 4.4 of Chapter 4, 

and thus generate a Sensitivity Levels Mapping List as described in Table 7.3. Note that in this 

example, the OpenEMR’s sensitivity levels set is used as an initial global sensitivity levels set. In 

this sensitivity levels mapping list, we can describe the differences in sensitivity levels as follows: 

ShareMyHealth’s sensitivity level SIS is mapped to global sensitivity level SID; while MyGoogle’s 

sensitivity level VSI is mapped to global sensitivity level SID. Note that global sensitivity levels 

SIS and VSI have no corresponding levels in ShareMyHealth and MyGoogle sensitivity levels, 

respectively.    

Table 7.3. An Example of a Sensitivity Levels Mapping List 

ID Global Sensitivity Level (OpenEMR) System Sensitivity Level System Name 

1 PI PI ShareMyHealth 

2 BSI BSI ShareMyHealth 

3 SIS - ShareMyHealth 

4 SID SIS ShareMyHealth 

5 VSI VSI ShareMyHealth 

6 PI PI MyGoogle 

7 BSI BSI MyGoogle 

8 SIS SIS MyGoogle 

9 SID VSI MyGoogle 

10 VSI - MyGoogle 

 

Third, as described in the third task option of task 2 labeled (2.a.4) in Section 7.2.3, the security 

engineer of FSICC is required to send the DAC policy of OpenEMR, Figures 7.5 and 7.6, and DAC 

policy of SMH, Figure 7.11, to the DAC Integration algorithm that generates the global DAC policy 

as shown in Figure 7.15. Note that MyGoogle has no DAC policy. The generated global DAC 

policy has two role delegations (one from OpenEMR and one from SMH), and one clearance 

delegation from OpenEMR. Note that the Global DAC algorithm changed the role Ids, clearance, 

and user Ids to the global equivalents. 
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Figure 7.15. The Global DAC Policy in JSON 

 

In task 2, to finalize the generation of the global RBAC policy and global MAC policy the 

security engineer of FSICC also needs to send the output of the first task option, labeled (2.a.2), of 

task 2 and the second task option, labeled (2.a.3), of task 2 to the appropriate remaining part of each 

task option, labeled (2.a.2.a) and (2.a.3.a) in Figure 7.2 respectively, based on the type of the 

registered security policy (RBAC or MAC). First, after generating the initial global RBAC labeled 

(2.a.2), Figure 7.14, that has some global roles with undesirable names such as New_Role_1 - 

New_Role_5, the security engineer of FSICC may wish to rename such roles via the step labeled 

(2.a.2.a) in Figure 7.2. To do this, the security engineer of FSICC first can review the names of all 

of the global roles, Figure 7.14, and suggest a new name for a subset of the global roles, e.g., based 

on the authorized permissions, as a corrected global roles list. In this case, the security engineer of 

FSICC would keep the role names New_Role_1 - New_Role_5 and change the role names 

Physician, Patient, Physician_2, and Patient_2 to Attending_Physician, General_Patient, 

Research_Physician, and Fitness_Patient, respectively, as described in Table 7.4. Then, the security 

engineer of FSICC, as described in the first task option of task 2 in Section 7.2.3, needs to send the 

corrected global roles list to the Review and Correct Role Names algorithm labeled 2.a.2.a which 

updates the global RBAC policy with the new role names as required.  

Table 7.4. An Example of a Corrected Global Roles List 

Global Role ID (Old Name) New Name 
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1 (Physician) Attending_Physician 
2 (Patient) General_Patient 

5 (Physician_2) Research_Physician 
4 (Patient_2) Fitness_Patient 

    

Second, as described in the second task option of task 2 labeled (2.a.3) in Section 7.2.3, the 

security engineer of FSICC needs to Send the generated Sensitivity Levels Mapping List (Table 

7.3) to the Building Global MAC algorithm, labeled (2.a.3.a). This step composes the global MAC 

policy, Figure 7.16, utilizing users and services from MAC policy of OpenEMR, Figure 7.6, 

MyGoogle, Figure 7.9, and SMH, Figure 7.12, in which users clearances and services classifications 

are assigned based on the global sensitivity levels in which the read/write properties of each user 

are remain unchanged. 

