

A Framework for Secure and Interoperable Cloud Computing with

RBAC, MAC, and DAC

Mohammed S. Baihan

Ph.D. Dissertation

Major Advisor: Dr. Steven A. Demurjian

Associate Advisors: Dr. Reda Ammar, Dr. Swapna Gokhale, Dr. Thomas Agresta

Cloud computing has emerged as a de facto approach throughout society, commercial and

government sectors, and research/academic communities. In the last decade, many organizations

have considered outsourcing their IT service to the cloud where the services would have better

availability and quality. However, this requires mobile and desktop clients for different

stakeholders, in a domain such as healthcare, to obtain information from multiple systems, that

may be: operating with different paradigms (e.g., cloud services, programming services, web

services); utilize alternate cloud service providers; and, employ diverse security/access control

techniques. This raises two main problems: services integration and security policies integration.

The services integration problem focuses on the difficulties that occur when a client is trying to

access services that could be operating with different types of APIs. The security policies

integration problem occurs since the alternate cloud service providers may have different access

control capabilities, making it difficult for the client developer to realize a cohesive security

solution. In order to address these two problems, this dissertation presents a Framework for Secure

and Interoperable Cloud Computing (FSICC) that provides a set of global cloud services for use

by clients and systems with access control provided by RBAC, MAC, and DAC. The work

presented herein involves five research areas: Architectural Blueprints for Supporting

Mohammed Baihan- University of Connecticut, 2018

FSICC that contain options for connecting clients and systems with FSICC; an Integrated RBAC,

MAC, and DAC Model for Cloud Computing via a Unified Cloud Computing Access Control

Model (UCCACM) that contains a set of definitions necessary for supporting the work on FSICC;

Security Mapping/Enforcement Algorithms for Global Security Policy Generation and Global API

Generation which includes Security Policies and Services Registration, Global Services

Generation, and Global Security Policy Generation; a SOA-Based Security Engineering Process

(SSEP) for FSICC that is utilized to combine security policies from different systems into one

global security policy in which SSEP also includes a process for security enforcement code

generation; and, Dynamic Enforcement via Intercepting Process involves a set of programmatic

mechanisms that are able to intercept a service call from a client to a FSICC global service to

perform security enforcement checks.

A Framework for Secure and Interoperable

Cloud Computing with RBAC, MAC, and

DAC

Mohammed Baihan

B.S., Computer Science, King Saud University, Saudi Arabia, 2005

M.S., Advanced Computer Science, University of Manchester, United Kingdom, 2011

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2018

ii

Copyright by

Mohammed Baihan

2018

iii

APPROVAL PAGE

Doctor of Philosophy Dissertation

A Framework for Secure and Interoperable

Cloud Computing with RBAC, MAC, and DAC

Presented by

Mohammed Baihan

B.S., Computer Science, King Saud University, Saudi Arabia, 2005

M.S., Advanced Computer Science, University of Manchester, United Kingdom, 2011

Major Advisor ___

 Dr. Steven Demurjian

Associate Advisor ___

 Dr. Reda Ammar

Associate Advisor ___

 Dr. Swapna Gokhale

Associate Advisor ___

 Dr. Thomas Agresta

University of Connecticut

2018

iv

ACKNOWLEDGEMENTS

I am very grateful for all the support I have received from my major advisor, Dr. Steven

Demurjian. My PhD could not have been completed without the insightful suggestions and

encouragement over the years from you! Whenever I did not know how to proceed, I could count

on an immediate and knowledgeable response from you! You were always willing to share your

expertise in access control and API security. In addition, I would like to thank Dr. Reda Ammar,

Dr. Swapna Gokhale, and Dr. Thomas Agresta for being part of my doctoral committee.

Also, I would like to thank the people I love the most in this world my amazing family. My

parents (Salhah and Shaya), and my brothers and sisters (Abdullah, Ahmed, Zahra, Waleed, and

Ghadah)! You were with me throughout all this process and never let me felt like I wasn’t at home

by talking to me on Skype almost every night and by making sure everything was in order. You are

my support system and I could have never survived these past few years without you. Mom, my

personal tracker and one of my best friends, thank you for always worrying deeply about me, for

making me the person I am today. Dad, thank you so much you were my escape in times where I

had a lot of work and reminded me I needed to take it easy every once in a while. Thank you for

always making sure I had everything I needed. My wife, Jawza has been extremely supportive of

me throughout this entire process and has made countless sacrifices to help me get to this point. My

children, Yazeed, Wateen, and Sara, have continually provided the requisite breaks from

philosophy and the motivation to finish my degree with expediency. I love you all very much!

v

Table of Contents

Chapter 1: Introduction ...1

1.1: Motivation for Access Control for Cloud Computing .. 5

1.2: Motivation for Healthcare Systems and Applications .. 7

1.3: Motivation of Security Requirements and Cloud Computing Capabilities for FSICC 9

1.4: A High-Level View of Presented Approach ... 11

1.5: Research Objectives and Expected Contribution .. 15

1.6: Research Progress to Date .. 19

1.7: Dissertation Outline .. 21

Chapter 2: Background ..23

2.1: Cloud Computing and APIs .. 23

2.2: Access Control Models ... 25

2.3: FHIR and HAPI FHIR .. 34

2.4: A Healthcare Scenario .. 38

Chapter 3: Security Requirements and Cloud Computing Capabilities for FSICC 47

3.1: FSICC Security Requirements .. 51

3.2: FSICC Cloud Computing Capabilities .. 55

3.3: Related Work in Cloud Computing .. 62

Chapter 4: A Unified Cloud Computing Access Control Model (UCCACM) for RBAC,

MAC, and DAC ...66

4.1: Core Definitions on Schemas .. 68

4.2: Core Definitions on Enterprise Application ... 69

4.3: Core Definitions on RBAC, MAC, and DAC for Roles/Users ... 72

4.4: Advanced Definitions on Enterprise Applications .. 76

vi

4.5: Core Definitions on Global Resources and Permissions by API .. 86

4.6: Advanced Definitions on FSICC .. 89

4.7: Core Definitions on Interceptors ... 94

4.8: Related Work on Access Control for Cloud Computing ... 100

Chapter 5: Architectural Blueprints to Facilitate Interoperability and Information

Exchange of Clients and Systems ..103

5.1: Issues that Impact Interoperability .. 106

5.2: Application Integration Options ... 110

5.3: Integration Steps and Processes of Architectural Blueprints .. 116

5.4: Blueprint Prototype Applied to the Healthcare Scenario ... 127

5.5: Related Work .. 142

Chapter 6: Global Security Policy Generation and Dynamic Enforcement for FSICC 145

6.1: Security Policy Integration Algorithms .. 147

6.2: HAPI FHIR Implementation and RBAC/MAC/DAC Interceptors .. 164

6.3: Related work in Security Policy Integration and Enforcement ... 180

Chapter 7: SOA-based Security Engineering for FSICC ...185

7.1: A Pre-Process Step for Joining FSICC ... 186

7.2: An SOA-based Security Engineering Process (SSEP) for FSICC .. 187

7.3: Demonstrating the SOA-based Security Engineering Process ... 199

Chapter 8: Conclusion ..220

8.1: Summary ... 221

8.2: Research Contribution .. 225

8.3: Ongoing and Future Work .. 230

References ..234

vii

List of Tables

Table 2.1. CT2 Services .. 42

Table 2.2. CT2 Roles .. 42

Table 2.3. ShareMyHealth Services ... 42

Table 2.4. ShareMyHealth Roles ... 43

Table 2.5. OpenEMR Services ... 44

Table 2.6. OpenEMR Roles ... 44

Table 2.7. MyGoogle Services ... 45

Table 2.8. MyGoogle Roles ... 45

Table 4.1. FSICC Global Services for Global Resource G1 ... 88

Table 4.2. FSICC Global Roles for Global Resource G1 ... 88

Table 4.3. Mapping Tables to Global Services .. 92

Table 6.1. Primitive Functions Utilized by the Algorithms for Global RBAC Generation 152

Table 6.2. Primitive Functions Utilized by the Algorithms for Global MAC Generation 161

Table 6.3. Primitive Functions Utilized by the Algorithms for Global DAC Generation 162

Table 7.1. Initial Set of FSICC’s Global Services ... 206

Table 7.2. Comparisons Information of the RBAC Integration Step ... 207

Table 7.3. An Example of a Sensitivity Levels Mapping List ... 210

Table 7.4. An Example of a Corrected Global Roles List ... 211

List of Figures

viii

Figure 1.1. The Framework for Secure and Interoperable Cloud Computing (FSICC) 3

Figure 1.2. A Component-Level View of the presented FSICC .. 13

Figure 1.3. High-Level View of FSICC Research Areas and Foci .. 19

Figure 2.1. Cloud Service Model ... 25

Figure 2.2. RBAC Model ... 27

Figure 2.3. An Example of MAC ... 29

Figure 2.4. Confidentiality Labels from HL7 Release 3 Standard ... 30

Figure 2.5. A Multi-Level Healthcare Sensitivity Levels .. 32

Figure 2.6. DAC Model ... 33

Figure 2.7. An Example of Patient Resource in JSON .. 36

Figure 2.8. The HAPI-FHIR Server Architecture .. 37

Figure 2.9. The Methods of HAPI Interceptor ... 38

Figure 2.10. CT2 Mobile Application - iOS Version Interceptor ... 40

Figure 2.11. ShareMyHealth Mobile Application .. 41

Figure 4.1. MyGoogle Notation for Example 4.4 ... 79

Figure 4.2. OpenEMR Notation for Example 4.4 ... 79

Figure 4.3. ShareMyHealth Notation for Example 4.5 ... 80

Figure 4.4. CT2 Notation for Example 4.5 .. 81

Figure 4.5. The UCCACM for RBAC Part .. 83

Figure 4.6. Global Resource G1 Notation for Example 4.6 ... 88

Figure 5.1. App and HIT Systems .. 111

Figure 5.2a. Basic Architecture with Direct Database Access using IFMWK .. 113

Figure 5.2b. Basic Architecture customized with FHIR for IFMWK .. 113

Figure 5.3a. Alternative Architecture with App RESTful API Access using IFMWK 114

Figure 5.3b. Alternative Architecture customized with FHIR for IFMWK ... 115

ix

Figure 5.4a. Radical Architecture without a Database using IFMWK .. 116

Figure 5.4b. Radical Architecture customized with FHIR for IFMWK .. 116

Figure 5.5. Alternative Architecture for Integrating CT2 into OpenEMR via FSICC 129

Figure 5.6. Basic Architecture for Integrating SMH into MyGoogle via FSICC 130

Figure 5.7. CT2 Data Items of Interest ... 132

Figure 5.8. FHIR Resources of Interest ... 133

Figure 5.9. Mapping from CT2 to/from FHIR .. 134

Figure 5.10. The OpenEMR Data Items of Interest ... 135

Figure 5.11. Mapping from OpenEMR to/from FHIR ... 135

Figure 5.12. Combined Result of the Two Blueprints ... 137

Figure 5.13. SMH Data Items of Interest ... 139

Figure 5.14. FHIR Resources of Interest ... 139

Figure 5.15. Mapping from SMH to FHIR .. 140

Figure 5.16. MyGoogle Data Items of Interest .. 140

Figure 5.17. Mapping from MyGoogle to FHIR ... 140

Figure 6.1. An Architecture for Global Security Policy Generation & Utilization 149

Figure 6.2. The Global-RBAC Algorithm ... 153

Figure 6.3. The Initialize_GRBAC Algorithm .. 154

Figure 6.4. The IntegrateRBAC Algorithm ... 156

Figure 6.5. The AddBasicParents Algorithm ... 157

Figure 6.6. The Update Global Roles Algorithm ... 159

Figure 6.7. The Global-MAC Algorithm ... 161

Figure 6.8. The Global-DAC Algorithm .. 162

Figure 6.9. A Global RBAC Policy Example in JSON .. 169

Figure 6.10. RBAC Interceptor Pseudo Code .. 171

Figure 6.11. A Global MAC Policy Example in JSON ... 173

x

Figure 6.12. MAC Interceptor Pseudo Code .. 174

Figure 6.13. A Global DAC Policy Example in JSON .. 175

Figure 6.14. DAC Interceptor Pseudo Code .. 178

Figure 6.15. Access Scenario One (Rejected) .. 179

Figure 6.16. Access Scenario Two (Allowed) .. 180

Figure 7.1. A High-Level View of SOA-Based Security Engineering Process for FSICC 191

Figure 7.2. A Detailed View of Phase 2.a of the SSEP ... 196

Figure 7.3. A Detailed View of Phase 2.b of the SSEP ... 199

Figure 7.4. OpenEMR’s FHIR services in JSON .. 201

Figure 7.5. OpenEMR’s RBAC/DAC policy in JSON .. 202

Figure 7.6. OpenEMR’s MAC/DAC policy in JSON .. 202

Figure 7.7. MyGoogle’s FHIR services in JSON .. 203

Figure 7.8. MyGoogle’s RBAC policy in JSON ... 203

Figure 7.9. MyGoogle’s MAC policy in JSON ... 204

Figure 7.10. SMH’s FHIR services in JSON ... 204

Figure 7.11. SMH’s RBAC/DAC policy in JSON ... 205

Figure 7.12. SMH’s MAC policy in JSON .. 205

Figure 7.13. The Role Hierarchy of the Global RBAC Policy .. 208

Figure 7.14. The Initial Global RBAC Policy in JSON ... 209

Figure 7.15. The Global DAC Policy in JSON .. 211

Figure 7.16. The Global MAC Policy in JSON ... 212

Figure 7.17. MyGoogle Utilization Request in JSON ... 214

Figure 7.18. SMH Policy Mapping Request in JSON ... 215

Figure 7.19. SMH Utilization Request in JSON .. 215

Figure 7.20. CT2 Policy Customize Request in JSON ... 216

Figure 7.21. CT2 Utilization Request in JSON .. 216

xi

Figure 7.22. Overall Architecture of the Interactions for Clients and Systems with FSICC 219

1

Chapter 1

Introduction

Cloud computing has emerged as a de facto approach throughout society, commercial and

government sectors, and research/academic communities. In fact, the wide usage of mobile devices

means that average users understand the storage and synching of photos, videos, email, contacts,

files, etc., in the cloud. In the last decade, many organizations have considered outsourcing their IT

service to the cloud where the services would have better availability and quality. However, this

requires mobile and desktop clients for different stakeholders, in a domain such as healthcare, to

obtain information from multiple systems, that may be: operating with different paradigms (e.g.,

cloud services, programming services, web services); utilize alternate cloud service providers; and,

employ diverse security/access control techniques. This raises two main problems: services

integration and security policies integration. The services integration problem focuses on the

difficulties that occur when a client is trying to access services that could be operating with different

types of application programmer interfaces (APIs). In this case, the developer of the client will

need to work with different paradigms such as programming language APIs or web services that

may be constantly changing and must also be integrated in order to be successfully utilized for the

client. The security policies integration problem occurs since the different paradigms and alternate

cloud service providers may all have different types of security and access control capabilities,

making it very difficult for the developer of the client to realize a cohesive security solution.

Currently, there is no set of technologies and/or a framework that provides solutions for the

service integration and security policy integration problems. The notion of having a unified set of

global cloud services is one possible solution to the services integration problem. An approach that

supports the combination of different security policies such as Role-Based Access Control (RBAC)

2

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), Mandatory Access Control (MAC)

(Bell & La Padula, 1976), or Discretionary Access Control (DAC) (Dittrich, Härtig, & Pfefferle,

1988), from multiple sources into one global security policy is a possible solution to the security

policies integration. For services integration at the system level, the HL7 Fast Healthcare

Interoperability Resources (FHIR) (Health Level 7, Fast Health Interoperable Resources list, 2016)

provides a service integration infrastructure that can be extended to support RBAC, MAC, and/or

DAC models in which the infrastructure can serve as an initial solution for the two problems above

(i.e., services integration and security policies integration).

 The main objective of this dissertation is to provide a solution to the service integration and

security policy integration problems that will allow clients and systems to interact with one another

in a framework. Such a framework would provide the unification of services and security

capabilities from different paradigms (e.g., cloud services, programming services, web services),

alternate cloud service providers, and diverse security/access control (RBAC, MAC, and/or DAC);

the main intent of the unification is to offer global services that can be available to clients and

systems alike. Towards this main objective, this dissertation presents a Framework for Secure and

Interoperable Cloud Computing (FSICC), shown in Figure 1.1, that provides a set of global cloud

services for use by clients and systems with access control provided by RBAC, MAC, and/or DAC.

To facilitate the discussion of Figure 1.1, we briefly review the following key terms: application

programmer interface (API), web service, cloud service, system, client, and registry. An API is a

general concept that creates a programming interface for a system that can be utilized by another

system or application without disclosing the actual source code of that system. In this dissertation,

API refers to the programming interface for legacy programming languages such as Java, C++, C,

etc. A web service is a programming interface (such as REST and SOAP) that typically operates

3

over the Hypertext Transfer Protocol (HTTP). A cloud service is a web service hosted in a cloud

environment that makes a cloud service more available and accessible than a normal web service.

A system is a type of software that provides services that can be API, web services, or cloud services,

where the system is intending to publish its services to FSICC. A client is a desktop, web, or mobile

application that is built using different sets of services (API, web services, or cloud services)

provided by systems via FSICC. A registry is a special service of FSICC that enables a system to

register and add its services to FSICC (System Registry), and, a client to utilize services of FSICC

(System Registry).

Figure 1.1. The Framework for Secure and Interoperable Cloud Computing (FSICC).

FSICC as presented in Figure 1.1 has two main actors that are interacting via FSICC to develop

applications in the service-oriented architecture (SOA) manner (IBM, 2015). These actors are

Clients, top of Figure 1.1, and Systems, bottom of Figure 1.1. From an overall viewpoint, each

4

system builds and publishes their cloud, programmatic, or web services, as shown at the bottom of

Figure 1.1. Then, a developer of a mobile or desktop client, at the top of Figure 1.1, discovers such

services and utilizes them to develop the client application. The FSICC in the middle of Figure 1.1,

augments SOA application development with two additional layers and their interactions: Global

Services and Global Security Policy boxes. The interactions of clients and systems with FSICC

occurs in a number of different ways. From a system perspective, each system creates an Integration

Layer API in front of their API and modifies their Security Policy to be defined against the

Integration Layer API. Each system then registers the system’s name, the Integration Layer API,

and the Security Policy into the FSICC using the Systems Registry box in the middle of Figure 1.1.

In support of systems, the security engineer of the FSICC creates a global resource that includes:

a set of Global API (Services) based the integration layer APIs of each system utilizing the Services

Mapping box; and, a Global Security Policy based on systems’ Security Policies which utilizes the

Security Policy Mapping box in the middle of Figure 1.1. From a client perspective, each client

creates an Integration Layer API, top of Figure 1.1, in front of their API. Each client then registers

the client’s name into the FSICC, using the Clients Registry box and reconfigures the client

Integration Layer API to call the Global API. In support of clients, the security engineer of the

FSICC performs actions that: associates each registered client with one of the registered systems;

and, defines a Global Security Policy that enables the authorized/authenticated clients, via the

RBAC/MAC/DAC Interceptor and Global Authentication boxes in the middle of Figure 1.1, to

access services of the appropriate system based on the client and system names. Note that in Figure

1.1, registered clients are first authenticated by the Global Authentication box and then authorized

by the RBAC/MAC/DAC Interceptor box, before access to Global Services is allowed.

5

1.1 Motivation for Access Control for Cloud Computing

Cloud computing provides services in the cloud to be utilized by mobile applications/users and

businesses. The Gartner group indicated that cloud computing represents the majority of IT funding

by 2016 (Shetty, 2013). The International Data Corporation (Idc.com, 2015) reported that

organizations and enterprises around the world spent approximately $70 billion to adopt cloud

computing services in 2015 with the number of cloud-based services expected to triple by 2020.

Cloud computing is provided by major corporations such as Amazon (Amazon.com, 2016), AT&T

(AT&T, 2016), Dell (Dell.com, 2016), etc. Security breaches have come to the forefront (Kelion,

2014) especially in personal cloud storage (Wingfield, 2015). Outsourced data and services are

located on servers that belong to security domains which are different from an organization’s

security domain, raising numerous security and privacy issues (Takabi, Joshi, & Ahn, 2010). Other

efforts have included: a survey of the different data/network security, authentication, authorization,

and confidentiality issues that impact cloud computing (Subashini & Kavitha, 2011); a review of

the available cloud computing advances in concepts, functionalities, unique features, and

technologies (Wang, Von Laszewski, Younge, He, & Kunze, 2010); and, the characterization of

cloud computing as the likely dominant technology for computing on the Internet (Pallis, 2010).