 

Figure 7.16. The Global MAC Policy in JSON 

 

 

 

 



213 
 

In task 3 labeled (2.a.5) in Section 7.2.3, the global RBAC policy, Figure 7.14, the global MAC 

policy, Figure 7.16, and the global DAC policy, Figure 7.15, are simply combined, utilizing the 

Combine Updated Global RBAC, Global MAC, and Global DAC and Control Data algorithm, in 

one JSON document that serves as the global security policy. Also, the security engineer of FSICC 

augments the global security policy with two pieces of information: one of the three read data access 

types, and the write data access type (i.e., Open to Same System Users) as described in Section 

6.1.4 of Chapter 6. In this case, the assumption is that the security engineer of FSICC chosen to use 

the default read data access type (type 1 Open to All). Based on these settings: any user from 

OpenEMR, MyGoogle, or SMH who are assigned to the same global role, can read any data that 

the global role can retrieve; and, a user from a specific system, OpenEMR for example, who 

is assigned to a global role can only write data (only data of OpenEMR) that the global role can 

write.  

In summary, at this point of the example and the process, the complete details of the generated 

global security policy and global services (such as the way that to utilize the global services and 

global security policy) are not as yet published to the public.   

 

7.3.3 Applying the Constructing Clients Requests Phase on MyGoogle, SMH, and CT2 

We start by applying the Constructing Clients Requests phase, labeled (1.b) in Figure 7.1, to 

MyGoogle system. Since MyGoogle is a mixed system, the security engineer of MyGoogle, from 

a usage perspective, needs to answer the three main questions, as discussed in Section 7.2, see 

Figure 7.1, after visiting the available global services and global security policy webpage. In this 

case, it is assumed that the security engineer of MyGoogle has the following answers: the client has 

no defined security policy (again from usage perspective); the client would utilize a subset of the 

available global services and global security policy; and, the client does not need to customize any 
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subset of the global security policies. Based on these answers, the security engineer of MyGoogle 

should construct a JSON document for MyGoogle utilization request that specifies in detail the 

subset of global services (see Table 7.1) and global security policy, see Figures 7.14, 7.15, and 7.16, 

that MyGoogle has interests in utilizing, as shown in Figure 7.17, in which MyGoogle would be 

assumed to utilize: the global services: 2, 3, and 4; and the global role 2. Finally, the security 

engineer of MyGoogle needs to send the JSON document to the Client Registry component of 

FSICC in Figure 7.22. 

 

 

Figure 7.17. MyGoogle Utilization Request in JSON 

     

Second, we apply the Constructing Clients Requests to the SMH client App. Since SMH is a 

mixed client, the security engineer of SMH, from a usage perspective, needs to answer the same 

three main questions: SMH client has a defined security policy (again from usage perspective); 

SMH client would utilize a subset of the available global services but not interested in the global 

security policy; and, the client does not need to customize any subset of the global security policies. 

Based on these answers, the security engineer of SMH should construct two JSON documents. The 

first one (Policy Mapping Request) is to specify the defined security policy against the global 

services, as shown in Figure 7.18, in which one role (i.e., Parent with id 12) is defined that is 

authorized to access global services 4 and 5. This first JSON document needs to be sent to the 

security engineer of FSICC who needs to process and update the global security policy. Based on 
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the updated global security policy, the second JSON document can be constructed for SMH 

utilization request that specifies in details the subset of global services (see Table 7.1) that SMH 

interests in, as shown in Figure 7.19, in which SMH would be assumed to utilize: the global 

services: 4 and 5; and the global role 12 which was added into the global security policy as a result 

of human intervention with the security engineer of FSICC. Finally, the security engineer of SMH 

needs to send the second JSON document to the Client Registry component of FSICC in Figure 

7.22. 

 

Figure 7.18. SMH Policy Mapping Request in JSON. 

 

 

Figure 7.19. SMH Utilization Request in JSON 

 

Finally, we apply the Constructing Clients Requests phase to the CT2 client App. Since CT2 is a 

pure client, the security engineer of CT2 needs to answer the three main questions: CT2 client has 

no defined security policy; CT2 client would utilize a subset of the available global services and 

global security policy; and the client needs to customize a subset of the global security policies. 
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Based on these answers, the security engineer of CT2 should construct two JSON documents. The 

first one (Policy Customize Request) is to specify the customize security policy, as shown in Figure 

7.20, in which the Physician role (id 1) of the global RBAC policy is customized to be also 

authorized to access the global service 3. This first JSON document needs to be sent to the security 

engineer of FSICC who needs to process it and update the global security policy. Based on the 

updated global security policy, the second JSON document can be constructed for CT2 utilization 

request that specifies in details the subset of global services (see Table 7.1) that CT2 interests in, as 

shown in Figure 7.21, in which CT2 would be assumed to utilize: the global services: 1, 2, and 3; 

and the global role 1 which can access the global service 3 as a result of human intervention with 

the security engineer of FSICC). Finally, the security engineer of CT2 needs to send the second 

JSON document to the Client Registry component of FSICC see Figure 7.22. 