Outsourcing services to the cloud has many advantages including (Skyhigh Networks., 2016):

better availability, since most cloud providers ensure more that 90% uptime; better mobility where

the hosted services are typically accessible from any place on earth as long as internet connection

is available; and cost effective due to that fact that computing equipment are provided by the cloud

provider. Such advantages attract governments and businesses to move their services to the cloud.

However, the movement to the cloud has resulted in new attacks to illegally access a crucial and

sensitive data, such as electronic health records of large number of patients. This is possible since

6

these cloud services are typically designed to be utilized without any type of access control. There

is an emergent need to control who can access which cloud services at which times and under which

conditions. The publishing of services in the cloud leads to a large number of consumers of such

services in which controlling access to which services each consumer can utilize is not supported

in existing paradigms (e.g., cloud services, programming services, web services), and available

cloud service providers. One approach is to have cloud services controlled using the three main

aforementioned access control models, RBAC, MAC, and DAC, since they provide unique

capabilities that can control how services are accessed by users, clients, and systems.

RBAC provides an efficient way to manage consumers by using the concept of role in which

each role can be authorized to access a sub-set of the available cloud services and each consumer

is assigned one or more suitable roles. When cloud services need to access very sensitive

information such as patient data that needs to be more strongly controlled than other parts of the

patient data, MAC can be employed to control access to services. In this case, MAC can be utilized

to label cloud services and their consumers using sensitivity levels which are hierarchically ordered

from most to least secure: Top Secret (TS) < Secret (S) < Confidential (C) < Unclassified (U).

Using MAC, each cloud service can be assigned a sensitivity level known as a classification, and

each consumer can be assigned a sensitivity level known as a clearance along with read and write

properties. DAC can offer the ability of a consumer of the cloud services to enable another

consumer to utilize all or a sub-set of its authorized cloud services (that are assigned based on a role

or a clearance) through a delegation of authority. In this case, DAC can be utilized to keep a list of

delegated services, along with authorized delegated users, where each consumer can delegate all or

a subset of his/her authorized cloud services to another consumer anytime.

7

1.2 Motivation for Healthcare Systems and Applications

In this dissertation, we utilize healthcare as the primary vehicle to justify and explain our work

since it represents as a critical emergent application for cloud computing. In the United States, the

Center of Medicare and Medicaid Services released the Meaningful Use Stage 3 (Himss.org.,

2016) guidelines that require all health information technology (HIT) systems to have cloud

services to access, modify, and exchange health-related data. HIT systems include electronic health

records (EHR) such as OpenEMR (OpenEMR, 2016), OpemMRS (OpenMRS Inc., 2016), and

Drchrono EHR (Gibraltar Dr., 2016); and personal health records (PHR) such as Google Health

(Google Inc., 2016), Microsoft HealthVault (Microsoft Inc., 2016), and WebMD (WebMD LLC.,

2016). In support of the interoperability and exchange of healthcare data, the international Health

Level 7 (HL7) (Health Level 7, Health Level Seven INTERNATIONAL, 2016) organization has

taken a leadership role for standards to allow the integration, sharing, and exchange of electronic

healthcare data, specifically: HL7 Version 2 (Health Level 7, HL7 Version 2, 2016), HL7 Version

3 (Health Level 7, HL7 Version 3, 2016), the Clinical Document Architecture (CDA) (Health

Level 7, Clinical Document Architecture, 2016), and HL7 Fast Healthcare Interoperability

Resources (HL7 FHIR) (Health Level 7, Fast Health Interoperable Resources, 2016).

In support of this dissertation, we strongly leverage the Healthcare Interoperability Resources

(FHIR) which provides a RESTful Application Program Interface (API) to share data in a common

format. FHIR conceptualizes and abstracts information for HL7 into 119 currently defined (and

always increasing) Resources that effectively decompose HL7 into logical components to track a

patient’s clinical findings, problems, allergies, adverse events, history, suggested physician orders,

care planning, etc. The intent is to allow a unified access to FHIR’s RESTful health-related data

sharing APIs so that applications can be easily built to uniformly utilize multiple HIT systems.

8

Concurrent with these activities has been an explosion of mobile health (mHealth) applications for

both patients and medical providers (Aitken, 2013). These mHealth applications also require

access to health data via cloud services from multiple HIT systems to ensure that all of the

necessary information is collected for patient care. Each of these HIT systems may operate with

different paradigms (e.g., cloud, API, web services) and employ different security/access control

techniques. Thus, mHealth applications would need to work with a heterogeneous collection of

paradigms and security protocols, with the strongly likelihood that set of information sources may

grow or shrink over time. This makes it problematic to develop mHealth applications that are

easily maintained and evolved.

The main issue for healthcare is to ensure that the available services of these HIT systems are

carefully authorized to control which mHealth application can utilize which service at which time;

this is specifically what FHIR has been defined to provide. For example, an HIT system for a

pharmacy would have cloud services for: a physician to submit a prescription (Rx) electronically

to the pharmacy (service S1); a pharmacist to be able to fill the Rx and reduce the number of refills

(service S2); the pharmacist to send notification via text/phone to the patient that the Rx is available

(service S3); the insurance company to access the information on the Rx for approval and payment

(service S4); the physician to have the Rx inserted into his/her EHR (serviceS5); the patient to access

medications in the PHR (service S6); and, so on. Access control for cloud services of an HIT system

can ensure that the mHealth application and its authorized users are restricted to particular services.

The problem is that there is currently no solution that allows cloud services to be controlled on

this basis, complicated by the fact that cloud services are available from different cloud suppliers

that may not be compatible with one another. For example, the cloud services S1 to S6 listed above

can be controlled by the three access control models, RBAC, MAC, and DAC. For RBAC, four

9

roles can be created: physician (authorized to access services S1 and S5), pharmacist (authorized

to access services S2 and S3), insurance company (authorized to access service S4), and patient

(authorized to access service S6). In this case, a user that has been authorized to a given role would

be limited to only invoke those Services of the role through the client application. For MAC, each

cloud service can be assigned a classification level: (S1, C); (S2, S); (S3, U); (S4, S); (S5, C); and

(S6, TS). In this case, the user that has been authorized to a clearance level, say, S, would be limited

to invoke those services whose classification levels are less than or equal to the clearance of the

user, namely S, C, and U. For DAC, each cloud service can be delegated from one consumer to

another by delegating role or clearance that is authorized to each authorized cloud service.

1.3 Motivation of Security Requirements and Cloud Computing

Capabilities for FSICC

As discussed in Section 1.2, the healthcare domain is an emergent application for cloud

computing, in which the Meaningful Use Stage 3 guidelines recommend health information

technology (HIT) systems to provide cloud services that enable health-related data owners to access,

modify, and exchange data. This requires mobile and desktop applications for patients and medical

providers to obtain healthcare data from multiple HITs, that may be operating with different

paradigms (e.g., cloud services, programming services, web services), use different cloud service

providers, and employ different security/access control techniques. To address these issues, we have

identified four of security requirements and three cloud computing capabilities that will need to

underlie and support FSICC. These four security requirements and three cloud computing

capabilities for FSICC simplifies and enables client access via global resources using standardized

system APIs.

10

The four security requirements of FSICC are: Numerous and Varied Access Control Models,

Control Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC,

and Control Access to Cloud Services Using MAC; each are briefly reviewed. The Numerous and

Varied Access Control Models security requirement is intended to support a wide range of access

control such as RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), MAC (Bell &

La Padula, 1976), DAC (Dittrich, Härtig, & Pfefferle, 1988), Attribute-based Access Control

(ABAC) (Yuan, E. & Tong, J. , 2005), Usage Access Control (UCON) (Sandhu, R. & Park, J. ,

2003), etc.; this is since each system may utilize any access control model. The Control Access to

Cloud Services Using RBAC security requirement dictates that access to cloud services will be

realized by enhancing RBAC by extending permissions from objects to services. The Control

Access to Cloud Services Using MAC security requirement dictates that access to cloud services

will be realized by enhancing MAC by extending the labeling of objects with classifications to

services with classifications. Lastly, the Support Delegation of Cloud Services Using DAC security

requirement dictates that access to cloud services will be realized by enhancing DAC by providing

the ability to delegate services on a user by user basis.

The three cloud computing capabilities of FSICC are: Local Service Registration and Mapping

to Global Services, Local Security Policies Registration to Yield Global Security Policy, and Global

Registration, Authentication, Authorization, and Service Discovery for Consumers; each are briefly

reviewed. The Local Service Registration and Mapping to Global Service cloud computing

capability is for systems to register their local services which are then mapped to a global set. The

Local Security Policies Registration to Yield Global Security Policy cloud computing capability is

for systems to register their local security policy that is utilized to generate a global security policy.

The Global Registration, Authentication, Authorization, and Service Discovery for Consumers

11

cloud computing capability is to support the process of a consumer (mobile, web, or desktop app)

to register within FSICC to discover and be authenticated and then authorized to utilize services.

1.4 A High-Level View of Presented Approach

In this dissertation, the architecture view of our presented Framework of Secure and

Interoperable Cloud Computing (FSICC) in Figure 1.1 can be complemented with a component

view as given in Figure 1.2. Specifically, in Figure 1.2, there are six main components outlined

boxes. The first component Involved Parties, topmost component in Figure 1.2, refers to clients

and systems and their APIs previously shown in the top and bottom of Figure 1.1, and consists of:

a Clients box that includes an API; and, multiple Systems boxes that includes an API and a security

Policy. As the first step toward creating a global security policy and services, clients and systems

may utilize two separate components: the Security Policy Mapping component which refers to the

process and algorithms that can be utilized to generate the global security policy that was shown

in the middle of Figure 1.1; and, the Architectural Blueprint component which refers to the process

and steps that can be followed to create different integration layers for clients and systems.

An integration layer is a standard API (e.g., FHIR API for a healthcare case as discussed in

Section 2.4 of Chapter 2) that converts the data format of a system or client from/to a common

data format. Such a common data format can be utilized by other systems and clients, in addition

to the FSICC, to easily exchange data. An integration layer exists with an integration framework

(IFMWK) which is a set of standards and associated technologies that allow different systems to

interact with one another utilizing one common data representation. The associated technologies

allow integration servers to be designed and implemented to facilitate the exchange of information

using the common data representation via a set of shared unified services via an integration

layer. The FHIR standard is one example of an integration framework which has a set of resources

12

in XML, JSON, RDF, and Turtle that are a common data representation with associated services

for CRUD and searching.

In FSICC, all security policies (that can be any combination of RBAC, MAC, and/or DAC) of

each system go through two main phases: the Policies Combining phase (RBAC integration, MAC

integration, and DAC integration) that creates one set of policy (global security policy) that has all

policies from different systems; and, the Policies Updating phase (only for RBAC and MAC) that

is needed to update role names (for RBAC) and update global MAC with users and services form

systems based on the global sensitivity levels (for MAC). In addition, there are a number of

different Application Integration Options to allow an application to send/receive data with multiple

mixed clients and pure or mixed systems, via FSICC, by the creation of an integration layer API

in front of their API (services) by utilizing one of the Architectural Blueprint options. An

Architectural Blueprint option is a guideline that defines the way of placing and creating an

integration layer for a systems or client to allow such them to exchange data with other systems

and clients in one common data format. There are three Architectural Blueprints options as shown

in Figure 1.2: a Basic Architecture that includes an IFMWK server that works directly with the

App repository and IFMWK servers of different HIT systems; an Alternative Architecture that

includes a IFMWK server that works directly with the App RESTful API and IFMWK servers of

different HIT systems; and, a Radical Architecture that removes the repository and has IFMWK

servers for the App API and a number of HIT systems.

13

Figure 1.2. A Component-Level View of the presented FSICC.

The selection of an architectural blueprints option is determined based on four factors that

describe the situation of a client or system: the overall architecture of the application (i.e., one-

tier, two-tier, and three-tier architecture); the involved technologies that can be used to develop the

application (i.e., RESTful APIs, programmatic APIs, database API); the source code availability

of the application, APIs, server code, or database; and, the allowable access to system sources

(RESTful APIs, programmatic APIs). Based on the output of the Architectural Blueprints

component and after a system has registered at the Integration Layer, the security engineer of

FSICC can establish the global API (services) in a two-step process. First, the security engineer

creates a set of common services from the integration layer API, utilizing the Services Mapping

process using the Generation of Global Policy and Services component in Figure 1.2, where each

14

system in the global API is configured to send/receive requests to/from the integration layer API

of the appropriate system. Second, each client can configure its integration layer API to

send/receive requests to/from the Global API. Based on the output of the Security Policy Mapping

component, the security engineer utilizes the Access Control Models component to define the

security policies of systems that was shown at the bottom of Figure 1.1 and in the process to

establish the global security policy that was shown in the middle of Figure 1.1. The security

engineer can develop the global security policy by: creating global roles in which each global role

can be authorized to a subset of the global services and creating new users (from clients) in which

each global user can be assigned to one or more global roles (RBAC); assigning classification for

each global service, and assigning clearance for each global user with read and write properties

(MAC); and, enabling role or service delegation from one to another global users (DAC).

The resulting global services (API) and global security policy comprise the Generation of

Global Policy and Services component, shown in the middle of Figure 1.2. After establishing the

global security policy, a number of security interceptors can be created to enforce the global

security policy on the users’ access requests, after such users have been authenticated. A security

interceptor can be defined as a programmatic mechanism that is able to intercept a service call

from a client application to an API (service) in order to perform appropriate security enforcement

checks. The Global Policy Enforcement component shown at the bottom of Figure 1.2 refers to

the RBAC/MAC/DAC interceptors box that was shown in the middle of Figure 1.1, consists of

four boxes. The Global Authentication box is utilized to verify the claimed credentials, ID and

security token, that a user (client) provided is correct or not. The RBAC Interceptor box provides

the ability to allow/deny a global user with a global role from accessing a specific global service.

The MAC Interceptor box provides the ability to allow/deny a global user with a clearance from

15

accessing a specific global service. The DAC Interceptor box provides the ability to allow/deny a

global user (with a delegated global role, global service, or global clearance) from accessing a

specific global service. Collectively, FSICC as presented in Figure 1.2, represents a set of

interacting components that allows from a transition to isolated clients and systems being able to

join and utilize a global environment that provides a single common way to access services.

1.5 Research Objectives and Expected Contribution

In this section, we discuss the research objectives and expected contributions of this

dissertation. Since the component-level view of the presented FSICC in Figure 1.2 does not

provide an adequate representation of the underlying models, concepts, and research of FSICC for

the dissertation, we supplement Figure 1.2 with Figure 1.3 which provides a high-level view of the

research of FSICC as discussed in Section 1.4, organizing and grouping the components of Figure

1.2 into a perspective that identifies the research areas and foci of the dissertation. Figure 1.3 has

horizontal boxes that contain the main research foci of this dissertation and vertical boxes that span

across multiple foci.

The five horizontal boxes are: Architectural Blueprints that contain the different options for

architectural option for connecting clients and systems with FSICC that was shown in the upper

left portion of Figure 1.2; Unified Cloud Computing Access Control Model with boxes for Schema

Definitions, Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting

Definitions; Access Control Models for the ability to control services via RBAC, MAC, and DAC

as discussed for FSICC's security requirements in Section 1.3 and that was shown in the middle of

Figure 1.2; GSP (Global Security Policy) Generation and GAPI (Global API) Generation for

generating the security policy from multiple systems to make global APIs available to clients

16

what’s showing in the lower portion of Figure 1.2; and, Global Security Policy and Global API

Utilization and Security Enforcement that utilizes security interceptors that was shown in the

bottom of Figure 1.2 to allow/deny clients from access global services of FSICC. The security

requirements introduced in Section 1.3 are represented by the upper right vertical box SECURITY

REQUIREMENTS in Figure 1.3 that spans two horizontal boxes: Unified Cloud Computing

Access Control Model and Access Control Models. The cloud computing capabilities introduced

in Section 1.3 are represented by the lower right vertical box CLOUD COMPUTING

CAPABILITIES in Figure 1.3 that spans two horizontal boxes: Global Security Policy and Global

API Generation and Global Security Policy and Global API Utilization and Security Enforcement.

From a research perspective, the presented Framework for Secure and Interoperable Cloud

Computing that was shown in Figure 1.2 has the following four expected contributions (EC-A,

EC-B, EC-C, and EC-D) which are presented and discussed using the security requirements and

cloud computing capabilities of Section 1.3 and Figures 1.2 and 1.3. The expected contributions

are also highlighted in the horizontal and vertical boxes of Figure 1.3.

EC-A: Architectural Blueprints for Supporting FSICC: This contribution facilitates the

interoperability and information exchange of clients and systems and presents a collection

of three architectural blueprints (i.e., Basic Architecture, Alternative Architecture, and

Radical Architecture) for the design and development of integration framework (IFMWK)

servers utilizing a standard integration framework (e.g., FHIR in the healthcare domain)

that enable the integration between systems with applications. This was shown in the upper

half (left) of Figure 1.2. The architectural blueprints are represented as the first horizontal

box Architectural Blueprints in Figure 1.3 and includes three main boxes for:

Interoperability Issues, Integration Options, and Integration Blueprints. Each blueprint is

17

based on the location that IFMWK servers can be placed with respect to the components

of the application (UI, API, Server) or a HIT system in order to define and design the

necessary infrastructure to facilitate the exchange of information via IFMWK.

EC-B: An Integrated RBAC, MAC, and DAC Model for Cloud Computing: This

contribution involves a Unified Cloud Computing Access Control model (UCCACM) for

the FSICC that provides a single view of global services to applications (i.e., clients) and

allows those global services to be authorized according to RBAC, MAC, and DAC policies.

The UCCAC model is represented by the second horizontal box Unified Cloud Computing

Access Control Model in Figure 1.3 that includes five main boxes for: Schema Definitions,

Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting

Definitions. The contribution will include a set of formal definitions for RBAC, MAC, and

DAC access control models that specifies, in detail, the way that: each system can register

its services and security policies; and, a security engineer can define a set of global RBAC,

MAC, and/or DAC policies on a unified set of global cloud services. The UCCAC model

basically provides formal definitions for the main components of Figure 1.2.

EC-C: Security Mapping/Enforcement Algorithms and SSEP: The Security

Mapping/Enforcement Algorithms aspect of this expected contribution is realized within

the horizontal box near the bottom of Figure 1.3, labeled GSP (Global Security Policy)

Generation and GAPI (Global API) Generation which includes Security Policies and

Services Registration, Global Services Generation, and Global Security Policy Generation.

This SOA-based security engineering process (SSEP) aspect of this expected contribution

18

for FSICC that can be utilized to combine security policies (that can be RBAC, MAC or

DAC) from different systems into one global security policy, in which SSEP also includes

a process for security enforcement code generation. This was shown in the upper right half

of Figure 1.2. A portion of the SSEP is human assisted in order to reconcile naming issues

of roles, mapping sensitivity levels, etc., that are integrated from multiple clients and

systems. Once the policies are successfully mapped, all of the security enforcement code

can be automatically generated by algorithms. The SSEP for FSICC is represented by the

left vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 that spans all of

the five horizontal boxes: Architectural Blueprints, Unified Cloud Computing Access

Control Model, Access Control Models, Global Security Policy and Global API

Generation, and Global Security Policy and Global API Utilization and Security

Enforcement.

EC-D: Dynamic Enforcement via Intercepting Process: This contribution involves a

set of programmatic mechanisms that are able to intercept a service call from a client app

to an API in order to perform appropriate security enforcement checks. This was shown

in the bottom of Figure 1.2. In Figure 1.3, these security interceptors are represented within

the last horizontal box Global Security Policy and Global API Utilization and Security

Enforcement in Figure 1.3, and the Security Enforcement via Interceptors box in Figure

1.2. Interceptors include: a RBAC Interceptor that is able to determine at runtime if the

requested API call on a global service can be executed for a specific user with a specific

role; a MAC Interceptor that is able to determine at runtime if the requested API call on a

global service can be executed for a user with a clearance and limited by if the services is

19

read or write; and a DAC Interceptor that is able to determine at runtime if the requested

API call on a global service can be executed for a specific user with a delegated

role/service/clearance.

Throughout the remainder of the dissertation, these expected contributions (EC-A, EC-B, EC-C,

and EC-D) will be high-lighted when relevant.

Figure 1.3. High-Level View of FSICC Research Areas and Foci.

1.6 Research Progress to Date

In support of the presented Framework for Secure and Interoperable Cloud Computing, a

number of articles have been published:

20

• Baihan, M., Sánchez, Y., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. (2018). A

Blueprint for Designing and Developing M-Health Applications for Diverse Stakeholders

Utilizing FHIR. In R. Rajkumar (Ed.), Contemporary Applications of Mobile Computing

in Healthcare Settings (pp. 85-124). Hershey, PA: IGI Global.