 

Figure 7.20. CT2 Policy Customize Request in JSON 

 

 

Figure 7.21. CT2 Utilization Request in JSON 
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7.3.4 Applying the Usage Requests Processing Phase on MyGoogle, SMH, and CT2 

As explained in Section 7.3.3, the MyGoogle system, and the SMH and CT2 client Apps are 

constructed and sent a utilization request and/or policy customize request and/or policy mapping 

request in JSON format, see Figures 7.17, 7.18, 7.19, 7.20, and 7.21, to the FSICC. In this section, 

we describe the way that the security engineer of FSICC, as described in Section 7.2.4, in Figure 

7.3, process each of these requests through the four tasks as described in Section 7.2.4. 

In task 1, the security engineer of FSICC needs to perform the appropriate task 1 option based 

on request type of the clients (policy mapping, utilization, or policy customization). First, as 

described in the left task option of task 1 labeled (2.b.1) in Section 7.2.4, the security engineer of 

FSICC needs to process the SMH’s policy mapping request, Figure 7.18. Since the SMH’s policy 

mapping request is RBAC-based, the security engineer of FSICC checks the global RBAC policy, 

Figure 7.14, and finds that the role (i.e., Parent with id 12) in the SMH’s policy mapping request is 

not similar to existing roles. 

Second, as described in the center task option of task 1 labeled (2.b.2) in Section 7.2.4, the 

security engineer of FSICC needs to process MyGoogle’s utilization requests, Figure 7.17, SMH’s 

utilization requests, Figure 7.19, and CT2’s utilization requests, Figure 7.21, by assigning an ID and 

generating a security Token for each client.  

Finally, as described in the right task option of task 1 labeled (2.b.3) in Section 7.2.4, the security 

engineer of FSICC needs to process CT2’s policy customize request, Figure 7.20. Since the CT2’s 

policy customize request is RBAC-based, the security engineer of FSICC checks the global RBAC 

policy, Figure 7.14, to locate the requested global role (i.e., Physician with id 1) and add a new 

global role (i.e., Visiting_Physician with id 13) and limit it to only access the specified global 

service (with id 3). 
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In task 2, the security engineer of FSICC needs to perform the appropriate task 2 option based 

on the outputs of task 1. First, as described in the center task option of task 2 labeled (2.b.1.b) in 

Section 7.2.4, the security engineer of FSICC adds a new global role (i.e., Parent with id 12), from 

the SMH’s policy mapping request, along with its permissions, to the global RBAC policy. This is 

because in the left task option of task 1 the security engineer of FSICC did not find a similar role in 

the global RBAC policy. Note that, in this case, the security engineer of FSICC will not perform 

the left task option of task 2 in Section 7.2.4 as no similar role was found.  

Second, as described in the right task option of task 2 labeled (2.b.2.a) in Section 7.2.4, the 

security engineer of FSICC needs to find one suitable system as repository for each of MyGoogle, 

SMH, and CT2 clients as follow. The OpenEMR system is chosen as a repository for MyGoogle, 

since the requested global services (2, 3, and 4) can be mapped to OpenEMR’s services. Then, the 

MyGoogle system is chosen as a repository for SMH, since the requested global services (4 and 5) 

can be mapped to MyGoogle’s services. Then, the OpenEMR system is chosen as a repository for 

CT2, since the requested global services (1, 2, and 3) can be mapped to OpenEMR’s services. 

In task 3, labeled (2.b.4) in Figure 7.3, the security engineer of FSICC needs to update the global 

security policy based on the outputs of the tasks 1 and 2 as follow. The security engineer of FSICC 

will add a new global role (i.e., Visiting_Physician with id 13) to the global security policy and 

limit it to only access the specified global service (with id 3), from the left task option of task 1. 

The security engineer of FSICC will also add a new global role (i.e., Parent with id 12) to the global 

security policy, from the center task option of task 2. 

In task 4, labeled (2.b.5) in Figure 7.3, the security engineer of FSICC needs to send separate 

JSON documents to each of MyGoogle, SMH, and CT2 clients that include: client’s ID, client’s 
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security token, the available global services, the available global security policy, and instructions 

on the way to utilize such global services and global security policy.   

To give an overall view of the final output of applying all of the SSEP phases and tasks that 

described in Sections 7.3.1, 7.3.2, 7.3.3, and 7.3.4, we refine Figure 5.12 (from Section 5.4.2 of 

Chapter 5) to show the overall architecture of interactions: between OpenEMR and MyGoogle with 

FSICC; and between CT2 and SMH with FSICC, as Figure 7.22 shows. 
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Figure 7.22. Overall Architecture of the Interactions for Clients and Systems with FSICC.  
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Chapter 8 

Conclusion 
 

This dissertation presented and explained a Framework for Secure and Interoperable Cloud 

Computing (FSICC) with RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), MAC 

(Bell & La Padula, 1976), and DAC (Dittrich, Härtig, & Pfefferle, 1988) that allows clients and 

systems to interact with one another. The FSICC provided the unification of services and security 

capabilities from different paradigms (e.g., cloud services, programming services, web services), 

alternate cloud service providers, and diverse security/access control (RBAC, MAC, and/or DAC). 

From an overall viewpoint, each system may build and publish their cloud, programmatic, or web 

services into FSICC that combined such services into a unified set of global services in the cloud. 

Then, a developer of a mobile, web, or desktop client can discover such global services and utilize 

them to develop the client application. The five main research focus of the dissertation presented: 

Architectural Blueprints for Supporting FSICC that contained different options for connecting 

clients and systems with FSICC;  an Integrated RBAC, MAC, and DAC Model for Cloud 

Computing via a Unified Cloud Computing Access Control Model (UCCACM) that contained a 

set of definitions necessary for supporting our work on FSICC including Schema Definitions, 

Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting Definitions;   

Security Mapping/Enforcement Algorithms for GSP (Global Security Policy) Generation and GAPI 

(Global API) Generation which included Security Policies and Services Registration, Global 

Services Generation, and Global Security Policy Generation; a SOA-Based Security Engineering 

Process (SSEP) for FSICC that was utilized to combine security policies from different systems 

into one global security policy in which SSEP also included a process for security enforcement code 

generation; and,  Dynamic Enforcement via Intercepting Process involved a set of programmatic 
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mechanisms that were able to intercept a service call from a client app to a global service in FSICC 

in order to perform appropriate security enforcement checks. 

The reminder of this conclusion is organized as follows. Section 8.1 summarizes the dissertation, 

highlighting the attainment of the five research foci in detail. Using this as a basis, Section 8.2 

discusses the research contributions of this dissertation, primarily in the areas of: Architectural 

Blueprints for Supporting FSICC; an Integrated RBAC, MAC, and DAC Model for Cloud 

Computing; Security Mapping/Enforcement Algorithms and SSEP; and, Dynamic Enforcement via 

Intercepting Process. Finally, Section 8.3 details the ongoing and future research directions that 

include, but are not limited to: extending UCCACM of FSICC with Modern Access Control 

Models; implementing remaining components of the FSICC; providing a more fine-grained access 

control approach; and demonstrating the Architectural Blueprints on one or more different domains. 

 

8.1   Summary 
 

This dissertation presented a Framework for Secure and Interoperable Cloud Computing 

(FSICC) that provides a set of global cloud services for use by clients and systems with access 

control provided by RBAC, MAC, and/or DAC models. The main objective of this dissertation was 

two-fold: to provide a solution to the service integration problem, which was the difficulties that 

occur when a client is trying to access services that could be operating with different types of 

application programmer interfaces (APIs); and to provide a solution to be security policy integration 

problem, that occurred since the different paradigms and alternate cloud service providers may all 

have different types of security and access control capabilities, that will allow clients and systems 

to interact with one another in a framework.  Such a framework would provide the unification of 

services and security capabilities from different paradigms (e.g., cloud services, programming 
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services, web services), alternate cloud service providers, and diverse security/access control 

(RBAC, MAC, and/or DAC). In support of our objective, the discussion in this dissertation was 

presented throughout seven chapters. 

Chapter 1 introduced the main areas for our research and a high-level view of the presented 

Framework for Secure and Interoperable Cloud Computing. Section 1.1 discussed the motivation 

of restricting access to a unified set of global cloud services utilizing access control models as our 

main area of interest. Section 1.2 explored the motivation of the work in the healthcare domain as 

an appropriate context to present the work of the dissertation since healthcare represents as a critical 

emergent application for cloud computing. Section 1.3 provided a set of security requirements and 

cloud computing capabilities that the FSICC needs to support. Based on this, Section 1.4 presented 

and explained the Framework for Secure and Interoperable Cloud Computing with RBAC, MAC, 

and DAC of this dissertation. Section 1.5 provided a list of the research objectives and expected 

contributions for the dissertation. Section 1.6 discussed the work that has been published by us in 

order to support the work presented in the dissertation. Finally, Section 1.7 presented an outline of 

the dissertation.  