• Baihan, M., and Demurjian, S. (2017). A Framework for Secure and Interoperable Cloud

Computing. In Research Advances in Cloud Computing, S. Chaudhary (ed.), Springer.

• Baihan, M., Demurjian, S., Rivera Sánchez, Y., Toris, A., Franzis, A., Onofrio, A., Cheng,

B., and Agresta, T. (2017). Role-Based Access Control for Cloud Computing Realized

within HAPI FHIR. Proceedings of 16th International Conference on WWW/INTERNET

2017 (ICWI 2017), October 2017.

Other published or submitted articles:

● Rivera Sánchez, Y., Demurjian, S., and Baihan, M. (2017). Achieving RBAC & MAC on

RESTful APIs for Mobile Apps using FHIR. In The 5th IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering.

● Ziminski, T. B., Demurjian, S. A., Sanzi, E., Baihan, M., and Agresta, T. (2017). An

Architectural Solution for Health Information Exchange. In International Journal of User-

Driven Healthcare (IJUDH), 6(1), 65-103.

● Rivera Sánchez, Y., Demurjian, S., and Baihan, M. (2017). A Service-Based RBAC &

MAC Approach Incorporated into the Fast Healthcare Interoperable Resources (FHIR)

standard. Submitted to The Digital Communications and Networks Journal, special issue

on The Security, Privacy, and Digital Forensics of Mobile Networks and Mobile Cloud.

21

1.7 Dissertation Outline

The remainder of the dissertation has seven chapters. In Chapter 2, we review background

on: cloud computing and its main technologies; RBAC, MAC, and DAC models that are utilized

to enforce authorization on cloud services; application programming interfaces (APIs); and, the

Fast Health Interoperable Resources (FHIR) standard and its HAPI FHIR implementation. In

Chapter 3, we present and explain four security requirements and three cloud computing

capabilities for FSICC that both simplifies and enables client access via global resources via

standardized system APIs. Chapter 4 defines a Unified Cloud Computing Access Control model

(UCCACM) for RBAC, MAC, and DAC access control for a cloud setting; this addresses

Contribution EC-B: An Integrated RBAC, MAC, and DAC Model for Cloud Computing. In

Chapter 5, we present a set of blueprints for the design and development of IFMWK servers in

which an application can interact with multiple HIT systems via IFMWK through the design,

implementation, and usage of IFMWK servers. The architectural blueprints consist of three main

architectural integration options: Basic Architecture, Alternative Architecture, and Radical

Architecture; this addresses Contribution EC-A: Architectural Blueprints for Supporting FSICC.

Chapter 6 has two main parts. The first part presents a set of algorithms for generating the global

security policy of FSICC; this partially addresses Contribution EC-C: Security

Mapping/Enforcement Algorithms and SSEP by focusing on Security Mapping/Enforcement

Algorithms. The second part introduces and discusses three security interceptors for RBAC,

MAC, and DAC via a number of checks and an algorithmic approach for each interceptor; this

addresses Contribution EC-D: Dynamic Enforcement via Intercepting Process. Chapter 7

introduces and discusses an SOA-based security engineering process for FSICC that is intended

to help security engineers of systems and clients, on one side, and the security engineer of FSICC,

22

on the other side, to establish and maintain secure interoperable services via RBAC, MAC, and

DAC; this partially addresses Contribution EC-C: Security Mapping/Enforcement Algorithms

and SSEP by focusing on SSEP. Finally, Chapter 8 summarizes the contributions of the

dissertation and discusses future work.

23

Chapter 2

Background

This chapter provides background material on the main concepts and topics that support the

discussion and explanation in the remainder of this dissertation. Section 2.1 presents the cloud

computing concept and underlying application programming interfaces (APIs), and discusses

the main technologies behind cloud computing with an emphasis on the service-oriented

architecture (SOA) technology that underlies the cloud service model. Section 2.2 reviews the

three classic access control approaches: role-based access control (RBAC) (Ferraiolo, Sandhu,

Gavrila, Kuhn, & Chandramouli, 2001), discretionary access control (DAC) (Dittrich, Härtig, &

Pfefferle, 1988), and mandatory access control (MAC) (Bell & La Padula, 1976). Section 2.3

introduces and explains the Fast Health Interoperable Resources (FHIR) standard with an

emphasis on the FHIR Resources and reviews the HL7 Application Programming Interface FHIR

(HAPI-FHIR) which is one popular reference implementation of the FHIR standard. Section 2.4

introduces and presents a sample healthcare scenario utilized throughout this dissertation.

2.1 Cloud Computing and APIs

Cloud computing has emerged as a de facto approach throughout society, commercial ,

governmental sectors, and research/academic communities. The National Institute of Standards

and Technology (NIST) (Mell & Grance, 2011) defines: “Cloud computing is a model for

enabling convenient, on-demand network access to a shared pool of configurable computing

resources that can be rapidly provisioned and released with minimal management effort or

service provider interaction.” Historically, cloud computing emerged from the evolution of

existing technologies (Zhang, Cheng, & Boutaba, 2010), such as service-oriented architecture,

24

that are combined in a certain way to provide a new business model. Service-oriented

architecture (SOA) (IBM, 2015) is a model for designing systems in which the focus is around

offering services for different consumers. An SOA implementation, such as the web services

standard, could adopt the eXtensible Markup Language (XML) as an SOA approach that enables

systems to provide and consume services in a common manner without the need to use a specific

programming language or operating system.

This facilitates services integration. Service suppliers define and publish services for use by

consumers. Cloud services are provided and delivered based on the cloud service model

(Microsoft.com, 2016) by leveraging concepts from SOA. In the cloud service model in Figure

2.1, there are three main components: Cloud Service Registry, Cloud Service Supplier, and Cloud

Service Consumer. The Cloud Service Registry component maintains information on available

cloud services. The Cloud Service Supplier component publishes services to the Cloud Service

Registry. The Cloud Service Consumer component discovers services from Cloud Service Registry

and consumes them. Cloud services are the APIs that define the way that cloud consumers can

access and utilize cloud-computing resources such as software.

Cloud computing utilizes an Application Programming Interface (API) to support the definition

of services. An API requires a set of inputs via an HTTP request to generate a response in a

specific format such as the Extensible Markup Language (XML), the JavaScript Object Notation

(JSON), etc., based on the inputs. In cloud computing, the cloud services are the APIs that define

the way that cloud consumers can access and utilize cloud-computing resources such as software.

Some benefits of creating an API are: (1) data can be transferred from one system to another system

easily and smoothly; (2) an API can be called and processed by almost any programming language

that can be different from the programming language of the actual system implementation; and,

25

(3) an API can be utilized to encourage external developers to add new features or to enhance

current features of a system. An API can be designed using web services such as: Representational

State Transfer (REST) (Fielding, 2000), Simple Object Access Protocol (SOAP) (Microsoft Inc.,

2016), etc. Any API designed based using the REST protocol is called a RESTful API, which is

defined as a set of definitions for methods of the Back-end system. A RESTful API utilizes a

Hypertext Transfer Protocol (HTTP) request to interact with the API consumers and the back-end

system (Rouse, 2014). RESTful requests are frequently referred to as CRUD, which is short for

Create, Read, Update, and Delete functions. CRUD operations from an HTTP perspective are

typically defined as: GET to retrieves data; PUT or POST to insert data; POST, PUT, or PATCH

to update data; and, DELETE to remove data. RESTful APIs have become a dominant choice for

designing and implementing cloud services.

Cloud Service
Registry

Cloud Service
Supplier

Cloud Service
Consumer

Bind

Figure 2.1. Cloud Service Model.

2.2 Access Control Models

Access control models have gained wide acceptance in computing, traditionally in controlling

access to data in objects that are in a database or a repository. The three classic approaches are:

role-based access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001),

discretionary access control (DAC) (Dittrich, Härtig, & Pfefferle, 1988), and mandatory access

26

control (MAC) (Bell & La Padula, 1976). RBAC provides an efficient way to manage consumers,

users of a system, by utilizing the concept of role in which each role can be authorized to access a

sub-set of the available cloud services and each consumer is assigned one or more suitable roles.

The RBAC model as shown in Figure 2.2 consists of three main components: elements that describe

the different components; constraints that can be defined on the elements; and, relations that exist

between the various elements.

There are five main elements in RBAC: objects that represent functionality for an application;

operations that are defined on objects; permissions that are the allowed operations on the different

objects; roles that represent a set of responsibilities for a user of the application to capture the

defined permissions; and, users that are assigned to a role during a session of an application. RBAC

supports a number of constraints that can be defined to restrict a user playing a specific role. Finally,

RBAC elements can be organized into relations: a role-user relation to assign users to roles; a role-

permission relation to assign permissions to roles; a role-session relation to assign sessions to roles;

a user-session relation to assign users to sessions; an operation-object relation to assign objects to

operations; and, a role-role relation to define a role hierarchy. Moreover, the role-role relations

form a partial order and are represented using an isa role hierarchy based on generalization

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001). That is, any role that is located

higher up in the hierarchy, is a more general role than roles lower in the role hierarchy. As a

result, a non-root role inherits all of the permissions authorized to the roles above, namely, the

ancestors. In addition, some roles in the role hierarchy are abstract roles in which no users will

be assigned to such roles. For example, in healthcare, a physician role can be at a higher level

than a private physician role, which inherits all of the permissions authorized to the physician

role; in such a role hierarchy, the physician role is a more general role.

27

RolesUsers OBSOPS

PRMS

Sessions

UA

Session_rolesUser_sessions

PA

RR

Figure 2.2. RBAC Model.

When cloud services need to access very sensitive information such as patient data that needs

to be more strongly controlled than other parts of the patient data, MAC can be employed to control

access to services using the concept of a sensitivity level, which is a security label that can be

assigned to an object or a user to indicate the importance of such service or user. In MAC, sensitivity

levels are assigned to subjects (clearance) and objects (classification) with the permissions for the

subject to read and/or write an object dependent on the relationship between clearance (assigned to

users) and classifications (assigned to objects). MAC typically is modeled using four sensitivity

levels which are hierarchically ordered from most to least secure: Top Secret (TS) < Secret (S) <

Confidential (C) < Unclassified (U); this is referred to as the multi-level security model (MLS).

These terms are defined in the U.S. classification of information systems in a Presidential Executive

Order (National Archives, 1982):

“(1) "Top Secret" shall be applied to information, the unauthorized disclosure of which

reasonably could be expected to cause exceptionally grave damage to the national security.

(2) "Secret" shall be applied to information, the unauthorized disclosure of which reasonably

could be expected to cause serious damage to the national security.

(3) "Confidential" shall be applied to information, the unauthorized disclosure of which

reasonably could be expected to cause damage to the national security.”

28

 In MAC, the central authority maintains a classification (CLS) for each object and a

clearance (CLR) for each user in the system. The MAC model (Bell & La Padula, 1976) also has

a set of properties, namely, Simple Security (SS), Simple Integrity (SI), Liberal* (L*), and Strict*

(S*) that has both Read and Write capabilities. Such properties are defined to determine under which

conditions a user with a CLR level can read or write a given data item with a CLS level. First, the

SS property (or read-down, no read-up) is the permission to read an object that has an equal or

lower CLS level. That is, a user is allowed to read an object with a CLS level equal to or lower than

their CLR level, but not those objects with a higher CLS level. Second, the SI property (or write-

down, no write-up) is the permission to write an object that has an equal or lower CLS levels. That

is, a user can write an object of equal or lower CLS level when compared to their CLR level, but

not to those objects with a higher CLS levels. Third, the L* property (or write-up, no write-down)

is the permission to write an object that has an equal or greater CLS level (the opposite of SI). Forth,

S* Write property (or write equal) is the permission to write an object that only has an equal CLS

level. Finally, the S* Read property (or read equal) is the permission to read an object that only has

an equal CLS level. From a definition and management perspective, an Security engineer of a

system would set the CLR level of users following the predefined sensitivity levels (e.g., TS, S, C,

and U) to establish the levels for both users and objects. These levels are then augmented on a user-

by-user basis by assigning the ability to read an object (via SS or S* Read properties) and the ability

to write an object (via SI, L*, or S* Write properties).

To explain the read/write properties, assume that there is an object O1 with a confidential

classification; an object O2 with a top secret classification; a user U1 with a top secret clearance,

with SS read property and SI write property chosen for that user. Assume another user U2 with a

29

secret clearance with SS read property and SI write property chosen for this user. In this setting, U1

can read and write O1 and O2, while U2 can only read and write O1, as shown in Figure 2.3.

U1 O1 Class: C

O2 Class: TS

Clear: TS

U2Clear: S

Figure 2.3. An Example of MAC.

However, the four sensitivity levels typically used in MAC are insufficient to classify data in

some complex areas such as healthcare. For this reason, a number of healthcare-based sensitivity

level sets have been proposed in the literature. Two main works are: the HL7 v3 standard

confidentiality labels (Health Level 7., 2014); and a proposed healthcare multi-level security

labeling system (Demurjian, Sanzi, Agresta, & Yasnoff, 2018). In the first work, the HL7

organization introduced the HL7 v3 standard which contains a definition for a set of confidentiality

labels that is defined to accurately classify healthcare related data. Specifically, the HL7 v3 standard

defines six confidentiality labels: U – unrestricted, L – low, M – moderate, N – normal, R –

restricted, and V – very restricted; these six levels replace the four traditional sensitivity levels of

MAC. Figure 2.4 presents the HL7 v3 confidentiality labels with a definition and examples for each

confidentiality label, taken from (http://www.hl7.org/documentcenter/public_temp_DFF235EF-

1C23-BA17-

0CB382A77F4391FB/standards/vocabulary/vocabulary_tables/infrastructure/vocabulary/vs_Conf

identiality.html). Note that these confidentiality labels indicate the type of healthcare related data

that needs to be protected and are different from the typical four sensitivity levels of MAC.

30

Figure 2.4. Confidentiality Labels from HL7 Release 3 Standard.

In the second work, Demurjian et al., (Demurjian, Sanzi, Agresta, & Yasnoff, 2018) proposed

a multi-level security labeling system for healthcare domain which has five healthcare sensitivity

levels (0-4) and within each level there are different categories of data that will be given to different

users based on their need as Figure 2.5 shows, where Level 0 is the least secure, while Level 4 is

the most secure. Specifically:

▪ Level 0 (Basic Information) is public data available to anyone without control in which

data in this level can be categorized into: 0-DM for basic demographics such as city and

state of residence, 0-C for general health condition, and 0-FT for information related to

tracking fitness data.

▪ Level 1 (Medical History Data) contains data that has some restrictions in which data in

this level can be categorized into: 1-DM for detailed demographic data, 1-MHx for

history of the patient and his/her family, 1-FHx for more sensitive patient-collected

31

fitness data, 1-IM for immunizations, and 1-MH-Hx for mental health history of the

patient.

▪ Level 2 (Summary Clinical Data) contains clinical data in which data in this level can be

categorized into: 2-Rx for prescription, 2-OTC for over-the-counter medications, 2-ALL

for allergies, 2-Dx for medical diagnoses and problem list, 2-PL for plan for treatment or

other related instructions, 2-MH-Dx for mental health, separate medical diagnoses and

problem list, and 2-MH-PL for plan for treatment or other related instructions.

▪ Level 3 (Detailed Clinical Data) is for use by medical providers in which data in this

level can be categorized into: 3-RP for reports from imaging studies (CT Scans, MRIs,

X-Rays, etc.), 3-IM for the images from the studies, 3-EN for detailed information on

each medical visit, 3-LB for laboratory tests ordered, dates, and results including

surveillance data, 3-MH-EN for information about mental health encounters, 3-SR for

surveillance data, and 3-FT for clinical data from fitness devices.

▪ Level 4 (Sensitive Clinical Data) contains sensitive information on a patient that is used

by medical specialists in which data in this level can be categorized into: 4-G for data on

genetics, 4-SA for substance abuse, 4-MH for mental health psychotherapy notes, 4-RH

for reproductive health, and 4-DV for domestic violence.

32

Figure 2.5. A Multi-Level Healthcare Sensitivity Levels.

DAC can be defined as an access control mechanism that can restrict operations (e.g., read,

write, execute) on objects (or services) based on the identity of subjects (users) and/or groups to

which they belong, as shown in a Figure 2.6. The word “discretionary” in DAC indicates that a

subject with a certain access permission is capable of passing that permission on to any other subject

so that the delegated user may utilize the delegated permission. A subject is also called an original

user which means that the user was assigned the role directly in the security definition process. A

role that is assigned to an original user is referred to as an original role, in such an original role has

original role permissions. An original user may also be assigned a clearance level if they are

assigned mandatory access capabilities which is reference to as an original clearance. An original

user may have delegation of authority which allows the original user to pass on the original role to

a delegated user who acquires all of the capabilities of the original uses role. When the original

role is passed to the delegated user, is it is referred to as the delegated role of that delegated user.

33

The delegated role in turn has delegated role permissions, and if the original user had an original

clearance, it too could be passed to the delegated user as a delegated clearance. Two other important

concepts for DAC are delegation authority and pass on delegation of authority. Delegation authority

is the authority given to an original user that allows the original user to delegate his or her role to a

delegated user. Pass-on delegation authority, PODA, is the authority given to an original user or

delegated user that allows that user to delegate on a useful set of definitions and rules for delegation

which underlie a proposed delegation language (Zhang, L., Ahn, J., & Chu, T., 2001).

In a cloud computing setting, DAC can offer the ability of a consumer of the cloud services to

enable another consumer to utilize all or a sub-set of the consumer’s authorized cloud services, that

are assigned based a role or a clearance, through a delegation of authority. DAC, as shown in Figure

2.6, utilizes the concept of delegation to pass privileges among users to delegate both authority and

permissions to another user. For example, in healthcare, a physician Charles that is leaving the

office on the weekend could delegate his responsibilities (e.g., patients) to the on-call physician

Lois who will be covering any queries from patients. Charles can delegate all of his permissions

and also the ability to further delegate those permissions beyond the original scope. For example,

if the on-call physician Lois has to attend to an emergency, she could then employ user-directed

delegation to delegate the permissions passed to her by Charles to another user Thomas.

Administrative-directed delegation has a security engineer to control delegation.

Users OBSOPS

PRMS

Delegate

Figure 2.6. DAC Model.

Traditionally, RBAC, DAC, and MAC models define permissions over objects and operations

of a system. However, the work in this dissertation is focused on a Framework for Secure and

34

Interoperable Cloud Computing (FSICC) which involves the definition of Global Services and the

need to define security policies that allow the ability to determine which user can access which

service at which times. The work in this dissertation is very cloud-computing focused with an

emphasis on services, and since we are interested in supporting Access Control in FSICC the

RBAC, DAC, and MAC models need to be upgraded, extended, and modified so that permissions

can be defined against cloud services. Such an extension to access control will provide us with the

ability to: specify which role can access which cloud service at which time and under which

situation thereby supporting RBAC; define a classification of each cloud service and a clearance

for each user/client in order to control which Services can be accessed thereby supporting MAC;

and, delegate a cloud service from one user to another user thereby supporting DAC. This allows

the FSICC to authorize a mobile, web, and desktop applications, by roles/clearance, to access cloud

services.

2.3 FHIR and HAPI FHIR

The Fast Health Interoperable Resources (FHIR) is a health integration standard developed by

the Health Level Seven International (HL7) organization (Health Level 7, Fast Health

Interoperable Resources, 2016). FHIR is primarily structured around the concept of FHIR

resources (Health Level 7, Fast Health Interoperable Resources list, 2016) which are the data

elements and associated RESTful APIs that can be leveraged for exchanging healthcare

information, particularly between mobile applications and HIT systems. FHIR Resources, the

main building block in FHIR, can hold any type of information that FHIR deals with to be

exchanged from one health information technology system to another via RESTful API services

that utilize with an XML or JSON format. Resources are broadly classified into different

categories: Clinical Findings; Patient Problems, Allergies, and Adverse Events; Patient History;

35

Suggested Physician Orders; and, Interdisciplinary Care Planning. To illustrate, sample FHIR

resources from the 119 currently defined (and always increasing) are: the Practitioner resource to

track medical providers (physicians, nurses, office staff, etc.); the Patient resource can track

demographic data on patients; the RelatedPerson resource to track parents/guardians; the

FamilyMemberHistory for basic information on a family medical history; the Condition resource

to track the relevant medical conditions; the Observations resource to track symptoms, and other

medical observations; and, the Encounter/EpisodeOfCare resources to track the different times that

changes to patient data occur based on a visit (Encounter) or action at the visit (EpisodeofCare).