Chapter 2 presented background material on the main concepts and topics that supported our 

discussion and explanation of this dissertation. Section 2.1 discussed the cloud computing 

concept and underlined application programming interfaces (APIs), and presented the main 

technologies behind cloud computing with an emphasis on the service-oriented architecture 

(SOA) technology that emphasized the cloud service model. Section 2.2 reviewed the three main 

access control approaches: role-based access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, 

& Chandramouli, 2001), discretionary access control (DAC) (Dittrich, Härtig, & Pfefferle, 1988), 

and mandatory access control (MAC) (Bell & La Padula, 1976). Section 2.3 introduced and 
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explained the Fast Health Interoperable Resources (FHIR) standard with an emphasis on the FHIR 

Resources and reviewed the HL7 Application Programming Interface FHIR (HAPI-FHIR) which 

is one popular reference implementation of the FHIR standard. Section 2.4 presented a sample 

healthcare scenario utilized throughout this dissertation. 

Chapter 3 presented the four Security Requirements and the three Cloud Computing Capabilities 

that underlined and supported FSICC. Section 3.1 defined and explained the four security 

requirements for FSICC: Numerous and Varied Access Control Models, Control Access to Cloud 

Services Using RBAC, Support Delegation of Cloud Services Using DAC, and Control Access to 

Cloud Services Using MAC. Section 3.2 detailed the three cloud computing capabilities with 

associated components of the FSICC: Local Service Registration and Mapping to Global Services; 

Local Security Policies Registration to Yield Global Security Policy; and, Global Registration, 

Authentication, Authorization, and Service Discover for Consumers. Section 3.3 discussed related 

research in cloud computing as compared with FSICC. 

Chapter 4 provided formal definitions of UCCACM in eight sections. Section 4.1 presented 

a set of core definitions on schemas to support authorizing users to a set of schemas based on 

roles and/or sensitivity levels. Section 4.2 provided core definitions on enterprise application 

that included definitions for clients, systems, and types of clients and systems as part of the 

enterprise application. Section 4.3 discussed core definitions on RBAC, MAC, and DAC 

models that described the way that such access control models can be modified to support the 

four security requirements of FSICC. Section 4.4 described advanced definitions on enterprise 

applications in which the security aspects of RBAC, MAC, and DAC models were introduced 

into clients and systems of any enterprise application. Section 4.5 had core definitions on global 

resources and permissions by API in which definitions that described what were global services 
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and the way that such global services were controlled via means of RBAC, MAC, and DAC 

were provided. Section 4.6 presented advanced definitions on FSICC that described the way 

that services and security policies of different systems were mapped. Section 4.7 discussed core 

definitions on security interceptors for RBAC, MAC, and DAC along with enforcement checks 

that each security interceptor utilized. Section 4.8 presented related work on access control for 

cloud computing. Throughout the entire presentation of UCCACM, detailed examples were 

provided utilizing the healthcare scenario of section 2.4 Chapter 2. 

Chapter 5 presented a set of Architectural Blueprints which were guidelines that defined the 

way of placing and creating an integration layer for a systems or client. In Section 5.1, we 

explored four issues that must be understood for an application of FSICC to support a discussion 

of the options and blueprints: the overall architecture of the application; the involved technologies 

that can be used to develop the application; the source code availability of the application, APIs, 

server code, or database; and, the allowable access to system sources. In Section 5.2, we examined 

the three different Architectural Blueprint options, namely, Basic, Alternative, and Radical, for 

integrating an application to multiple HIT systems via FSICC, utilizing FHIR. In Section 5.3, 

we provided an Architectural Blueprints for each of the three options that illustrated the way that 

the options can be realized using FHIR including the various phases and steps that are required. 

In Section 5.4, we presented a complex example that utilized the Alternative and Radical 

Architectural Blueprint options  applied to the healthcare scenario from Section 2.4 of Chapter 

2. In Section 5.5, we discussed two related works in the literature that explained alternative 

ways that FHIR can be implemented to integrate healthcare systems and/or applications in 

different settings. 
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Chapter 6 presented Global Security Policy Generation process and Dynamic Enforcement 

implementation for FSICC in three sections. In Section 6.1, a set of security policy integration 

algorithms were presented and discussed for: global RBAC generation, global MAC generation, 

global DAC generation, and global policies combination. In Section 6.2, we demonstrated the 

realization of UCCACM of FSICC in HAPI FHIR utilizing the healthcare scenario of Section 2.4 

of Chapter 2 that involved the implementation of HAPI FHIR APIs and its server interceptor to 

support UCCACM checks with three different algorithms to support three different HAPI FHIR 

interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. Moreover, the interceptor 

discussions were supported by two access scenarios. Section 6.3 presented and discussed related 

work in both security policy integration and enforcing security policies on FHIR API. 