FHIR Resources can be utilized by HIT systems and applications for different purposes. For

example, an mHealth application may use the Patient resource to store and exchange information

about patients back and forth with different HIT systems. All FHIR resources have five main

properties in common: a unique URL for identification purposes; common metadata; a human

readable section; a number of predefined data elements; and, an extension element that enables a

system to add new data elements. FHIR provides four main equivalent representation formats: the

Unified Modeling Language (UML) format for a diagrammatic representation of the resource; an

XML schema that is subset of the HL7 schema for the resource; a JSON representation to facilitate

a programmatic exchange via a RESTful APP; and, a Turtle resource definition format (RDF) to

assist the process of bridging between operational data exchange within formal knowledge

processing systems. Figure 2.7 shows an example of a FHIR Patient resource represented in the

JSON format. FHIR supports a number of REST API services to enable a system to retrieve and

modify data in the Resources. The main five services are: Create to add a new instance of a

resource; Read to retrieve an existing instance of a resource; Update to manipulate data in an

existing instance of a resource; Delete to remove an existing instance of a resource; and, Search to

36

retrieve all existing instances of a resource. The first four services are similar to CRUD, while the

fifth service for search is intended to allow repositories to be accessed.

{ "resourceType": "Patient",
"id" : "1",
"meta" : { "versionId" : "1", }
"text": { "status": "generated", },
"identifier": [{ "label": "OpenEMR",

"system": "http://www.healthorg.org/openemr",
"value": "10“ }],

"name": [{"family": "Levin",
"given": "John" }],

"gender": {"text": "Male" },
"birthDate": "1985-02-12“ }

Figure 2.7. An Example of Patient Resource in JSON.

One popular reference implementation of the FHIR standard is the HL7 Application

Programming Interface FHIR (HAPI-FHIR) (HAPI community, 2016) which is an open-source

Java-based library of the FHIR standard. Following the FHIR standard, the HAPI-FHIR library

provides a HAPI-FHIR server that can be used in front of a system. Figure 2.8 shows the HAPI-

FHIR server architecture that consists of three components: HAPI ResfulServer, Resource

Providers, and, the Back-end system. The HAPI ResfulServer is a Servlet that a developer utilizes

to: create instances of user-defined resource providers; and, specify the Servlet path. A Resource

Provider is a class that represents one FHIR resource (e.g., Patient) that has a number of empty

annotated methods for CRUD verbs that a developer needs to implement. These empty annotated

methods are utilized to to parse HTTP requests and convert the transferred data to/from FHIR

format/Back-end System format, and to interact with the Back-end System. The Back-end System

is a Health IT system (HIT) that handles the Resource Providers requests to retrieve or modify the

actual Electronic Health Records (EHR).

37

Figure 2.8. The HAPI-FHIR Server Architecture (HAPI community, 2016).

The HAPI-FHIR library also provides a general HAPI server interceptor (University Health

Network, 2016) which is programmatic approach that allows a developer to examine each

incoming HTTP request to add useful features to the HAPI ResfulServer such as authentication,

authorization, auditing, logging, etc. The general HAPI interceptor, the InterceptorAdapter class,

defines a number of methods that enable a developer to interact with the incoming HTTP requests

at different points of the request lifetime. As Figure 2.9 shows, these methods are:

incomingRequestPreProcessed that is invoked before performing any action to the request;

incomingRequestPostProcessed that is invoked after determining the request type which

classifying the request; incomingRequestPreHandled which is invoked before sending the request

to the Resource provider; and, outgoingResponse which is invoked after the request is handled by

the appropriate Resource provider. Each of these methods must returns either true, to continue

processing the request, or false, to abort and reject the request. Moreover, a developer may extend

the InterceptorAdapter class and implement the needed methods and register the extended class in

the HAPI ResfulServer.

http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/InterceptorAdapter.html
http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/InterceptorAdapter.html

38

Figure 2.9. The Methods of HAPI Interceptor (University Health Network, 2016).

2.4 A Healthcare Scenario

To assist in explaining FSICC and all of its components and features in this dissertation, this

section presents a healthcare scenario that has two mHealth client apps, the Connecticut Concussion

Tracker (CT2) and ShareMyHealth, and two HIT systems, the open electronic health record,

OpenEMR (OpenEMR, 2016) and MyGoogle. To begin, CT2 is a mHealth app, as shown in

Figure 2.10 for Android and iOS devices, which is developed as a joint effort between the

Departments of Physiology and Neurobiology, and Computer Science & Engineering at the

University of Connecticut, in collaboration with faculty in the Schools of Nursing and Medicine.

The CT2 app allows the user (e.g., parent/guardian, coach, athletic trainer, school nurse) to report

and manage the concussion incidents of students from kindergarten through high school. The CT2

app uses an HIT system (i.e., OpenEMR) as a back-end system to maintain patients-related data.

39

The CT2 contains seven tabs starting from the top left and continuing to the second row in Figure

2.10 (‘Login’, ‘List’, ‘Student’, ‘Cause’, ‘Symptoms’, ‘Follow-up’, and ‘Return’) where: the

‘Login’ tab allows the user to enter a concussion, to retrieve an open case, or to find a student by

name; the ‘List’ tab which contains the list of students the user has permission to view and, for each

student gives him/her the option to add a concussion or edit an existing one; the ‘Student’ tab allows

the user to input the student’s general information (e.g., name, birthdate, school, and the date of

concussion); the ‘Cause’ tab allows the user to specify how and where the concussion occurred; the

‘Symptoms’ tab allows users to record the symptoms the student had within 48 hours and other

pertinent data; the ‘Follow-up’ tab allows users to record the status of the student over time; and,

the ‘Return’ tab allows users to specify when the student can return to school activities. Both

versions (Android and iOS) of CT2 utilize an API (services) to manage CT2 data as given in Table

2.1. Services CT1 and CT2 are used to: add/modify a student concussion status, and, retrieve such

status information, respectively. CT2 utilizes CT3 and CT4 services to: retrieve all information about

a student, and create/update new student information, respectively. Services CT5 and CT6 provide

ways for the CT2 to: create/update a student follow-up summary, and retrieve follow-up

information, respectively. Finally, by calling services CT7 and CT8, CT2 can: retrieve all

information about a student concussion, and add/modify new student concussion information,

respectively. CT2 defines four roles (see Table 2.2): Coach, Nurse, Trainer, and Parent. All of the

four roles can access: all GET services CT2, CT3, CT6, and CT7; and two PUT services CT4, except

Coach, and CT8. Moreover, Trainer has an additional PUT service (CT5) while Nurse has access to

all PUT services.

40

Figure 2.10. CT2 Mobile Application - iOS Version Interceptor.

ShareMyHealth is an mHealth app as shown in Figure 2.11 developed by a team of

undergraduate students at the University of Connecticut, for Android and iOS devices.

ShareMyHealth provides patients with a means to manage and share their fitness data across

multiple systems. Patients can gather data from multiple sources (e.g., MyGoogle, OpenEMR, etc.)

that can then be made available to medical providers. The first row of Figure 2.11 contains four

screens: Welcome for the initial opening of the app; Sign In with Google to authenticate the user

credentials to access his/her fitness data, such as Google Fit API (via MyGoogle system); Initial

Access for the user to define fitness data; and Home where the user sees their basic information

and can access their “Health” and “Settings” pages. The second row of Figure 2.11 contains four

screens: Health View for viewing information on steps, calories, weight, and height; and a Settings

page to view setting such as name, gender, date of birth, etc.; and, a second setting page that to

41

modify information. Pressing the “View Steps” button utilizes the user’s Google API Token to

pull their data from the Google Fit cloud (via MyGoogle system). When a user presses the “Sync

Steps” button, the app packages the data into Google Fit via MyGoogle system which in turns

sends the information into OpenEMR via OpenEMR API. Settings such as name, gender, etc., are

updated by direct calls from ShareMyHealth to OpenEMR.

Figure 2.11. ShareMyHealth Mobile Application.

ShareMyHealth has access to a RESTful API (SMH1 to SMH5 services, see Table 2.3).

Moreover, the ShareMyHealth API makes calls (via MyGoogle system) to: Google OAuth API

that prompts the current user (patient) to allow ShareMyHealth access to the user’s Google Fit

data; Google REST Fit API to access measurement data (step, height, weight, and calorie); and

OpenEMR API to read and update patient data. Specifically, ShareMyHealth utilizes services

SMH1 and SMH2 to add/update and read a patient’s measurements data, respectively.

ShareMyHealth calls services SMH3 and SMH4 to add/update and read a patient’s demographic

information. In addition, service SMH5 is used to grant ShareMyHealth app (using its Token) an

access to the user (patient) fitness data. ShareMyHealth has two roles (see Table 2.4): Patient, that

has access to all five services, and Physician, that has access to all services but SMH1 and SMH3.

42

Table 2.1. CT2 Services.

Sid Service Name

CT1 PUT /CT2/concussion/status statusINFO

CT2 GET /CT2/concussion/status statusID

CT3 GET /CT2/student studentID

CT4 PUT /CT2/student/add studentINFO

CT5 PUT /CT2/followup/add followupINFO

CT6 GET /CT2/followups followupID

CT7 GET /CT2/concussion/student studentID

CT8 PUT /CT2/concussions/add concussionsINFO

Table 2.2. CT2 Roles.

Rid Role Service Name

CTR1 Coach CT2, CT3, CT6 – CT8

CTR2 Nurse CT1 – CT8

CTR3 Parent CT2 – CT4, CT6 – CT8

CTR4 Trainer CT2 – CT8

Table 2.3. ShareMyHealth Services.

Sid Service Name

SMH1 PUT /SMH/newMeasure/mID mINFO

SMH2 GET /SMH/Measures/mID

SMH3 PUT /SMH/newPatient/pID pINFO

SMH4 GET /SMH/Patients/pID

SMH5 PUT /SMH/Users/uID Token

43

Table 2.4. ShareMyHealth Roles.

Rid Role Service Name

SMHR1 Patient SMH1 – SMH5

SMHR2 Physician SMH2, SMH4, SMH5

OpenEMR (OpenEMR, 2016) is an open source Electronic Health Record (EHR) system and

a medical practice management app that can be utilized by any health/medical organization around

the world. OpenEMR is a Meaningful Use Stage 2 certified (Himss.org., 2016) and is expected to

be a Meaningful Use Stage 3 EHR certified soon (Himss.org., 2016). In addition to a web-based

interface, OpenEMR has a RESTful API from which we have selected a subset of eight services

as shown in Table 2.5. Services OEMR1 and OEMR2 enable an app (or a user via an app) to

add/update a note about a patient, and, retrieve information about such a note, respectively. An

app may utilize services OEMR3 and OEMR4 to: retrieve patient information, and, create/update

new patient information, respectively. Services OEMR5 and OEMR6 provide ways for an app to:

create/update a patient follow-up summary, and, retrieve information about such a follow-up,

respectively.

Finally, by calling services OEMR7 and OEMR8, an app can: retrieve patient condition

information, and, add/modify new patient condition information, respectively. Moreover, the

OpenEMR system defines eight roles (see Table 2.6): Patient, Physician, Coach, Nurse, Trainer,

Parent, CT2, and MyGoogle in which the last two roles are designed for CT2, and MyGoogle,

respectively. The roles Nurse, Trainer, and Parent can access: all GET services OEMR2, OEMR3,

OEMR6, and OEMR7; and two PUT services OEMR4 and OEMR8. Moreover, Trainer has an

additional PUT service (OEMR5) while Nurse and Physician roles have access to all PUT services.

In addition, the Physician can only access OEMR2 and OEMR4 services, while the Patient role can

44

access the services OEMR1, OEMR2, OEMR3 and OEMR4. The Coach role can access all services

except OEMR1, OEMR4, and OEMR5. Moreover, the MyGoogle role is restricted to access

OEMR1 and OEMR2 services, while the CT2 role can access all services.

Table 2.5. OpenEMR Services.

Sid Service Name

OEMR1 PUT /OpenEMR/updatepatientnotes noteINFO

OEMR2 GET /OpenEMR/getnotes noteID

OEMR3 GET /OpenEMR/getallpatients patientID

OEMR4 PUT /OpenEMR/addpatient patientINFO

OEMR5 PUT /OpenEMR/addvisit visitINFO

OEMR6 GET /OpenEMR/getvisits visitID

OEMR7 GET /OpenEMR/getlist conditionID

OEMR8 PUT /OpenEMR/addlist conditionINFO

Table 2.6. OpenEMR Roles.

Rid Role Service Name

OEMRR1 Physician OEMR2, OEMR4

OEMRR2 Patient OEMR1 – OEMR4

OEMRR3 Coach OEMR2, OEMR3, OEMR6 – OEMR8

OEMRR4 Nurse OEMR1 – OEMR8

OEMRR5 Parent OEMR2 – OEMR4, OEMR6 – OEMR8

OEMRR6 Trainer OEMR2 – OEMR8

OEMRR7 CT2 OEMR1 – OEMR8

OEMRR8 MyGoogle OEMR1, OEMR2

45

Table 2.7. MyGoogle Services.

Sid Service Name

MG1 PUT /MyGoogle/fitness/dataSources/dsID dsINFO

MG2 GET /MyGoogle/fitness/dataSources/dsID

MG3 PUT /MyGoogle/newPatient/pID pINFO

MG4 GET /MyGoogle/Patients/pID

MG5 PUT /MyGoogle/Users/uID Token

Table 2.8. MyGoogle Roles.

Rid Role Service Name

MGR1 SMH MG1 – MG5

Finally, MyGoogle is a HIT that we developed to act as a middle layer between the

ShareMyHealth app and the two HIT systems: OpenEMR and Google Fit (Google, 2017), which

is an open HIT system for sharing and managing patient fitness data (e.g., step, height, weight, and

calorie) that is maintained in the Google Fitness Store (in the cloud) that enables multiple apps to

access such data via Google Fit APIs. Google Fit consists of two APIs: Fit REST API to add/update

patient fitness data; and, Google OAuth API to authenticate apps to access users’ fitness data.

MyGoogle HIT has an API (Table 2.7) to access OpenEMR API and Google Fit APIs and acts on

behalf of apps. The MyGoogle API consists of five services. MG1 and MG2 enable an app to

add/modify and read users’ fitness data from/into Google Fitness Store via Fit REST API,

respectively. MG3 and MG4 add/update and read a patient’s demographic information from/into

OpenEMR via OpenEMR API, respectively. MG5 utilizes Google OAuth API to authenticate an

app (using its Token) to access a user’ fitness data. In addition, MyGoogle defines one role, i.e.,

46

SMH, (see Table 2.8) which is designed to be assigned to ShareMyHealth app. The SMH role can

access all MyGoogle API services.

47

Chapter 3

Security Requirements and Cloud Computing Capabilities for

FSICC

As we discussed earlier in Section 1.2, the healthcare domain is an emergent application for

cloud computing, in which the Meaningful Use Stage 3 guidelines recommend health information

technology (HIT) systems to provide cloud services that enable health-related data owners to access,

modify, and exchange data. This requires that mobile and desktop applications for patients and

medical providers obtain healthcare data from multiple HITs, which may be operating with

different paradigms (e.g., cloud services, programming services, web services), use different cloud

service providers, and employ different security/access control techniques. To address these issues,

this chapter presents the four Security Requirements and the three Cloud Computing Capabilities

that underlie and support FSICC. These four security requirements and three cloud computing

capabilities for FSICC simplifies and enables client access via global resources using standardized

system APIs. A security requirement represents what we consider to be the key security features

for supporting security in FSICC. The four security requirements are: Numerous and Varied Access

Control Models, Control Access to Cloud Services Using RBAC, Support Delegation of Cloud

Services Using DAC, and Control Access to Cloud Services Using MAC. A cloud computing

capability represents what we consider to be the critical characteristics for supporting cloud

computing in FSICC. The three cloud computing capabilities of FSICC are: Local Service

Registration and Mapping to Global Services, Local Security Policies Registration to Yield Global

Security Policy, and Global Registration, Authentication, Authorization, and Service Discovery for

Consumers. To understand the role of security requirements and cloud computing capabilities for

48

FSICC, we reexamine Figures 1.1 to 1.3 which also provides a more complete discussion of FSICC

and its functionality.

To begin, recall that Figure 1.1 from Chapter 1 presented the architecture of FSICC. The top

of Figure 1.1, had client Applications (Web, Mobile, and Desktop) which corresponds to the Clients

box in the Involved Parties component that was at the top of Figure 1.2 from Chapter 1. These client

applications are interested in utilizing a subset of the available global services and global security

policies of FSICC. FSICC was shown in the middle of Figure 1.1 and had eight boxes that interact

with one another. The Clients Registry box, at the top of FSICC, is for clients to register themselves

into the FSICC. The next lower box is the Global Authentication box that is responsible for

verifying clients’ identities before allowing them to be authorized to access global services of

FSICC. The next box down is the RBAC/MAC/DAC interceptors box that is in charge of

allowing/denying clients requests to access global services of FSICC based on roles/clearances. The

Clients Registry, the Global Authentication, and the RBAC/MAC/DAC interceptors boxes refer to

the Global Policy Enforcement component that was shown in Figure 1.2. The Global Services box,

in the middle of FSICC, is the set of global services that mirror services of registered systems and

are available to interested clients to utilize.

The next lower box is the Global Security Policy box which has the global security policy that

defines what set of global services each client can access based on RBAC, MAC, and DAC models.

The two next boxes are: the Security Policy Mapping box that is responsible for combining a set of

security policies from different systems and generating the global security policy; and, the Services

Mapping box which combines a set of services from systems into one set of global services. The

System Registry, at the bottom of FSICC, enables systems to provide their services and security

policies. The System Registry, the Services Mapping, the Global Security Policy, and the Global

49

Services boxes refer to the Generation of Global Policy and Services component that was shown in

Figure 1.2. The Security Policy Mapping box refers to Security Policy Mapping component that

was shown in Figure 1.2. The bottom of Figure 1.1 had Web, Programming, and Cloud

Applications, which corresponds to the Systems box in the Involved Parties component at the top

of Figure 1.2, that are willing to provide their services and security policies into the FSICC. Security

requirements have influence on security policy and mapping boxes as well as the RBAC, MAC,

and DAC models and interceptors. Cloud computing capabilities have influence on the services,

service mapping, and system registry boxes.

In addition, FSICC that was given in Figure 1.2 is an infrastructure for cloud computing that

provides a global policy authorization and enforcement mechanism and is capable of supporting

different access control models such as RBAC, DAC, and MAC in the Access Control Models

component in the middle of the figure. This is the main component where security requirements

have an impact. FSICC organizes and globally manages the cloud services, APIs, and web services

from multiple service suppliers (systems) via the Systems box in the Involved Parties component

at the top of Figure 1.1 into a set of global services in the Global Services box in the Generation of

Global Policy and Services component in Figure 1.2. These are the main components where cloud

computing capabilities have an impact. This allows the mobile, web, and desktop applications

clients in the Clients box in the Involved Parties component at the top of Figure 1.2 to be used to

easily discover and utilize them in order to interact with multiple constituent systems with a

common interface. Representative technologies to support the implementation of FSICC include:

the HAPI FHIR reference model (Health Level 7, Fast Health Interoperable Resources, 2016) from

Section 2.3; the DIRECT project (The Direct Project, 2016) that allows for the sharing of

information with best practices that have trust and privacy considerations; and, the HEART WG

50

project (OpenID, 2016) that provides privacy and security specifications for authorization and

access to health-related RESTful APIs.

Furthermore, Figure 1.3 from Chapter 1 presented a high-level view of the FSICC’s main

aspects. Figure 1.3 has five horizontal boxes for each main aspect of FSICC and vertical boxes that

span across the horizontal boxes. The five horizontal boxes are: Architectural Blueprints box that

contain the different options for architectural option for connecting clients and systems with FSICC;

Unified Cloud Computing Access Control Model box with boxes for Schema Definitions, Enterprise

Definitions, Policy Definitions, FSICC Definitions, and Intercepting Definitions; Access Control

Models box for the ability to control services via RBAC, MAC, and DAC; GSP (Global Security

Policy) Generation and GAPI (Global API) Generation box for generating the security policy from

multiple systems to make global APIs available to clients; and, Global Security Policy and Global

API Utilization and Security Enforcement box that utilizes security interceptors to allow/deny

clients from access global services of FSICC. Moreover, the security requirements for FSICC,

which will be described in this chapter, are represented in Figure 1.3 by the upper right vertical box

SECURITY REQUIREMENTS that spans two horizontal boxes: Unified Cloud Computing Access

Control Model and Access Control Models. The three cloud computing capabilities, which will be

described in this chapter, are represented in Figure 1.3 by the lower right vertical box CLOUD

COMPUTING CAPABILITIES that spans two horizontal boxes: Global Security Policy and

Global API Generation, and Global Security Policy and Global API Utilization and Security

Enforcement.

The presentation in the remainder of this chapter is in four parts. Section 3.1 defines and explains

the four security requirements for FSICC: Numerous and Varied Access Control Models, Control

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and

51

Control Access to Cloud Services Using MAC. Section 3.2 details the three cloud computing

capabilities with associated components of the FSICC: Local Service Registration and Mapping to

Global Services; Local Security Policies Registration to Yield Global Security Policy; and, Global

Registration, Authentication, Authorization, and Service Discover for Consumers. Section 3.3

discusses related research in cloud computing as compared with FSICC. Note that the work in this

chapter has been published in (Baihan, M. & Demurjian, S., 2017).

3.1 FSICC Security Requirements

This section discusses four security requirements for FSICC, exploring the impact of the

SECURITY REQUIREMENTS vertical box in Figure 1.3. A security requirement represents what

we consider to be the key security features for supporting security in FSICC. To facilitate this

discussion, there must be a shift in focus on the concept of RBAC, DAC, and MAC permissions on

objects and operations to one that assigns permissions to individual cloud services. For RBAC, this

corresponds to the global services being assigned to different users by role. For MAC, global

services are assigned classifications (TS, S, C, U) with a user having a clearance and performing

domination checks on classification vs. clearance for every service invocation. For DAC, this

corresponds to the ability to delegate services from user to user by role and potentially limited by

classification/clearance checks if MAC has defined. The remainder of this section presents and

discusses the four security requirements: Numerous and Varied Access Control Models, Control

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and

Control Access to Cloud Services Using MAC.

 Security Requirement 1 - Numerous and Varied Access Control Models. The first security

requirement acknowledges that the constituent systems (i.e., service suppliers) that wish to publish

52

access to cloud, API, or web services may have access control and security protocols that are varied.

Thus, FSICC must be capable of supporting a wide range of access control models such as Role-

based Access Control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001),

Mandatory Access Control (MAC) (Bell & La Padula, 1976), Discretionary Access Control (DAC)

(Dittrich, Härtig, & Pfefferle, 1988), Attribute-based Access Control (ABAC) (Yuan, E. & Tong,

J. , 2005), Usage Access Control (UCON) (Sandhu, R. & Park, J. , 2003), etc. This leads to Security

Requirement 1 - Numerous and Varied Access Control Models and is represented in the Access

Control Models horizontal box in Figure 1.3.

From the healthcare scenario of Section 2.4, we know that each HIT (MyGoogle and OpenEMR)

supports RBAC as illustrated in Tables 2.6 and 2.8. These systems also support DAC to allow

permissions (services) to be delegated from a physician Charles (user) to the on-call physician Lois

(user) after hours and weekends. FSICC, as was shown in Figure 1.1, enables these systems to

register their security policies (as shown for MyGoogle and OpenEMR in Tables 2.6 and 2.8) into

FSICC via the System Registry box in Figure 1.1. This is the Registration and Services Mapping

box of the Generation of Global Policy and Services component in Figure 1.2, in which security

policies are combined via the Security Policy Mapping box in Figure 1.1, Security Policy Mapping

component in Figure 1.2, to generate the global security policy via the Global Security Policy box

in Figure 1.1, Global Policy box of the Generation of Global Policy and Services component in

Figure 1.2. Specifically, the global security policy should define, for each role, the global services

assigned by role. This was accomplished as discussed by mapping permissions to call systems’

services (cloud, web, and API) from Table 2.5 and 2.7 into permissions to call global cloud services.

Security Requirement 2 - Control Access to Cloud Services Using RBAC. The second

security requirement involves the large number of services that are published in the cloud by

53

multiple systems which are to utilized by numerous consumers, meaning that the usage of such

services is expected to be high, which needs to be controlled so that only certain consumers at

different times can have access to specific services. Thus, when all of the system services are

collected into a set of global cloud services, the resulting set can be controlled based on roles, as

shown in the RBAC box of the Access Control Models horizontal box in Figure 1.3, in which each

role can be assigned on a consumer-by-consumer basis. This leads to Security Requirement 2-

Control Access to Cloud Services Using RBAC where global services can be assigned by role, see

the Role-based Access Control box of the Access Control Models component in Figure 1.2.

To illustrate, the global security policy may define nine global roles: GPhysician (global

physician), GPatient (global patient), GCoach (global coach), GNurse (global nurse), GParent

(global parent), and GTrainer (global trainer) would be assigned to individuals that are utilizing

applications, while GCT2 (global CT2), GMyGoogle (global MyGoogle), and GSMH (global SMH)

represent the roles of the systems and applications that may need to utilize services. The GPhysician

role is used by a doctor to access his/her patients’ electric information and to provide better

healthcare services for his/her patients. The GPatient role is used by a patient to access his/her

digital information and to request different healthcare services. The GCoach role is used by a coach

to report a health incident (e.g., concussion) at an athletic event with very limited information on

the patient. The GNurse role is used by a nurse to manage a patient’s health incident from its

occurrence to its resolution. The GParent role is used by a parent to both report a health incident on

his/her child while attending the athletic event or to track the current status of his/her children that

have health incidents. The GTrainer role is used by a trainer to do a limited preliminary assessment

if a health incident occurs at a training event. Moreover, The GCT2 application role is used by a

CT2 application to gather information related to patients’ concussion incidents. The GMyGoogle

54

system role is used by the MyGoogle system to gather medical and fitness information of patients.

Finally, The GSMH application role is used by the ShareMyHealth application to retrieve/add

fitness information of patients. In addition, there is also a need to work on the ability to constrain

the invocation of a service based on values.

 Security Requirement 3 - Support Delegation of Cloud Services Using DAC. Users of

applications, which consume services, may need: to collaborate with other users to accomplish a

better job; and/or to have other users to perform some of their tasks on behalf of them in case of

emergency. This leads to Security Requirement 3 - Support Delegation of Cloud Services Using

DAC where FSICC supports the ability to delegate cloud services from one user to another, see the

Discretionary Access Control box of the Access Control Models component in Figure 1.2 and the

DAC box of the Access Control Models horizontal box in Figure 1.3. For example, consider a user

Charles with a GPhysician role is leaving the office for the day or the weekend and is interested in

delegating his/her authority to access the services for his patient to the on-call physician Lois who

will be covering night and weekend inquiries from patients. In this case, Lois will then be utilizing

a mobile application to access patient data that is available via OpenEMR services (see Section 2.4).

Charles could delegate all or some of his OpenEMR services to Lois. For example, Charles may

delegate global services that involve patient data. If the delegation for Charles to Lois is during the

week (Monday to Thursday) it could go into effect at 5pm (close of business) and be revoked at

9am (start of business). For weekend calls the delegation would go from Friday at 5pm to Monday

at 1am.

Security Requirement 4 - Control Access to Cloud Services Using MAC. Many services may

access very sensitive information such as patient data that needs to be more strongly controlled than

other parts of the patient data. For example, mental health data is limited to a psychiatrist or

55

psychologist and not available to a family medical provider. This leads to Security Requirement 4 -

Control Access to Cloud Services Using MAC as shown in the Mandatory access control (MAC)

box of the Access Control Models horizontal box in Figure 1.3. This supports the definitions and

usage of classifications (for services) and clearances (for users) which are instrumental in

controlling access to a service and the data passed by a service. Thus, to further restrict access to

cloud services, FSICC supports MAC in addition to RBAC and DAC, has shown in the Mandatory

Access Control box of the Access Control Models component in Figure 1.2. That is, all of the global

services may be labeled with classification levels, and all users may be labeled with clearance levels.

Specifically, each of the global cloud services in FSICC can all be labeled with a classification level

(i.e., TS, S, C, or U).

3.2 FSICC Cloud Computing Capabilities

The set of security requirements in Section 3.1 leads to the definitions of a set of three FSICC

cloud computing capabilities, as shown in the CLOUD COMPUTING CAPABILITIES vertical

box in Figure 1.3, that bring together all of the concept and focus on the process and components

of FSICC. Cloud Computing Capability 1, Local Service Registration and Mapping to Global

Services, is for systems to register local services which are then mapped to a global set. Cloud

Computing Capability 2, Local Security Policies Registration to Yield Global Security Policy, is

for systems to register their local security policy which is utilized to generate a global security

policy. Cloud Computing Capability 3, Global Registration, Authentication, Authorization, and

Service Discover for Consumers, is to support the process of a consumer's (mobile, web, or desktop

app) registration to discover and be authenticated and then authorized to utilize services. The

56

remainder of this section discusses these three cloud computing capabilities using the healthcare

scenario of Section 2.4.

 Cloud Computing Capability 1 - Local Service Registration and Mapping to Global

Services. This cloud computing capability of FSICC enables a service supplier (system) to register

its cloud, programming, and/or web services as indicated by the arrows at the bottom of Figure 1.1,

as shown in the Security Policies and Services Registration and Global Services Generation boxes

of the GSP Generation and GAPI Generation horizontal box in Figure 1.3. Referring to column 2

in Tables 2.5 and 2.7, OpenEMR registers the cloud services OEMR1 to OEMR8 and MyGoogle

registers its services MG1 to MG5. For eexampl, OpenEMR registers OEMR1 with name

OpenEMR, URI (/OpenEMR/updatepatientnotes), PUT CRUD method, and input variable

noteINFO; MyGoogle registers MG1 with name MyGoogle, URI

(/MyGoogle/fitness/datasource/dsID), PUT CRUD method, and input variable dsINFO.

The end result of the registration is that all of the cloud services, API calls, and web services of

systems are transitioned to a set of equivalent global services. For each registered cloud, API, or

web service, a global cloud service is created with appropriate components that mirror the signature

of the system service named as a new global cloud service, which was represented in Figure 1.1 by

the Services Mapping and Global Services boxes that car spawns to the Generation of Global Policy

and Services component in Figure 1.2. For example, the service OEMR1 can be mapped to a new

global service in FSICC. Note that the existence of OEMR1 is no longer visible to the mobile, cloud

or web application; this is true for all of the converted services/API calls. The end result is a unified

set of global cloud services to be presented to the mobile, web, or desktop applications as supported

by the Services Mapping box of FSICC as was shown in Figure 1.1, which maintains a mapping

list of system to global cloud services.

57

 Cloud Computing Capability 2 - Local Security Policies Registration to Yield Global

Security Policy. This cloud computing capability allows HIT systems to register their local security

policies (roles and permissions to APIs) that can then be combined to yield a global security policy,

as shown in the Security Policies and Services Registration and Global Security Policy Generation

boxes of the GSP Generation and GAPI Generation horizontal box in Figure 1.3. The local policy

registration process of this cloud computing capability enables a service supplier (system) to specify

the security requirements or policy to access its services (cloud, web, and API) as indicated by the

arrows at the bottom of Figure 1.1. After the systems register the local services, as given in Tables

2.5 and 2.7, they can then register the local security policies that are available in their systems as

given in Tables 2.6 and 2.8. This includes for a particular HIT system: the defined roles, the

permissions that are defined on each local service, the permissions authorized to each role, the

classifications for each service, and the allowable delegations.

As local security policies are registered over time, a security administrator or policy engineer is

responsible to design and evolve an appropriate global security policy that would encompass all of

the local security requirements (from all different access control models) and provides a unified,

global view for the applications. This is supported in FSICC as shown in Figure 1.1 by the Security

Policy Mapping and Global Security Policy boxes, which correspond to the Security Policy

Mapping component and the Generation of Global Policy and Services component, respectively, in

Figure 1.2. The security engineer defines a global security policy over global cloud services based

on defined local roles and associated permissions in the bottom of Figure 1.1 to define a set of

global roles and their permissions. This is accomplished by: defining global roles, assigning global

permissions to global cloud services, authorizing global roles to global permissions, and defining

constraints over these assignments. In the healthcare scenario, the global roles can be defined and

58

evolved over time by considering and unifying all of the particular roles of the originally registered

HIT systems (such as MyGoogle and OpenEMR) and new systems that are added over time.

Specifically, for the healthcare scenario from Section 2.4, the RBAC permissions as given by

the roles and API services in Tables 2.6 and 2.8 are mapped to a global set of roles and the global

API services, respectively. For example, for the patient role in Table 2.6, the permissions to the

OpenEMR services OEMR1-OEMR5 are mapped into the permissions to equivalent global cloud

services that are the authorized global services to the global patient role GPatient. Similarly, for the

SMH role in Table 2.8, the permissions to the MyGoogle services MG1-MG5 are mapped into the

permissions to equivalent global cloud services that are the authorized global services to the global

SMH role GSMH. Essentially, at a high-level, the authorized permissions of the Patient role of

OpenEMR and the SMH role of MyGoogle are mapped into new global roles GPatient (global

patient) and GSMH (global SMH), respectively. The security engineer needs to make similar

mapping and define new global roles (GPhysician, GCoach, GNurse, GParent, and GTrainer) for

the other local roles and the other systems that are also functioning as roles (GCT2 and

GMyGoogle). These processes are supported by the Security Policy Mapping box of FSICC as was

hownn in Figure 1.1. A mapping list of local to global security policies is maintained by the Global

Security Policy box of FSICC.

Cloud Computing Capability 3 - Global Registration, Authentication, Authorization, and

Service Discover for Consumers. This cloud computing capability enables services consumers

(mobile, web, or desktop app) to register themselves, which then allows application users to

discover and be authenticated and then authorized to utilize services by role, as shown in the GSP

and GAPI Utilization and Security Enforcement horizontal box in Figure 1.3. The intent is to

provide access for application users to the global roles and the authorized global services. The

59

global registration activity of this cloud computing capability is supported by the Client Registry

box of FSICC as shown in Figure 1.1, which corresponds to the Registration and Services Mapping

box of the Generation of Global Policy and Services component in Figure 1.2. The global

authentication activity of this cloud computing capability is supported by the Global Authentication

box of FSICC as was shown in Figure 1.1, which corresponds to the Global Authentication box of

the Global Policy Enforcement component in Figure 1.2. The global authorization activity of this

cloud computing capability is supported by the RBAC/MAC/DAC Interceptors box of FSICC as

shown in Figure 1.1, which corresponds to the RBAC Interceptor, MAC Interceptor, and DAC

Interceptor boxes of the Global Policy Enforcement component in Figure 1.2. The service discovery

activity of this cloud computing capability is supported by the Global Services box of FSICC as

was shown in Figure 1.1, which corresponds to the Global Services box of the Generation of Global

Policy and Services component in Figure 1.2. Note that we distinguish between consumers that are

designing and deploying new mobile, web or desktop applications vs. ones that are retrofitting an

existing mobile, web, or desktop application that may have its own access control (RBAC, DAC,

and/or MAC) and cloud/web/programming APIs.

For consumers designing and deploying a new application, we can extend the healthcare scenario

of Section 2.4 with a mobile application for the patient and a desktop EHR application for the

physician, where all of these applications have been developed using the global cloud services. To

accomplish this development, each application must register with FSICC in order to gain the

relevant global roles to be authorized to each application user. A user of the mobile application for

the patient would be authorized to the GPatient global role and limited to the services authorized to

GPatient. The physician using the EHR desktop application would be authorized to the GPhysician

global role and limited to the services authorized to GPhysician. For the HIT systems, MyGoogle

60

would have the GMyGoogle global role with its authorized global services. Note that OpenEMR

services are not called by the consumers’ applications instead MyGoogle services utilize OpenEMR

services to store/retrieve patient demographic data (see the healthcare scenario of Section 2.4).

Cloud Computing Capability 3 is also utilized to allow a consumer of a new application to

discover global cloud services for the healthcare scenario. This is accomplished by utilizing a

service discovery request to the Global Services box of FSICC as seen in Figure 1.1. The discovery

request returns a list of all available services by GSid, name, and description. Upon successful

discovery, the service consumer (application) can then submit a request to utilize one or more

discovered services. The application can send a list of the global services requested and its

identification information to the Global Authentication box of FSICC which authenticates the

application. Then, the RBAC/MAC/DAC Interceptors box of FSICC authorizes the appropriate

global user role associated with the requested services, and then forwards the service access request

along with the application’s global role to the Global Security Policy box of FSICC. The Global

Security Policy box then authorizes the requested global services only if the application’s global

role is authorized to access such a service. As a result of calling a global cloud service, the mapped

local service or API call of a local HIT system is invoked. Note that the HIT system allows the call

only as long as the application’s global role is mapped to an equivalent local role that is authorized

to access such a system service.

For example, suppose that the mobile application for the patient sends a service discovery

request to the Global Services box of FSICC to find a service to return the demographic information

for a patient. The discovery sends back the id of the required global service, name (e.g., GET

/FSICC/Patient/id), and a description such as calls the OEMR3 of the OpenEMR system. Based on

this, the patient mobile application can send a global service access request along with the

61

application identification information to the Global Authentication box. This box can then

authenticate the application and forward the request to the RBAC/MAC/DAC Interceptors box that

can authorize the application to utilize the GPatient role and forward the global service access

request along with the GPatient role to the Global Security Policy box. The Global Security Policy

box enables the patient mobile application to access the requested global service, since the GPatient

global role can access that global service. Then, the Global Security Policy box retrieves the patient

role, of OpenEMR system, which is mapped to the GPatient global role. As a result of calling the

authorized global service, an access request to the mapped system service OEMR3 along with the

patient local role is sent to the OpenEMR system. The OpenEMR system allows the patient mobile

application to access the service OEMR3 since the patient local role is authorized to access OEMR3.

For consumers retrofitting an existing mobile, web, or desktop application, there is an extra layer

(i.e., the integration layer) of functionality that must be considered. Recall the CT2 and

ShareMyHealth mHealth (SMH) applications from the healthcare example in Section 2.4. Each of

these applications has its own API to access its database. Suppose that the developer of SMH needs

to expand SMH capabilities in order to store/retrieve patients’ fitness and demographic information

from MyGoogle and OpenEMR (via MyGoogle) systems, respectively. Suppose also that the SMH

has already defined roles for patient and physician that impact the way that the app works for

different users in terms of the fitness and demographic data collected can be entered, viewed, and/or

edited. In order to make use of the global roles and services of FSICC, the existing SMH app needs

to be able to map its own app roles to appropriate global roles, and, programmatically link its API

so that it will be able to call the appropriate global services of MyGoogle. In order to support this

programmatic link, the SMH app may also operate in the role of a provider per cloud computing

capability 1 to define and register a new set of services for the SMH app that link its current API

62

services to the global services. This requires a similar process as described above to map from the

local SMH roles to the global roles.

3.3 Related Work in Cloud Computing

In this section, we present a number of related efforts in cloud computing, from both academic

and industrial communities, that are solving similar problems to FSICC, comparing and contrasting

their work to FSICC. The first effort (Buyya, Ranjan, & Calheiros, 2010) proposed a framework

named InterCloud for federating cloud services to manage the services of multiple cloud service

providers in which the framework allocates cloud services to the cloud consumers based on quality

of service (QoS) needs of the consumer. To accomplish this, the Cloud Broker, which is a

component of their framework, determines the most suitable cloud service provider based on the

cloud services preferences through the Cloud Exchange, which is another component of InterCloud.

Our use of global services in FSICC provides a one-stop shopping location for consumers which is

similar to InterCloud since both frameworks remove the consumers’ needs to search through many

cloud providers. Further, our work utilizes the global roles (and their assigned services by RBAC,

DAC, and MAC) in order to control which services each consumer is allowed to perform which is

different from their work that does not provide any security features to control access to the cloud

services.

A second effort (Nair, Porwal, Dimitrakos, Ferrer, & Tordsson, 2010) introduced a framework

design for cloud services that supports features including: data confidentiality and integrity for

cloud service consumers; enable cloud service providers to publish cloud services that are unified

to the cloud service consumers; and, manage the published cloud services. Their framework allows

the cloud service providers to receive access requests from the framework without the knowledge

63

of the actual service consumer requesting such an access, and enforces access control over the

published cloud services. Their approach contrasts with our approach, particularly for the

healthcare domain, where the knowing of the identity of the consumer by the provider is vital to

restrict access to protected health information (PHI). Moreover, the main common features between

our framework and their framework are: unifying multiple services from different providers to the

consumers side, and controlling the unified services using access control means.

A third effort in (Tordsson, Montero, Moreno-Vozmediano, & Llor, 2012) proposed a cloud

broker that enables a heterogeneous set of cloud service providers, in which each provider may

require a different infrastructure to operate, to integrate with the cloud broker. Such a cloud broker

is capable of: optimizing placement of virtual infrastructures across variant clouds; and, hiding the

processes of deploying and managing the cloud services of the cloud providers. The proposed

broker utilizes a scheduling algorithm that manages the processes of cloud services deployment.

Our work on FSICC is similar to their effort, since our global roles and services effectively hide the

location of the local services providers which is similar to the cloud broker approach in hiding the

processes of deploying and managing the cloud services. Our work utilizes RBAC, DAC, and MAC

access control models to control which services each consumer can access which is different from

their work that does not provide any security features to control access to cloud services.