Chapter 7 presented a SOA-based security engineering and global security policy generation 

process for FSICC in three main sections. In Section 7.1, we briefly discussed a Pre-Process Step 

that described what each system and client needed to do before joining the FSICC. In Section 7.2, 

a SOA-based security engineering process (SSEP) for FSICC was presented that was intended to 

assist security engineers of systems and clients and security engineers of FSICC with a structured 

process to define and maintain secure interoperable services for RBAC, MAC, and DAC. In Section 

7.3, a complete and detailed example that illustrated the SOA-based security engineering process 

of Section 7.2 was provided to demonstrate the steps and sub-steps of SSEP coupled with security 

policy integration algorithms of Section 6.1 of Chapter 6 that can be utilized to establish and utilize 

security for interoperable services via FSICC.  

 

8.2   Research Contribution 
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This section revisits the expected research contributions given in Section 1.5 of Chapter 1 and 

provides insight of their attainment across the chapters of the dissertation. The Framework for 

Secure and Interoperable Cloud Computing (FSICC) with RBAC, MAC, and DAC has the 

following contributions: 

 

EC-A. Architectural Blueprints for Supporting FSICC: This contribution enabled the 

interoperability and information exchange of clients and systems and defined and explained 

a collection of three architectural blueprints (i.e., Basic Architecture, Alternative 

Architecture, and Radical Architecture) for the design and development of integration 

framework (IFMWK) servers utilizing a standard integration framework (e.g., FHIR in the 

healthcare domain) that facilitate the integration between HIT systems with applications. 

This was shown in the upper half (left) of Figure 1.2.   The architectural blueprints were 

represented as the first horizontal box Architectural Blueprints in Figure 1.3 and included 

three main boxes for: Interoperability Issues, Integration Options, and Integration 

Blueprints.  Each blueprint was based on the location that IFMWK servers can be placed 

with respect to the components of the application (UI, API, Server) or a HIT system in 

order to define and design the required infrastructure to enable the exchange of information 

via IFMWK. In support of this contribution, Chapter 5 provided details of four 

interoperability issues, three integration Options, and associated integration blueprints. 

Chapter 4 also supported this contribution by providing four UCCACM definitions (Defns. 

41 to 44 from Chapter 4) that described: the mapping of clients and systems, the set of all 

global resources, mapping clients and systems services to the global services of FSICC, 

and the set of all global APIs for all clients and systems, respectively.     
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EC-B. An Integrated RBAC, MAC, and DAC Model for Cloud Computing: This 

contribution presented and explained a Unified Cloud Computing Access Control model 

(UCCACM) for the FSICC that provided a single view of global services to applications 

(i.e., clients) and enabled those global services to be authorized according to RBAC, MAC, 

and DAC policies. The UCCAC model was represented by the second horizontal box 

Unified Cloud Computing Access Control Model in Figure 1.3 that included five main 

boxes for: Schema Definitions, Enterprise Definitions, Policy Definitions, FSICC 

Definitions, and Intercepting Definitions. The contribution involved a set of formal 

definitions for RBAC, MAC, and DAC access control models that specified, in detail, the 

way that: each system can register its services and security policies; and, a security engineer 

can define a set of global RBAC, MAC, and/or DAC policies on a unified set of global 

cloud services. The UCCAC model basically suggested formal definitions for the main 

components of Figure 1.2. In support of this contribution, Chapter 4 provided the Unified 

Cloud Computing Access Control model (UCCACM) for the FSICC that is an access 

control model that utilized three main access control models (RBAC, MAC, and DAC) 

and had a set of 60 definitions distributed in seven main groups: core definitions on 

schemas, core definitions on enterprise application, core definitions on RBAC, MAC, 

and DAC models, advanced definitions on enterprise applications, core definitions on 

global resources and permissions by API, advanced definitions on FSICC, and core 

definitions on security interceptors for RBAC, MAC, and DAC. Chapter 3 also 

supported this contribution by motivating the UCCACM by the four main security 

requirements of FSICC (i.e., Numerous and Varied Access Control Models, Control 
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Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using 

DAC, and Control Access to Cloud Services Using MAC) as presented in Section 3.1.  