The fourth effort (Vordel, 2016), the Vordel Cloud Service Broker, supports integrating local

on-site applications with offsite cloud services via the Multi-Domain Registry, one main component

of Vordel. Vordel also provides monitoring, and management services. Vordel is located between

the cloud service providers and the cloud consumers referred to as organizations. An organization

may utilize Vordel broker to introduce a level of trust within the cloud application of such an

organization. The work on Vordel is similar to our efforts in FSICC since they map the services of

64

cloud providers to organizations’ applications via a Multi-Domain Registry and we map local

roles/services to global roles/services that offer RBAC, DAC, and MAC security. The main

difference between our and theirs is that they do not clearly explain the way the integrated services

in the Multi-Domain Registry are controlled in term of what cloud services each consumer is

restricted to access.

A fifth effort (Jamcracker, 2016), the JamCracker platform, unifies the processes of cloud

management and governance. Specifically, JamCracker provides a number of services including:

risk and policy compliance management; operation management; and, create, deliver, and multi-

cloud services management. JamCracker also allows cloud service providers to unify delivery and

management of private and public cloud application/services and distribute them to cloud service

consumers. JamCracker enables cloud service providers to publish their services and virtualized

applications along with security policies (only RBAC is supported) to control their services and

applications via the JamCracker Connect, one main component of the JamCracker platform. The

main similarities between our work on FSICCC and the JamCracker are both frameworks that unify

multiple services from different providers to the consumers side, and control the unified services

using access control means. However, while our framework supports controlling access to the

unified services using RBAC, MAC, and DAC, JamCracker only supports RBAC as an access

control mechanism.

A final effort (Amato, Di Martino, & Venticinque, 2012) proposed a cloud broker that acts as a

component that: manages the use, performance, and delivery of cloud services; and, mediates the

process of enabling cloud service consumers to access cloud services of service providers. This is

achieved by the proposed cloud broker utilizing an agent that dynamically identifies a set of cloud

services from various providers based on the service consumer requirements. The architecture of

65

the cloud broker agent is presented along with its implementation in (Amato & Venticinque, Multi-

objective decision support for bro-kering of cloud sla, 2013). Their effort is similar to our work on

FSICC since both works remove the consumers’ needs to search through many cloud providers.

However, their effort utilizes an agent-based approach to find one cloud provider that most suit the

needs of the cloud consumer, while FSICC unifies many services from multiple cloud providers to

be used by the cloud consumers. Moreover, while our framework supports controlling access to the

unified services using RBAC, MAC, and DAC, their effort does not provide any security features

to control access the cloud services.

The major difference between our work in FSICC and the aforementioned efforts is that their

focus is on solving portions of the problems that we are attempting to address in FSICC; none of

these efforts provides a comprehensive solution to the problem of securing and integrating cloud

and none-cloud services provided from different service provides.

66

Chapter 4

A Unified Cloud Computing Access Control Model (UCCACM) for

RBAC, MAC, and DAC

This chapter defines and explains a Unified Cloud Computing Access Control Model

(UCCACM) for RBAC, MAC, and DAC that is intended to upgrade these existing access control

models so that they are capable of defining permissions based on services. The model has been

motivated and influenced by the four main security requirements of FSICC as presented in Section

3.1. The first requirement, Numerous and Varied Access Control Models acknowledges that the

systems providing services to FSICC may have access control and security protocols that are

varied (i.e., RBAC, MAC, DAC, ABAC, etc.), which would require UCCACM to have broad

access control abilities. The second requirement, Control Access to Cloud Services Using RBAC,

offers one possible way to the availability of services to users by assigning roles that authorize to

access a sub-set of the available cloud services on a role by role basis. The third requirement,

Support Delegation of Cloud Services Using DAC, offers the ability for users of cloud services to

enable other consumers to utilize all or a sub-set of the user’s authorized cloud services in which

DAC can be utilized to keep a list of delegated services, along with authorized delegated users, in

which each user can delegate all or a sub-set of his/her authorized cloud services to another

consumer anytime. Finally, the fourth requirement, Control Access to Cloud Services Using MAC,

provides the ability users that need access to sensitive information in certain secure cloud services

to utilize MAC to label cloud services with sensitivity levels called classifications (e.g., Top Secret

(TS) < Secret (S) < Confidential (C) < Unclassified (U)) which can be made available to users that

are assigned clearances under appropriate with read and write properties as described in Section

67

2.3 of Chapter 2. These last three security requirements for RBAC, MAC, and DAC, are the

foundational capabilities that need to underlie UCCACM.

In support of these requirements, this chapter presents a Unified Cloud Computing Access

Control Model (UCCACM) for the FSICC in which UCCACM provides a set of details

definitions to cover all aspect of the four requirements above along with examples for each

definition. UCCACM also provides a single view of global services to applications and allows

those global services to be authorized according to RBAC (FSICC’s security requirement 2),

MAC (FSICC’s security requirement 4), and DAC (FSICC’s security requirement 3) policies;

this supports expected contribution EC-B: an Integrated RBAC, MAC, and DAC Model for

Cloud Computing from Section 1.5. Moreover, UCCACM is an access control model that

utilizes three main access control models (RBAC, MAC, and DAC) to define and enforce

security policies for both: clients/systems, and global resources. That is, each client/system

defines RBAC, MAC, and/or DAC security policies against its objects. Moreover, the security

policies for the global resources of FSICC are defined and enforced against global cloud

services of such global resources. UCCACM has a critical placement as a layer in the High-

Level View of FSICC Research Areas and Foci of Figure 1.3, that provides of capabilities and

functionalities that are necessary to support the Access Control Models in the next layer. These

two adjacent layers are influenced by the four security requirements.

The rest of this chapter provides formal definitions of UCCACM in eight sections. Section

4.1 presents a set of core definitions on schemas to support authorizing users to a set of schemas

based on roles and/or sensitivity levels. Section 4.2 provides core definitions on enterprise

application that include definitions for clients, systems, and types of clients and systems as part

of the enterprise application. Section 4.3 discusses core definitions on RBAC, MAC, and DAC

68

models that describe the way that such access control models can be modified to support the

four security requirements of FSICC. Section 4.4 describes advanced definitions on enterprise

applications in which the security aspects of RBAC, MAC, and DAC models are introduced

into clients and systems of any enterprise application. Section 4.5 has core definitions on global

resources and permissions by API in which definitions that describe what are global services

and the way that such global services are controlled via means of RBAC, MAC, and DAC are

provided. Section 4.6 presents advanced definitions on FSICC that describe the way that

services and security policies of different systems are mapped. Section 4.7 discusses core

definitions on security interceptors for RBAC, MAC, and DAC along with enforcement checks

that each security interceptor utilizes. Section 4.8 presents related work on access control for

cloud computing. Throughout the entire presentation of UCCACM, detailed examples will be

provided utilizing the healthcare scenario of section 2.4 Chapter 2. Note that the work in this

chapter has been published in (Baihan, M., et al., 2017).

4.1 Core Definitions on Schemas

To begin, Definitions 1 to 4 are adopted from work on adding RBAC, MAC, and DAC to

XML schemas (De La Rosa Algarin A. , 2014) (De La Rosa Algarin, Ziminski, Demurjian, &

Rivera Sánchez, 2014) that allowed XML schemas to be customized based on role and

classifications to customize what each user is authorized to see from instances of the schema.

Defn. 1: An element = NAMEID eee , is defined as two-tuple that represents a single piece of a

data abstraction that describes one aspect of a data structure, where
IDe is the element’s

unique identifier, and NAMEe is an element name.

69

Defn. 2: A schema (SC) is a data abstraction that represents the structure of a particular kind

of information, and is defined as a three-tuple = ENAMEID SCSCSCSC ,, where
IDSC is a

schema’s unique identifier, NAMESC is a schema name, and
ESC is a set of elements (as

defined in Defn. 1) that represent the schema.

Defn. 3: Each schema, jSC , has a set of jn schema instances, =
njj sciscisciSCI ,...,, 21

, where

= VIDi sciscisci , in which Vsci is an element-value set of a schema for all elements in

each schema.

Defn. 4: Let o={read, insert, update, delete}, be the set of operations that can be performed

against an element (e) of a schema.

Example 4.1: A schema for the Patient resource can be represented as = EPaientPatientSC ,,11 where

},4,,3,,2,,1{ = birthDategendernameidPaientE . A schema instance of 1SC can be

represented as =
V

scisci 11 ,1 where ,,,,,7,{1 = malegenderAlinameidsci
V

}782005, −− birthDate .

4.2 Core Definitions on Enterprise Application
After establishing definitions for schemas and schemas’ elements that describe the way that

data in FSICC is organized to be exchanged from system to system or from system to client via

FSICC, in this section, we provide core definitions on main actors of FCISS that provide,

consume, and/or maintain such data using the defined schemas and schemas’ elements. These

actors form a concept of an enterprise application that includes clients, systems, and types of

clients and systems as part of the enterprise application. The next set of definitions, Definitions

5 to 8, are associated with a large-scale enterprise application that is comprised of clients and

70

systems. Specifically, the definition for enterprise application explains the Involved Parties

component of Figure 1.2. Furthermore, the definitions for clients and systems describe that

contents and types of Clients and Systems boxes of the Involved Parties component of Figure

1.2.

Defn. 5: An Enterprise Application, = SCSSSCSNAMEID EAEAEAEAEAEA ,,,, , has a unique identifier

(EAID), name (EANAME), sets of client applications (EACS) and systems (EASS), and a set of

schemas (EASCS). EA, via FSICC, allows multiple clients (mobile, web, desktop) to interact

with multiple systems via APIs (cloud, web, programmatic).

Example 4.2: An enterprise application for health information exchange (EAHIE) would allow

applications for patients, family members, medical providers, insurance companies, etc. (e.g.,

CT2 and ShareMyHealth from Section 2.4), to interact with OpenEMR and MyGoogle (from

Section 2.4) via cloud, web, or programmatic APIs. These HITs utilize FHIR Resources, the

integration layer in Figure 1.1 from Chapter 1, (Health Level 7, Fast Health Interoperable

Resources list, 2016) which include schema representations in both XML and JSON. The

schemas defined in EASCS are used by each HIT system.

The inclusion of schemas as part of an EA allows for the modeling of the information utilized

in a cloud computing application to be represented. Many cloud computing applications utilize

cloud computing services that send/receive XML or JSON objects, which in turn based on

underlying schemas; this is true with FHIR and the API reference implementation. Thus, an EA

71

with schemas provides an actual link from the type of information and the APIs. Given example

4.2, definitions for client and system can be provided.

Defn. 6: A client in an EA is a mobile, web, or desktop application, top of Figure 1.1 from

Chapter 1, that includes, as part of its functionality, cloud-based services, web services, or

a programming API of services, and is interested in utilizing a subset of EASCS via available

cloud computing services. A client can be characterized based on the degree that it is a

consumer and/or a provider in a cloud, web, or programming service-based setting.

There are two different types of clients:

i. A Pure Client is only a consumer of services.

ii. A Mixed Client is primarily a consumer of services and is also a provider

of a small number of services.

Defn. 7: A system, bottom of Figure 1.1 from Chapter 1, in an EA provides functionality for

use by clients via cloud-based services, web services, or a programming API, and is

interested in providing access to a subset of EASCS via its services or API. A system can

be characterized based on the degree that it is a consumer and/or a provider in a cloud,

web, or programming service-based setting. There are two different types of systems:

i. A Pure System is only a provider of services.

ii. A Mixed System is primarily a provider of services and is also a consumer

of a small number of services.

72

Example 4.3: Recall the healthcare scenario from Section 2.4 and let us assume that the CT2 client

does not provide services. Based on this assumption we can categorize the ShareMyHealth and

CT2 client Apps; and OpenEMR and MyGoogle systems as follows:

- CT2 client App is a pure client, since it only utilizes services from OpenEMR system

- ShareMyHealth client App is a mixed client, since it utilizes services from MyGoogle

system and provides a number of services

- OpenEMR system is a pure system, since it only provides services

- MyGoogle system is a mixed system, since it provides services and utilizes services from

OpenEMR

4.3 Core Definitions on RBAC, MAC, and DAC for Roles/Users

After providing definitions on enterprise applications, clients, and systems, in this section, we

transition to describe the way that three main access control models RBAC, MAC, and DAC,

see RBAC, MAC, and DAC boxes of the Access Control Models component in Figure 1.2, can

be modified to enable the clients and systems in an enterprise application to utilize such access

control models to protect their services from unauthorized access. The next set of definitions,

Definitions 8 to 30, discuss the way that the FSICC security requirements in Section 3.1 from

Chapter 3 are supported in our work. Specifically, providing RBAC features for systems and

clients supports the security requirement 2 of FSICC: Control Access to Cloud Services Using

RBAC. Moreover, providing MAC features for systems and clients supports the security

requirement 4 of FSICC: Control Access to Cloud Services Using MAC. Finally, providing DAC

features for systems and clients supports the security requirement 3 of FSICC: Support Delegation

of Cloud Services Using DAC.

73

Defn. 8: A role, r, is defined as a two-tuple = NAMEID rrr , where IDr is a role unique

identifier and NAMEr is a role name.

Defn. 9: Let },...,,{ 21/ jSC rrrR = be defined as the set of j roles for a given client/system

where
SCj Rr / and =

jj NAMEIDj rrr , .

Defn. 10: In support of mandatory access control (FSICC’s security requirement 4), we

define a linearly-ordered set of sensitivity levels (U-unclassified < C-confidential < S-

secret < TS-top secret) with the ability to assign levels of clearances (CLR) to users/clients

and classifications (CLS) to schemas’ elements and services.

In support of mandatory access control, Definitions 1 and 2 are revised in order to define the

classification on each schema and each element of a schema.

Defn. 1: (V2) An element = CLSNAMEID eeee ,, is defined as three-tuple element that represents

a single piece of a data abstraction that describes one aspect of a data structure, where
IDe

is the element’s unique identifier, NAMEe is an element name, and CLSe is the element

classification, as described in Defn. 10.

Defn. 2: (V2) A schema (SC) is a data abstraction that represents the structure of a particular

kind of information, and is defined as a four-tuple = CLSENAMEID SCSCSCSCSC ,,, where IDSC

is a schema’s unique identifier, NAMESC is a schema name, ESC is a set of elements (as

defined in Defn. 1v2) that represent the schema, and CLSSC is the schema classification

that is equal to the least secure of all of its constituent elements.

74

Given the V2 revised Defns. 1 and 2, the corresponding permissions can be defined for RBAC

and MAC on roles and users with Definitions 11 to 19 to present: the concept of a permission,

the way that permissions are associated with roles, the way that a user is defined with a clearance,

the way that a user assigned a role, and the way that different roles are related.

Defn. 11: A permission, p, is defined as a three-tuple = OSCID pppp
ID

,, where
IDp is a

permission unique identifier,
IDSCp is ID of the involved schema (Defn. 2v2), and Op is the

operation (Defn. 4).

Defn. 12: A role permission, rp, is defined as a three-tuple = IDIDID rprprp ,, where
IDp ,

IDr are

the IDs of the involved permission (Defn. 11) and role (Defn. 8), respectively.

Defn. 13: Each role r has a role-permission set (RPS) },...,,{ 21 kr rprprpRPS = of role

permissions (Defn. 12).

Defn. 14: A user, u, is defined as three-tuple = CLRNAMEID uuuu ,, , where IDu is a user unique

identifier, NAMEu is a user name, and CLRu is a user clearance (Defn. 10).

Defn. 15: Let },...,,{ 21/ jSC uuuU = be defined as the set of j users for a given client/system,

where
SCj Uu / and =

jjj CLRNAMEIDj uuuu ,, .

Defn. 16: Each user SCi Uu / can be assigned a role
SCj Rr / for a user role assignment

(ura), = jik ruura , , that signifies that a user is limited to playing that role and the

authorized permissions. Note that a user can be assigned multiple roles but only plays one

role in any session with a client/system.

Defn. 17: The user-role-assignment set (URASC/S) for a client/system,

},...,,{ 21/ kSC uraurauraURAS = is the set of all k user role assignments (Defn. 16), that

75

contains an entry for relevant user/role combinations that are applicable for RBAC in

support of any client/system.

Defn. 18: Each role r has a role-role set (RRS) 𝑅𝑅𝑆𝑟𝑖 = {𝑟1, 𝑟1, . . , 𝑟𝑘} based on the isa role

hierarchy as described in Section 2.2.

Defn. 19: The role hierarchy (RHC/S) for a client/system, 𝑅𝐻𝐶/𝑆 = {𝑅𝑅𝑆𝑟1 , 𝑅𝑅𝑆𝑟2 , . . , 𝑅𝑅𝑆𝑟𝑘}

is the set of all k role-role sets (Defn. 18).

In support of discretionary access control (FSICC’s security requirement 3) and based on the

DAC concepts that were introduced in Section 2.2, we provide definitions 20 to 30 that

distinguish between the user who performs the delegation act referred to as an original user and

the user who acquires additional permissions based on a delegation act referred to as a delegated

user. These definitions also present the way that an original user is supported with different options

to perform the delegation (i.e., delegate role, delegate role permission, and delegate clearance).

Defn. 20: An original role, or , is a system or client role that is delegable.

Defn. 21: An original role permission, orp , is in the role-permission set (RPS) of a specific

original role or .

Defn. 22: An original clearance, oc , is a clearance (Defn. 10) in a system or client that is

delegable.

Defn. 23: An original user, ou , is a system or client user who assigned: an original role

or , in which ou is illegable to delegate or or orp to another original user ou ; and/or an

original clearance oc with read/write properties, in which ou is illegable to delegate oc to

another original user ou .

Defn. 24: A delegated clearance, dc , is a clearance (Defn. 10) that is delegated to a user.

76

Defn. 25: A delegated role, dr , is a role that is delegated to a user.

Defn. 26: A delegated role permission, drp , is a role permission that is delegated to a user.

Defn. 27: A delegated user, du , is a user to whom a delegated role dr , delegated role

permission drp , or delegated clearance dc will be delegated.

Defn. 28: Delegation Authority (DA): A Security engineer determines which users in a

system or client can delegate their roles/role permissions/clearance to other users in that

system or client.

Defn. 29: Pass On Delegation Authority (PODA) is a Boolean value assigned to a user

which determines if he/she can delegate his/her roles/role permissions/clearance to

another user (poda=true) or not (poda=false).

Defn. 30: A Delegation Set (DS) for a system or client is a set of active role/role

permission/clearance delegations
SCDS /

={ 1d , 2d , … , nd } in which each active

delegation { , , / / }id ou du dr drp dc= has three parts: original user (ou), delegated

user (du), and a delegated role (dr), a delegated role permission (drp), or a delegated

clearance (dc).

4.4 Advanced Definitions on Enterprise Applications

As previously discussed in Section 3.2, we presented three main cloud computing capabilities

for FSICC with the associated components. These cloud computing capabilities were: Local

Service Registration and Mapping to Global Services, see the Security Policies and Services

Registration and Global Services Generation boxes of the GSP Generation and GAPI Generation

horizontal box in Figure 1.3; Local Security Policies Registration to Yield Global Security Policy,

see the Security Policies and Services Registration and Global Security Policy Generation boxes

77

of the GSP Generation and GAPI Generation horizontal box in Figure 1.3; and, Global

Registration, Authentication, Authorization, and Service Discover for Consumers, see the GSP

and GAPI Utilization and Security Enforcement horizontal box in Figure 1.3. Based on this, this

section provides a set of definitions, Definitions 31 to 33, that support the three aforementioned

cloud computing capabilities of FSICC. Also, a number of definitions from Sections 4.1, 4.2,

and 4.3 are redefined as version 2. To start, the three new definitions are for systems and clients

with RBAC/MAC/DAC.

Defn. 31: A cloud, web, or programming service of a client or system, denoted  , is defined

as = TypeSIGNAMEID  ,,, with unique ID, name, signature, and type for each service.

A signature SIG is further defined in two different ways based on the technology used to

create a service as following:

i. Web/cloud: = VARIABLEINPUTURITYPEMETHODSIG __ ,,  where

},,,,,, Re,{_ DELETEPUTPOSTGETDeleteUpdateadCreateTYPEMETHOD  is the

type of CRUD method,
URI a unified resource identifier URI, and VARIABLEINPUT _ is

the input variable.

ii. Program: = PARAMETERSTYPERETURNNAMEMETHODSIG  ,, __
 where

NAMEMETHOD_ in the

call name,
TYPERETURN_ is the return type, and PARAMETERS are the parameter

names/types.

A service type Type of a web/cloud-based service can be: (read) if TYPEMETHOD_ is

Read/GET; or (write) if TYPEMETHOD_ is Create/Update/Delete/POST/PUT/DELETE. A

78

service type Type of a program-based service can be: (read) indicating that values of all

service parameters PARAMETERS will not be modified after the service call, (write) indicating

that values of all service parameters PARAMETERS can be modified after the service call, or

(read/write) indicating that values of some service parameters PARAMETERS can be modified

after the service call while values of other parameters will not.

Defn. 32: A system, , , , , , , , , ,
S S S S S S S

i i i i i i i i i i i

ID NAME API SC R RPS RH U URAS DSS S S S S S S S S S S=  , SS

i EAS 

is identified by a unique identifier, name, and cloud, web, or programmatic API of a

system, respectively, where a given
i

APIS is comprised of a set of ij API services

},...,,,{ 321

i

j

iiii

APIS = with each
j as given in Defn. 31 along with a schema subset

i

SCS
S , sets of roles i

RS
S , role permission sets i

RPSS
S , role hierarchy

S

i

RHS , users i

US
S , user-role

assignment set i

URASS
S , and system delegation set i

DSS
S (Definitions 2v2, 9, 13, 19, 15, 17

and 30 respectively).

Example 4.4: MyGoogle and OpenEMR (from Section 2.4) are two systems in EASS where there

are RESTful cloud services for MyGoogle, and RESTful web services for OpenEMR. Figures 4.1

and 4.2 define MyGoogle and OpenEMR systems, respectively, with the signature σSIG as a

placeholder for readability.

79

Figure 4.1. MyGoogle Notation for Example 4.4.

Figure 4.2. OpenEMR Notation for Example 4.4.

80

Defn. 33: A client application,
CS

i EAC  is defined as

, , , , , , , , ,
C C C C C C C

i i i i i i i i i i i

ID NAME API SC R RPS RH U URAS DSC C C C C C C C C C C= with unique identifier, name,

i

APIC the set of ij API services },...,,,{ 321

i

j

iiii

APIC = with each
j as given in Defn. 31,

and, a schema subset
i

SCC
C , sets of roles i

RC
C , role permission sets i

RPSC
C , role hierarchy

C

i

RHC , users i

U C
C , user-role assignment set i

URASC
C , and client delegation set

i

DSC
C

(Definitions 2v2, 9, 13, 19, 15, 17 and 30 respectively).

Example 4.5: In Section 2.4 we have two clients: ShareMyHealth with RESTful cloud services;

and CT2 with RESTful web services, which are in EACS. Figures 4.3 and 4.4 define ShareMyHealth

and CT2 clients with the signature σSIG as a placeholder for readability.

Figure 4.3. ShareMyHealth Notation for Example 4.5.

81

Figure 4.4. CT2 Notation for Example 4.5.

UCCACM for cloud computing, that supports the FSICC’s security requirements (see

Section 3.1), also provides the means to represent a unified set of global services encapsulated

into one Global Resource for a given EA and its systems. This allows the clients to be able to

utilize a set of shared global services rather than specific services for each system that may be

in different formats (e.g., cloud services, web services, programmatic API services in different

languages, etc.). This is basically meant to support the FSICC’s cloud computing capabilities

(see Section 3.2). Although, grouping multiple systems services attracts app developers, in a

domain such as healthcare, there is a need to create useful and rich apps (i.e., apps with many

features) in an easy and efficient way (i.e., avoid effort duplication). This need must be balanced

against the potential to create one great target that attackers can utilize to illegally access a large

set of crucial and sensitive data (see Security Risks of adopting FSICC in Section 3.3), through

services, such as electronic health records of large number of patients. Thus, an access control

82

mechanism should be developed and utilized to restrict services access only to the authorized

users and their Apps.

Moreover, since there is a demonstrated need to protect such global services we make two

major observations: (1) there must be a shift in focus on the concept of RBAC permissions from

objects and operations (in the traditional RBAC model) to permissions that define individual

global services that are authorized by role to make invocations (calls) on objects; and (2) there

is a need to utilize a larger set of the four sensitivity levels of MAC such that the set of

sensitivity levels can adequately classify sensitive data in complex areas such as healthcare,

note that the healthcare-based security level approaches discussed in Section 2.2 are too focused

on the healthcare domain. In this dissertation, we present an access control mechanism, i.e.,

UCCACM, that provides solutions for observations 1 and 2. Regarding the first major

observation, Figure 4.5 shows the UCCACM for RBAC part that consists of four elements:

Roles; Users; Sessions; and Permissions (i.e., the defined service calls on objects), and five

relations: User-Role (i.e., which user assigned to which role); Role-Permission (i.e., which role

authorized to which service in which each service calls a specific object); User-Session (i.e.,

which user is active in the current session); Role-Session (i.e., which role of the current user is

active in the current session); and Role-Role (i.e., which role, or set of roles, is the parent of the

active role based on the isa role hierarchy).

83

Figure 4.5. The UCCACM for RBAC Part.

In the case of the second major observation, recall the work presented in Section 2.2 and

Figure 2.5. In Section 2.2, we reviewed the different HL7 confidentiality levels: U –

unrestricted, L – low, M – moderate, N – normal, R – restricted, and V – very restricted (Health

Level 7., 2014). In Section 2.2, we also reviewed the work on the lattice-based categories and

subcategories of sensitivities for healthcare that defined five main healthcare sensitivity levels:

0 – Basic Information, 1 – Medical History Data, 2 – Summary Clinical Data, 3 – Detailed Clinical

Data, 4 – Sensitive Clinical Data (Demurjian, Sanzi, Agresta, & Yasnoff, 2018) in Figure 2.5.

Using that work as a basis, for the second major observation, we present a set of five sensitivity

levels (0-4) that can be utilized to classify data of any complex domain such as healthcare, but

not limited to the healthcare domain as follows:

Level 0: Public Information (PI) contains data that is freely available to anyone. Examples

for data at this level are: basic demographics such as city and state of residence; and general

personal information such as bachelor graduation year and university name.

Level 1: Basic Sensitive Information (BSI) contains data that has some restrictions.

Examples for data at this level are: detailed demographic data such as the patient name,

full address, and date of birth.

84

Level 2: Sensitive Information Summary (SIS) contains data that groups or summaries a set

of data that is classified as Basic Sensitive Information. Examples for data at this level are:

clinical data including prescription and over-the-counter medications; and key data of a

student’s academic record such as GPA.

Level 3: Sensitive Information Details (SID) contains data that elaborates and provides more

information about data that is classified as Basic Sensitive Information. Examples for data

at this level are: reports from imaging studies (CT Scans, MRIs, X-Rays); and detailed

academic information such as a report on a student academic record.

Level 4: Very Sensitive Information (VSI) contains very sensitive information about people

or organizations. Examples for data at this level are: sensitive information on a patient that

is used by medical specialists including data on genetics, substance abuse, mental health

psychotherapy notes; and sensitive employees’ information such as social security number.

In the examples from this point forward, we refer to Level 0 to Level 4, respectively, by the

acronyms: PI, BIS, SIS, SID, and VSI.

Given Figure 4.5, we revise the Definitions 9, 15, 16, 17, and 30 to version 2 (v2) that includes

G (for global) as an option for a role set, user set, user role assignment, user-role assignment set,

and delegation set.

Defn. 9: (v2) Let },...,,{ 21// jGSC rrrR = be defined as the set of j roles for a given

client/system/Global Resource where
GSCj Rr // and =

jj NAMEIDj rrr , .

Defn. 15: (v2) Let },...,,{ 21// jGSC uuuU = be defined as the set of j users for a given

client/system/Global Resource, where
GSCj Uu // and =

jjj CLRNAMEIDj uuuu ,, .

85

Defn. 16: (v2) Each user
GSCi Uu // can be assigned a role

GSCj Rr // for a user role

assignment (ura), = jik ruura , , that signifies that a user is limited to playing that role

and the authorized permissions. Note that a user can be assigned multiple roles but only

play one role in any session with a client/system/Global Resource.

Defn. 17: (v2) The user-role-assignment set (URASC/S/G) for a client/system/Global

Resource, },...,,{ 21// kGSC uraurauraURAS = is the set of all k user role assignments (Defn.

16v2), that contains an entry for relevant user/role combinations that are applicable for

role-based access control in support of any client/system/Global Resource.

Defn. 30: (v2) Delegation Set (DS) for a client/system/Global Resource is a set of active

role/role permission delegations
GSCDS //

={ 1d , 2d , … ,
nd } in which each active

delegation { , , / / }id ou du dr drp dc= has three parts: original user (ou), delegated

user (du), and a delegated role (dr), a delegated role permission (drp), or a delegated

clearance (dc).

To complete the changes, based on the presented sensitivity levels above we revise the Defn.

10 to version 2 (v2) to include the five sensitivity levels.

Defn. 10: (v2) In support of mandatory access control (FSICC’s security requirement 4), we

define a linearly-ordered set of sensitivity levels (0-PI < 1-BSI < 2-SIS < 3-SID < 4-VID)

with the ability to assign levels of clearances (CLR) to users/clients and classifications

(CLS) to schemas’ elements and services.

86

4.5 Core Definitions on Global Resources and Permissions by API

As we introduced RBAC, MAC, and DAC into definitions for systems and clients in Section

4.3 and revised in Section 4.4, in this section, we present a set of definitions (Definitions 34 to

39) that focus on the higher-level needs of UCCACM within FSICC. Specifically, UCCACM

provides a unified set of global services encapsulated into a number of Global Resources. This

supports FSICC’s cloud computing capability 1 in Section 3.2, see the Security Policies and

Services Registration and Global Services Generation boxes of the GSP Generation and GAPI

Generation horizontal box in Figure 1.3. This set of global services belongs to a given enterprise

application and its systems in which interested clients are able to utilize authorized services from

this set of shared global services. This is to remove the need for clients to utilize multiple and

possibly heterogeneous services from each system, separately, that may be in different formats

(e.g., cloud services, web services, programmatic API services in different languages, etc.).

Moreover, the FSICC’s global services are controlled using RBAC, MAC, and/or DAC which

supports FSICC’s cloud computing capability 2 in Section 3.2 as was shown in the GSP Generation

and GAPI Generation horizontal box in Figure 1.3.

Defn. 34: A global service of a global resource, denoted  , is defined as

= CLSSIGNAMEID  ,,, with unique ID, name, signature (similar to SIG in Defn. 31),

and a classification (Defn. 10) for each service.

Defn. 35: A global resource, iG represents a set of global services that are intended to map

to services from different Clients/Systems.

87

Defn. 36: For a global resource, iG , a global service permission, = i

ID

i

ID

i

gp jk
r  , , binds

a jth global service
i

j of
i

APIG by identifier, i

ID j
 , to a role i

R

i

k G
Gr  by identifier, i

ID j
r .

Defn. 37: For a global resource, iG , and a role i

R

i

k G
Gr  , a role permissions set, i

kr
RPS =

},...,,{
21

i

gp

i

gp

i

gp n
 contains all of the n global service permissions i

gp j
 associated with a

role.

Defn. 38: For a global resource, iG , the resource role permissions set, i

RRPSG
G ={ ir

RPS
1

,

ir
RPS

2
, …, i

mr
RPS } contains all of the role permission sets for the m roles in i

RG
G .

Defn. 39: A global resource, iG can be represented as

= i

DS

i

RRPS

i

URAS

i

U

i

R

i

API

i

NAME

i

ID

i

GGGGG
GGGGGGGGG ,,,,,,, , is identified by a unique identifier,

name, and cloud API, respectively, where a given
i

APIG is comprised of a set of ij API

services },...,,,{
321 jiiii

i

APIG = with each
j as given in Defn. 34 along with sets of

roles i

RG
G , users i

U G
G , user-role assignment sets i

URASG
G (Definitions 9v2, 15v2, and 17v2

respectively), a resource role permission set, i

RRPSG
G (Defn. 38), and a resource delegation

set
i

DSG
G (Defn. 30v2).

Example 4.6: Figure 4.6 defines the Global Resource G1 with the signature σSIG as a placeholder

for readability. The global services (see Table 4.1) are organized into one Global Resource G1

with global roles (Table 4.2).

88

Figure 4.6. Global Resource G1 Notation for Example 4.6.

Table 4.1. FSICC Global Services for Global Resource G1

Gid Service Name

gs1 PUT /FSICC/Observation/id obINFO

gs2 GET /FSICC/Observation/id

gs3 PUT /FSICC/Patient/id ptINFO

gs4 GET /FSICC/Patient/id

gs5 PUT /FSICC/User/id usINFO, Token

gs6 PUT /FSICC/Encounter/id enINFO

gs7 GET /FSICC/Encounter/id

gs8 PUT /FSICC/Condition/id cnINFO

gs9 GET /FSICC/Condition/id

Table 4.2. FSICC Global Roles for Global Resource G1

89

Rid Role FSICC Services

GR1 GPhysician gs2, gs4, gs5

GR2 GPatient gs1
 – gs5

GR3 GCoach gs2, gs3, gs7
 – gs9

GR4 GNurse gs1
 – gs4, gs6

 – gs9

GR5 GParent gs2
 – gs4, gs7

 – gs9

GR6 GTrainer gs2
 – gs4, gs6

 – gs9

GR7 GCT2 gs1
 – gs4, gs6

 – gs9

GR8 GMyGoogle gs1, gs2

GR9 GSMH gs1
 – gs5

4.6 Advanced Definitions on FSICC

After presenting a set of definitions that describes the unified set of global services of FCISS,

this section continues and provides a set of Definitions 40 to 48 that explains the way that services

and security policies of different systems are mapped to generate global services and global

security policy for FSICC. Specifically, this section defines the main components of the FSICC

and the way that such components are generated from the separate mapping involving clients and

systems. The first mapping is from clients (which have services to register) and Systems to Global

resources. The second mapping is from Client/System roles to Global roles which is FSICC’s cloud

computing capability 2 in Section 3.2 and the Security Policies and Services Registration and

Global Security Policy Generation boxes of the GSP Generation and GAPI Generation horizontal

box in Figure 1.3. The third mapping is from Clients/Systems API services to Global API services

which is FSICC’s cloud computing capability 1 in Section 3.2 and the Security Policies and

90

Services Registration and Global Services Generation boxes of the GSP Generation and GAPI

Generation horizontal box in Figure 1.3.

Defn. 40: The Framework for Secure and Interoperable Cloud Computing (FSICC) can

be represented as FSICC= <G, R, U, URAS, RRPS> where G = {Gi | all i resources}

is a set of all of the global resources in which each
iG as given in Defn. 39, R = }{ iall

i

RG
G

of all role sets from all i global resources, U = }{ iall
i

UG
G of all user sets from all i global

resources, URAS = }{ iall
i

URASG
G of all user role assignment sets from i the global resources,

and RRPS = }{ iall
i

RRPSG
G of all resource role permission sets from all i global resources.

Defn. 41: Client/System to Global Mapping
iF

CSGM
SICC

 = IDIDID GSC ,/ where each iC

/ iS is mapped to one iG G.

Defn. 42: Client/System to Global Mapping Set:

=
j21 FFFF CSGM,...,CSGM,CSGMCSGMS

SICCSICCSICCSICC
, where

jF
CSGM

SICC
is as defined

in Defn. 41.

Defn. 43: Client/System API to Global API Mapping = ID

API

ID

API

ID

APISICC
GSC ,/

iF
CSAGAM

where each i

API

i

API SC / is mapped to
i

APIG .

91

Defn. 44: Client/System API to Global API Mapping Set

=
j21 FFFF CSAGAM,...,CSAGAM,CSAGAMCSAGAMS

SICCSICCSICCSICC
, where

jF
CSAGAM

SICC
is as

defined in Defn. 43.

Defn. 45: Client/System Roles to Global Roles Mapping = ID

R

ID

R

ID

RSICC GSC
GSC ,/

iF
CSRGRM

where i

R

i

R SC
SC / are mapped to

i

RG
G .

Defn. 46: Client/System Roles to Global Roles Mapping Set

=
j21 FFFF CSRGRM,...,CSRGRM,CSRGRMCSRGRMS

SICCSICCSICCSICC
, where

jF
CSRGRM

SICC
is as

defined in Defn. 45.

Defn. 47: Client/System Users to Global Users Mapping = ID

U

ID

U

ID

USICC GSC
GSC ,/

iF
CSUGUM

where i

U

i

U SC
SC / are mapped to

i

U G
G .

Defn. 48: Client/System Users to Global Users Mapping Set

=
j21 FFFF CSUGUM,...,CSUGUM,CSUGUMCSUGUMS

SICCSICCSICCSICC
, where

jF
CSUGUM

SICC
is as

defined in Defn. 47.

Note that the mappings in Definitions 41-48 are performed by a FSICC security engineer in regards

to reconciling roles and APIs as part of the mapping process. Part of this process is performed

utilizing a set of algorithms for global RBAC policy generation, global MAC policy generation

and global DAC policy generation; this will be explored in detail in Section 6.3 of Chapter 6.

Example 4.7: Table 4.3 contains the mappings of services and roles of MyGoogle, OpenEMR,

CT2, and ShareMyHealth (see Section 2.4). This is basically, the result of utilizing FSICC’s cloud

92

computing capability 1: local service registration and mapping to global services; and cloud

computing capability 2: local security policies registration to yield global security policy (see

Section 3.2). Table 4.3a is for the role mapping where the client role and system role could map to

the same global role, as shown for the first six rows, e.g., SMHR1 and OEMRR2 rows are the Patient

role for Client/System, respectively, that maps to the global Patient role GR2. Tables 4.3b to 4.3e

map CT2, ShareMyHealth, MyGoogle, and OpenEMR services, respectively, to global services.

Table 4.3. Mapping Tables to Global Services.

a. Mapping Client/System to Global Roles.

Client

Rid

Client

Role Name

System Rid System Role Name Global Rid Global Role

Name

CTR1 Coach OEMRR3 Coach GR3 GCoach

CTR2 Nurse OEMRR4 Nurse GR4 GNurse

CTR3 Parent OEMRR5 Parent GR5 GParent

CTR4 Trainer OEMRR6 Trainer GR6 GTrainer

SMHR1 Patient OEMRR2 Patient GR2 GPatient

SMHR2 Physician OEMRR1 Physician GR1 GPhysician

 OEMRR7 CT2 GR7 GCT2

 OEMRR8 MyGoogle GR8 GMyGoogle

 MGR1 SMH GR9 GSMH

b. Mapping of CT2 Services to Global Services.

Sid Service Name Gid FHIR

CRUD/Resource

CT1 PUT /CT2/concussion/status statusINFO G1 PUT Observation

CT2 GET /CT2/concussion/status statusID G2 GET Observation

CT3 GET /CT2/student studentID G4 GET Patient

93

CT4 PUT /CT2/student/add studentINFO G3 PUT Patient

CT5 PUT /CT2/followup/add followupINFO G7 PUT Encounter

CT6 GET /CT2/followups followupID G8 GET Encounter

CT7 GET /CT2/concussion/student studentID G10 GET Condition

CT8 PUT /CT2/concussions/add concussionsINFO G9 PUT Condition

c. Mapping of ShareMyHealth Services to Global Services.

Sid Service Name Gid FHIR

CRUD/Resource

SMH1 PUT /SMH/newMeasure/mID mINFO G1 PUT Observation

SMH2 GET /SMH/Measures/mID G2 GET Observation

SMH3 PUT /SMH/newPatient/pID pINFO G4 GET Patient

SMH4 GET /SMH/Patients/pID G3 PUT Patient

SMH5 PUT /SMH/Users/uID Token G5 PUT User

d. Mapping of MyGoogle Services to Global Services.

Sid Service Name Gid FHIR

CRUD/Resource

MG1 PUT /MyGoogle/fitness/dataSources/dsID dsINFO G1 PUT Observation

MG2 GET /MyGoogle/fitness/dataSources/dsID G2 GET Observation

MG3 PUT /MyGoogle/newPatient/pID pINFO G4 GET Patient

MG4 GET /MyGoogle/Patients/pID G3 PUT Patient

MG5 PUT /MyGoogle/Users/uID Token G5 PUT User

e. Mapping of OpenEMR Services to Global Services.

Sid Service Name Gid FHIR

CRUD/Resource

OEMR1 PUT /OpenEMR/updatepatientnotes noteINFO G1 PUT Observation

OEMR2 GET /OpenEMR/getnotes noteID G2 GET Observation

94

OEMR3 GET /OpenEMR/getallpatients patientID G4 GET Patient

OEMR4 PUT /OpenEMR/addpatient patientINFO G3 PUT Patient

OEMR5 PUT /OpenEMR/addvisit visitINFO G7 PUT Encounter

OEMR6 GET /OpenEMR/getvisits visitID G8 GET Encounter

OEMR7 GET /OpenEMR/getlist conditionID G10 GET Condition

OEMR8 PUT /OpenEMR/addlist conditionINFO G9 PUT Condition

4.7 Core Definitions on Interceptors

As we described earlier in Section 3.2 of Chapter 3, the global security policy of FSICC is

generated by the cloud computing capability 2 of FSICC, i.e., local security policies registration

to yield global security policy, that utilizes two components of FSICC: Security Policy Mapping

box of FSICC in Figure 1.1 and Global Security Policy box of FSICC in Figure 1.1. To enforce

the FSICC’s global policy defined on global resources with the allowed API service calls

controlled by RBAC (FSICC’s security requirement 2), MAC (FSICC’s security requirement

4), and DAC (FSICC’s security requirement 3) permissions, this section introduces a set of

definitions for security Interceptor that is able to intercept API calls to global services in order

to perform appropriate RBAC, MAC, and DAC security enforcement checks. To begin, we

define an interceptor as follows:

Defn. 49: A Security Interceptor is defined as a programmatic mechanism that is able to

intercept a service call from a client application to an API in order to perform appropriate

security enforcement checks.