 

EC-C. Security Mapping/Enforcement Algorithms and SSEP: This contribution 

included Security Mapping/Enforcement Algorithms realized within the horizontal box 

near the bottom of Figure 1.3, labeled GSP (Global Security Policy) Generation and GAPI 

(Global API) Generation which included Security Policies and Services Registration, 

Global Services Generation, and Global Security Policy Generation. In support of this 

contribution, Chapter 6 presented: a pre-process step for joining FSICC, a SOA-based 

security engineering process (SSEP) for FSICC, a set of security policy integration 

algorithms, and a detailed example that illustrated the steps and sub-steps of SSEP along 

with the security policy integration algorithms. Chapter 4 also supported this contribution 

by providing eight UCCACM definitions (Defns. 41 to 48 from Chapter 4) which ensured 

that the global security policy can control access to a set of global services of FSICC. 

Moreover, Chapter 3 supported this contribution by motivating the cloud computing 

capability 2 of FSICC, i.e., Local Security Policies Registration to Yield Global Security 

Policy, from Section 3.2. This contribution also included a SOA-based security engineering 

process (SSEP) that couples Security Mapping/Enforcement Algorithms with EC-A 

Architectural Blueprints for Supporting FSICC via and EC-B An Integrated RBAC, MAC, 

and DAC Model for Cloud Computing into an for FSICC that can be used to combine 

security policies (that can be RBAC, MAC or DAC) from different systems into one global 

security policy for security enforcement code generation. This was shown in the upper right 

half of Figure 1.2. A portion of the SSEP was human assisted in order to resolve naming 
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issues of roles, mapping sensitivity levels, etc., that were combined from multiple clients 

and systems. Once the policies were successfully integrated, all of the security enforcement 

code can be automatically generated by algorithms. The SSEP for FSICC was represented 

by the left vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 that 

spanned all of the five horizontal boxes: Architectural Blueprints, Unified Cloud 

Computing Access Control Model, Access Control Models, Global Security Policy and 

Global API Generation, and Global Security Policy and Global API Utilization and 

Security Enforcement. The Security Mapping/Enforcement Algorithms aspect of this 

contribution was realized within the horizontal box near the bottom of Figure 1.3, labeled 

GSP (Global Security Policy) Generation and GAPI (Global API) Generation which 

included Security Policies and Services Registration, Global Services Generation, and 

Global Security Policy Generation. In support of this contribution, Chapter 6 presented: a 

pre-process step for joining FSICC, a SOA-based security engineering process (SSEP) for 

FSICC, a set of security policy integration algorithms, and a detailed example that 

illustrated the steps and sub-steps of SSEP along with the security policy integration 

algorithms. Chapter 4 also supported this contribution by providing eight UCCACM 

definitions (Defns. 41 to 48 from Chapter 4) which ensured that the global security policy 

can control access to a set of global services of FSICC. Moreover, Chapter 3 supported 

this contribution by motivating the cloud computing capability 2 of FSICC, i.e., Local 

Security Policies Registration to Yield Global Security Policy, from Section 3.2.  

 

EC-D. Dynamic Enforcement via Intercepting Process: This contribution provided a set 

of programmatic mechanisms that were able to intercept a service call from a client app to 
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an API in order to perform appropriate security enforcement checks.   This was shown in 

the bottom of Figure 1.2. In Figure 1.3, these security interceptors were represented within 

the last horizontal box Global Security Policy and Global API Utilization and Security 

Enforcement in Figure 1.3, and the Security Enforcement via Interceptors box in Figure 

1.2. Interceptors included: a RBAC Interceptor that was able to determine at runtime if the 

requested API call on a global service can be executed for a specific user with a specific 

role; a MAC Interceptor that was able to determine at runtime if the requested API call on 

a global service can be executed for a user with a clearance and limited by if the services 

was read or write; and a DAC Interceptor that was able to determine at runtime if the 

requested API call on a global service can be executed for a specific user with a delegated 

role/service/clearance. In support of this contribution, Chapter 7 presented an 

implementation of HAPI FHIR APIs and its server interceptor that supported UCCACM 

checks with three different algorithms to support three different HAPI FHIR interceptors: 

RBAC interceptor, MAC interceptor, and DAC interceptor. Chapter 4 also supported this 

contribution by providing 11 UCCACM definitions (Defns. 50-60 from Chapter 4) that 

discussed concepts of Interceptor, RBAC Interceptor, MAC Interceptor, and DAC 

Interceptor. Moreover, Chapter 3 supported this contribution by motivating the cloud 

computing capability 3 of FSICC, i.e., Global Registration, Authentication, Authorization, 

and Service Discover for Consumers, from Section 3.2. 

 

   

8.3   Ongoing and Future Work 

 
The work presented in this dissertation can serve as a foundation for further enhancements and 

extensions. A list of ongoing and future topics includes: extending UCCACM of FSICC with 
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Modern Access Control Models; implementing remaining components of the FSICC; providing a 

more fine-grained access control approach to enable controlling data based on time period and data 

subset; and applying the Architectural Blueprints on one or more different domains using a standard 

integration framework and one of its implementations in that domain.   

 

Extending UCCACM of FSICC with Modern Access Control Models: As we presented in 

this dissertation, the Unified Cloud Computing Access Control Model (UCCACM) of the 

Framework of Secure and Interoperable Cloud Computing (FSICC) provides capabilities to register 

three type of access control models, namely RBAC, MAC, and DAC. As part of future work, we 

are interested in extending the UCCACM with modern access control models such as Attribute-

based Access Control (ABAC) (Yuan, E. & Tong, J. , 2005), Usage Control Access Control 

(UCON) (Sandhu, R. & Park, J. , 2003), History-Based Access Control (HBAC) (Banerjee, A. & 

Naumann, D., 2005), Identity-Based Access Control (IBAC) (Saxena, N., Tsudik, G., & Yi, J., 

2004), Organization-Based Access control (OrBAC) (Kalam, A., et al., 2003), and Rule-Based 

Access Control (RAC) (Carminati, B., Ferrari, E., & Perego, A., 2006). This way systems may 

define and register their ABAC/UCON/HBAC/IBAC/OrBAC/RAC-based security policies into 

FSICC that in turn combines: different ABAC/UCON/HBAC/IBAC/OrBAC/RAC-based security 

policies from multiple systems to generate a global ABAC/UCON/HBAC/IBAC/OrBAC/RAC 

security policy. The generated global ABAC/UCON/HBAC/IBAC/OrBAC/RAC security policies 

can be then enforced against each request to access global services of FSICC using a corresponding 

security interceptor.  
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Implementing Remaining Components of the FSICC: Currently, four components of the 

Framework of Secure and Interoperable Cloud Computing (FSICC), see Figure 1.1 from Chapter 

1, are already implemented in this dissertation. These components are: Global Authentication, 

RBAC/MAC/DAC Interceptors, Global Services, and Global Security Policy. Moreover, in this 

dissertation we described the login and purpose of the remaining components of FSICC (i.e., Client 

Registry, System Registry, Services Mapping, and Security Policy Mapping). As part of future 

work, we are planning to convert the login of the remaining components of FSICC into an actual 

implementation as RESTful APIs that can be implemented using the JAX-RS Java library (Hadley 

& Sandoz, 2009). The implementation of these four FSICC components will enable the interested 

systems and clients to utilize all features of FSICC that we presented in this dissertation.    

 

Providing a More Fine-Grained Access Control Approach:  Presently, the global RBAC 

policy, global MAC policy, and global DAC policy that are used in the FSICC as a global security 

mechanism are defined to control who can access what set of global services. Moreover, the global 

security mechanism also controls what set of data, that global services can access and what each 

user can read/write using three read data access types and one write data access type. As part of 

future work, we are contemplating to further control accessing data based on time period and data 

subset to support the FSICC with a more fine-grained access control approach. That is, time period 

feature will enable the global security mechanism of FSICC to specify: a start and end time (time 

period) in which a user is allowed to access a global service. The data subset feature will enable the 

global security mechanism of FSICC to specify what parts (fields) of data record, that is accessible 

via global services, each user is allowed to access.     
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Demonstrating the Architectural Blueprints on Different Domains: Recall that in Chapter 5, 

we presented a complex example that utilized the Alternative and Radical Architectural Blueprint 

options prototype applied to the healthcare scenario from Section 2.4 of Chapter 2 utilizing the 

FHIR standard and HAPI FHIR (FHIR reference implementation) as a standard Integration 

Framework (IFMWK) in the healthcare domain. As part of future work, we are looking for 

applying a subset of our Architectural Blueprints from Chapter 5 to integrate systems and clients in 

domains other than the healthcare domain. This is to prove that our Architectural Blueprints can be 

utilized by any stakeholders in any domain who are interested in integrating systems and clients via 

FSICC. To do this, we may utilize one or more standard Integration Frameworks and their 

implementations (one IFMWK for each domain such as the financial domain) that are openly 

available.    
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