95

The remainder of this chapter reviews the interceptors for RBAC, MAC, and DAC. Section 4.7.1

provides a set of definitions that explains the way that the global RBAC policy are enforced using

the RBAC interceptor. Section 4.7.2 discusses a set of definitions that explains the way that the

global MAC policy is enforced using the MAC interceptor. Section 4.7.3 provides a set of

definitions explains the way that the global DAC policy are enforced using the DAC interceptor.

Note that at the end of each subsection, we provide an example for the respective definitions.

4.7.1 Definitions on RBAC Interceptor

In support of the FSICC’s security requirement 2 (see Section 3.1), this section presents

definitions for the RBAC interceptor. Definitions 50 to 52 provide two enforcement checks that

the RBAC interceptor utilizes to enforce the global RBAC policy.

Defn. 50: User-Role Enforcement Check: For a global resource, Gi, a user uID ϵ G
i
UG can

utilize a role rID ϵ G
i
RG iff the entry <uID, rID> exists in the User-Role set Gi

URASG.

Defn. 51: Role-Service Enforcement Check: For a global resource, Gi, a user with a role rID

ϵ G
i
RG can access a global service σi

ID ϵ G
i
API iff the entry <rID, σi

ID> exists in the role

permissions set RPSrid ϵ G
i
RRPSG.

Defn. 52: The RBAC Interceptor of FSICC is a programmatic security enforcement check

utilizing Definitions 50 and 51 that is able to determine at runtime if the requested API

call on a global service can be executed for a user uID (Defn. 15v2) with a role rID (Defn.

9v2).

Example 4.8: Consider a Global Resource G1 that has: a user ,John>=<uG 1
1

1 ; and a role

= n,GPhysiciarG 1
1

1 in which
1

1

Gr is authorized to access global services },,{
1

3

1

2

1

1

GGG  ; and

96

suppose that the user-role assignment
1

1

Gura =<
1

1

Gu ,
1

1

Gr > is established, then the user
1

1

Gu can

invoke all the three global services },,{
1

3

1

2

1

1

GGG  .

4.7.2 Definitions on MAC Interceptor

In order to support the FSICC’s security requirement 4 (see Section 3.1) and the MAC

Interceptor, we first define the level of security enforcement checks that are required for MAC.

The MAC model (Bell & La Padula, 1976) has a set of properties, namely, Simple Security (SS),

Simple Integrity (SI), Liberal* (L*), and Strict* (S*) that has both Read and Write capabilities.

Such properties are defined to determine under which conditions a user with a CLR level can read

or write a given data item with a CLS level. For the purposes of FSICC, this is focused on whether

a user with a CLR level can invoke a write service (i.e., Create, Update, or Delete) or a read service

(i.e., Read) with a CLS level that is part of a global service permission. Now we explain the way

that MAC properties are used in FSICC. First, SS property (or read-down, no read-up) is the

permission to invoke a read service that has an equal or lower CLS level. That is, a user is allowed

to invoke a Read service with a CLS level equal to or lower than their CLR level, but not those

Read services with a higher CLS level. Second, SI property (or write-down, no write-up) is the

permission to invoke a write service that has an equal or lower CLS levels.

That is, a user can invoke a Create, Update, or Delete service of equal or lower CLS level when

compared to their CLR level, but not to those Create, Update, or Delete services with a higher CLS

levels. Third, L* property (or write-up, no write-down) is the permission to invoke a write service

that has an equal or greater CLS level (the opposite of SI). Forth, S* Write property (or write equal)

is the permission to invoke a write service that only has an equal CLS level. Finally, S* Read

property (or read equal) is the permission to invoke a read service that only has an equal CLS level.

From a definition and management perspective, an Security engineer of FSICC would set the

97

CLR level of users following the predefined sensitivity levels (e.g., TS, S, C, and U - see Defn.

10) to establish the levels for both users and services. These levels are then augmented on a user-

by-user basis by assigning the ability to invoke a read service (via SS or S* Read properties) and

the ability to invoke a write service (via SI, L*, or S* Write properties).

In support of the FSICC’s security requirement 4 (see Section 3.1), this section presents

definitions for the MAC interceptor. Definitions 53 to 56 introduce concepts on MAC read/write

properties and an enforcement check that the MAC interceptor utilizes to enforce the global MAC

policy.

Defn. 53: Available MAC properties: There are four properties: Simple Security (SS), Simple

Integrity (SI), Liberal* (L*), Strict* (S*) that has both Read and Write capabilities. The SS

property allows a user to invoke a read service iff the user’s CLR is equal or higher than

the CLS of the read service. The SI property allows a user to invoke a write service iff the

user’s CLR is equal or higher than the CLS of such a service. The L* property allows a

user to invoke a write service iff the user’s CLR is equal or below the CLS of such a service.

The S* Write property allows a user to invoke a write service iff the user’s CLR is equal

to the CLS of such a service. The S* Read property allows a user to invoke a read service

iff the user’s CLR is equal to the CLS of such a service.

Defn. 54: User Assigned MAC Properties: The Security engineer is responsible for

assigning each user one read property (SS or S* Read) and one write property (SI, L*, or

S* Write).

98

Defn. 55: MAC Enforcement Check: For a global resource, iG , a user i

U G
Gu can invoke a

Read, Create, Update, or Delete global service
iG

i iff the CLR of u satisfies established

MAC properties (Definitions 53 and 54).

Given Definitions 53 and 54, we revise Defn. 15v2 as below:

Defn. 15: (v3) A user, u, is defined as five-tuple = MACW RMACRDCLRNAMEID uuuuuu ,,,, , where

MACRDu is SS or S* Read and MACW Ru is SI, L*, or S* Write (Defn. 53).

Example 4.9: Consider a Global Resource G1 that has a user ,John,TS>=<uG 1
1

1 and three global

services: a Create service
1

1

G =< SNewRxgs gs

SIG ,,, 1111  >, a Read service
1

2

G =< SAllRxgs gs

SIG ,,, 1212 

>, and a Read service
1

3

G =< CfillCangs gs

SIG ,,Re, 1313  >, and suppose that the Security engineer

established two MAC properties (SS, SI) on
1

1

Gu , then the user
1

1

Gu can invoke all the three

global services, since the CLR level (TS) of
1

1

Gu is greater than all CLS levels (S, S, and C) of

services (
1

1

G ,
1

2

G , and
1

3

G), respectively.

Defn. 56: The MAC Interceptor of FSICC is a programmatic security enforcement check

utilizing Definitions (53, 54 and 55) that is able to determine at runtime if the requested

API call on a global service can be executed for a user with a CLR (Defn. 15v3) and

limited by a Read/Write properties combination (Defn. 54).

4.7.3 Definitions on DAC Interceptor

99

In support of the FSICC’s security requirement 3 (see Section 3.1), this section presents

definitions for the DAC interceptor. Definitions 57 to 60 provide three enforcement checks that

the DAC interceptor utilizes to enforce the global DAC policy.

Defn. 57: Delegated User-Delegated Role Enforcement Check: For a global resource, Gi, a

delegated user duID ϵ G
i
UG can utilize a delegated role drID ϵ G

i
RG iff the entry < ouID, duID,

drID> exists in the Delegation Set Gi
DSG.

Defn. 58: Delegated User-Delegated Role Permission Enforcement Check: For a global

resource, Gi, a delegated user duID ϵ G
i
UG can utilize a delegated role permission drpID

 iff

the entry < ouID, duID, drpID> exists in the Delegation Set Gi
DSG.

Defn. 59: Delegated User- Delegated Clearance Enforcement Check: For a global resource,

Gi, a delegated user duID ϵ G
i
UG can utilize a delegated clearance dcID ϵ G

i
RG along with the

associated read/write properties iff the entry < ouID, duID, dcID> exists in the Delegation

Set Gi
DSG.

Defn. 60: The DAC Interceptor of FSICC is a programmatic security enforcement check

utilizing Definitions 57-59 that is able to determine at runtime if the requested API call

on a global service can be executed for a delegated user duID.

Example 4.10: Consider a Global Resource G1 that has: two users ,John>=<uG 1
1

1 and

,Ali>=<uG 2
1

2 ; and a role = n,GPhysiciarG 1
1

1 in which the resource delegation set 1

CDSG has

an entry {
1

1

Gd } with =
1111

1211 ,, GGGG ruud , then the user
1

2

Gu can utilized all the global permissions

that are authorized to
1

1

Gr .

100

4.8 Related Work on Access Control for Cloud Computing

In this section, we review a number of related works on access control for cloud computing,

comparing and contrasting their work to our approach in this chapter. We classify these related

efforts into two main groups: the first group of three efforts involves data-based RBAC in a cloud

setting while the second group of three efforts involves RBAC in a cloud setting at an API level.

The first effort (Tang, Wei, Sallam, Li, & Li, 2012) proposed an RBAC model with an owner

role to enable the data owner to grant a user access to their data and to update the owner data in

cloud, with a user role. Our work on UCCACM is similar to this effort since both works involve

definitions for RBAC and DAC that can be utilized to restrict users access in the cloud. However,

while our UCCACM provides MAC based capabilities to secure sensitive services, their effort

does not consider the need for controlling users access based on sensitivity levels (MAC).

The second effort (Wang Z. , 2011) proposed a cloud-based RBAC that authorizes permissions

to data in cloud with roles that assigned to cloud users. This is accomplished by two main

algorithms: the User Role Assignment and the Role Permissions Assignment. To further control

sensitive data, this effort enables a cloud user to disable/enable roles that are authorized to such

sensitive data. The main common aspect between this effort and our work on UCCACM is that

both works utilize RBAC to control user access in the cloud. However, regarding more sensitive

data/services, their effort utilizes it approach that disable/enable roles while in UCCACM we

utilize a more advanced technique with sensitivity levels (MAC).

The third effort (Takabi, Joshi, & Ahn, 2010) proposed a security framework for cloud

computing environments that has an access control module that protects a provider’s data in cloud

using classic RBAC. Our work on UCCACM is similar to this effort since both works involve

definitions for RBAC that can be used to restrict users access in the cloud. However, while our

101

UCCACM provides MAC and DAC based capabilities to secure sensitive services, their effort

does not consider the need for controlling users access based on sensitivity levels (MAC) and

delegation (DAC).

The fourth effort (Sirisha & Kumari, 2010) proposed an API-based RBAC model for cloud

services that defines permissions against cloud services where permissions are authorized to roles

that are assigned to users. This effort is similar to our work on UCCACM since both works define

permissions against cloud API (cloud services). However, our UCCACM is more fine-grained

since permissions are assigned to different CRUD methods of cloud services, while their effort

allows/denies access to all CRUD methods.

The fifth effort (Wonohoesodo & Tari, 2004) proposed a Web Service (SOAP)-based RBAC

model in which a role assigned to a service consumer is authorized to both a SOAP service and a

parameter of a SOAP service with an access mode (e.g., read, write, execute, modify, and delete).

The main common aspect between this effort and our work on UCCACM is that both works utilize

RBAC to restrict the way that users can access services. However, while their effort is dedicated

to SOAP-based services, the permissions in UCCACM can be defined and enforced on any type

of cloud or web services such as SOAP and REST.

The last effort (Feng, Guoyan, Hao, & Li, 2004) also proposed a Service (SOAP)-Oriented

RBAC model that authorizes SOAP services to roles that can be assigned to users, where when a

user activates a role, an Actor is created that enables the user to access SOAP services authorized

to the role. Although this effort introduced the role activation by users, this effort basically is

similar to our work on UCCACM since both works utilize RBAC to restrict access to services.

However, their effort is more focused on SOAP-based services, while in UCCACM the

102

permissions can be defined and enforced on any type of cloud or web services such as SOAP and

REST.

Overall, our work on UCCACM contrasts with the three first efforts by focusing on defining

permissions against cloud services as opposed to data. Regarding the last three efforts, their work

differs from UCCACM since none of these efforts utilizes sensitivity levels (MAC) or delegations

(DAC) to restrict access to the services.

103

Chapter 5

Architectural Blueprints to Facilitate Interoperability and

Information Exchange of Clients and Systems

As presented in Section 1.4 of Chapter 1, an integration layer was defined as a standard API

that converts data from a system or client into a common data format to facilitate information

exchange. Such a common data format can be utilized by other systems and clients, within a

framework like FSICC, to easily exchange data. An integration layer exists with an

integration framework (IFMWK) which is a set of standards and associated technologies that allow

different systems to interact with one another utilizing one common data format. The associated

technologies allow integration servers to be designed and implemented to facilitate the exchange

of information using the common data format via a set of shared services via an integration layer.

The integration framework facilitates the interactions of clients and systems with one another in

FSICC by providing a common layer to allow clients and systems to interact with one another.

The common layer of IFMWK can be used to map to and from cloud, programming, or web

services. To accomplish this mapping, we assume that the integration framework IFMWK has an

available implementation that can be utilized to generate dedicated IFMWK servers for two-way

mapping and exchange as needed. The FHIR standard presented in Section 2.3 of Chapter 2 and

its HAPI FHIR reference implementation, which has a set of resources in XML, JSON, RDF, and

Turtle that are a common data representation with associated services for CRUD and searching, is

an example of an integration framework (FHIR) and its implementation (HAPI).

As described in Chapter 1, the interactions and integration of clients and systems with the

Framework for Secure and Interoperable Cloud Computing (FSICC), as shown in Figure 1.1, can

be defined from a client perspective and from a system perspective. From a system perspective,

104

each system, which corresponds to the Systems box in the Involved Parties component at the

topmost of Figure 1.2 from Chapter 1, needs to create an integration layer API in front of their

API, and modifies their security policy to be defined against the integration layer API. This

integration layer corresponds to the Architectural Blueprints in Figure 1.3. Architectural

Blueprints, the main focus of this chapter, are guidelines that define the way of placing and

creating an integration layer for a systems or client to allow such them to exchange data with

other systems and clients in one common data format. There are three Architectural Blueprints

options as shown in Figure 1.2: a Basic Architecture option that includes a IFMWK server that

works directly with the App repository and IFMWK servers of other systems; an Alternative

Architecture option that includes a IFMWK server that works directly with the App RESTful API

and IFMWK servers of other systems; and, a Radical Architecture option that removes the

repository and has IFMWK servers for the App API and the other systems. Once a blueprint option

has been chosen and applied, each system is able to register: the system’s name, the integration

layer API, and the security policy into FSICC. This is done using the Systems Registry box in the

middle of Figure 1.1, which corresponds to the Registration and Services Mapping box of the

Generation of Global Policy and Services component in Figure 1.2. Based on the integration layer

of registered systems, the security engineer of the FSICC creates a global API. This corresponds

to the Global Services box of the Generation of Global Policy and Services component in Figure

1.2, which is an integration layer in which clients may utilize such a global API via FSICC. Each

of the different alternatives of the architectural blueprints process the means to integrate the

services of a system so that can easily map to/from the global services.

From a client perspective, each client, which corresponds to the Clients box in the Involved

Parties component at the topmost of Figure 1.2, creates an integration layer API at the top of Figure

105

1.1 in front of its API. Clients, like systems, may require an architectural blueprint option to

integrate with FSICC, particularly in the case where it is a mixed client, see Defn. 6 in Section 4.2

of Chapter 4. With or without a blueprint, each client is able to register: the client’s name into the

FSICC, using the Clients Registry box, and reconfigure the client integration layer API to call the

global API of FSICC, see Figure 1.1. The integration layer that can be created by systems, clients,

and FSICC is the technology that facilitates the bi-directional mapping and exchange of

information: between clients’ applications and global services of FSICC; and, between systems’

services and global services of FSICC.

The architectural blueprints presented in this chapter have a strong interaction with UCCACM

as was shown in the top portion of Figure 1.3 from Chapter 1. UCCACM has four definitions

that are directly related to architectural blueprints. Definitions 41 to 44 involve, respectively: the

mapping of clients and systems that provide services to global resources in FSICC in Defn. 41; the

set of all of the global resources that were mapped from clients and systems in Defn. 42; the

mapping of the services of the APIs from clients and systems to the global services APIs of FSICC

in Defn. 43; and, the set of all of the global APIs for all clients and systems in Defn. 44. The

architectural blueprints that enable clients and systems to provide an API that is conducive to being

integrated via UCCACM into FSICC which is facilitated using the mappings of Definitions 41 to

44. This chapter explores and examines three architectural blueprints options, Basic

Architecture, Alternative Architecture, and Radical Architecture, for design and development

processes that can be followed to integrate an mHealth, web, or desktop application utilizing

FHIR to multiple HIT systems via FSICC. The work in this chapter supports expected

contribution EC-A: Architectural Blueprints for Supporting FSICC from Section 1.5, this is

represented by the Architectural Blueprints box at the top of Figure 1.3.

106

The remainder of this chapter is organized into a five-part discussion. In Section 5.1, we

explore four issues that must be understood for an application of FSICC to support a discussion

of the architectural blueprint options: the overall architecture of the application; the involved

technologies that can be used to develop the application; the source code availability of the

application, APIs, server code, or database; and, the allowable access to system sources. In

Section 5.2, we examine the three different Architectural Blueprint options, namely, Basic,

Alternative, and Radical, for integrating an application to multiple HIT systems via FSICC,

utilizing an integration framework, IFMWK, with examples provided using FHIR. In Section

5.3, we present Architectural Blueprints for each of the three options that illustrates the way that

the options can be realized using IFMWK, including the various phases and steps that are

required. In Section 5.4, we explore a complex example that utilizes the Alternative and Radical

Architectural Blueprint options prototype applied to the healthcare scenario from Section 2.4 of

Chapter 2 via FHIR as an IFMWK and HAPI as a server. In Section 5.5, we discuss two related

works in the literature that explain alternative ways that FHIR can be implemented to integrate

healthcare systems and/or applications in different settings. Note that the work in this chapter

has been published in (Baihan, M., et al., 2018) (Ziminski, T., Demurjian, S., Sanzi, E., Baihan,

M., & Agresta, T., 2017).

5.1 Issues that Impact Interoperability

In this section, we explore the different characteristics and components of an application and

its interaction with multiple mixed clients and pure or mixed systems via FSICC and as a result

define for issues that impact interoperability. The four issues are: the overall architecture of the

application with respect to tiers of functionality of mixed clients and pure or mixed systems such

107

as one-tier, two-tier, and three-tier architectures, etc.; the involved technologies that are utilized by

different mixed clients and pure or mixed systems such as RESTful APIs, programmatic APIs,

database API, etc.; the source code availability of the mixed clients and pure or mixed systems

such as the app, APIs, server code, or database; and, the allowable access to the mixed clients and

pure or mixed systems via RESTful APIs, programmatic APIs, etc. Each is discussed in turn.

The first issue that impacts interoperability choices is the overall architecture of the application

with respect to tiers of functionality of mixed clients and pure or mixed systems such as one-tier,

two-tier, and three-tier architecture, etc. That is, in order to integrate a mixed client or pure or

mixed system, via FSICC, one must understand its architecture. In general, there are three different

architectures: one-tier, two-tier, and three-tier. In a one-tier architecture, the client/system would

contain all of the components of the client/system including: user interface (the presentation layer);

user request processing (the business layer); and the repository (the data layer). In a two-

tier architecture, the client/system would have the user interface (the presentation layer) while user

request processing (the business layer) and the repository (the data layer) are hosted in a separate

server. In a three-tier architecture, the client/system would only have the user interface (the

presentation layer) with the user request processing (the business layer) hosted by a separate server

through an API and the repository (the data layer) hosted in another separate (third) server. Note

that the repository in all three cases may in turn interact with another layer but from the perspective

of the architectural blueprints options, this will be hidden. Also note that for the two and three tier

architectures, the middle request processing layer might involve access to multiple separate APIs.

For the purposes of this dissertation, the mixed clients and pure or mixed systems are client

mHealth apps or system HITs. The second issue that impacts the choice of an integration option is

the involved technologies that are utilized by different mixed clients and pure or mixed systems

108

such as RESTful APIs, programmatic APIs, database API, etc. These technologies can be utilized

by a mixed client or pure or mixed system to make external integration with FSICC possible. The

programmatic API of a client/system is a set of definitions for functions or methods of that

application, where an external application may call an API to perform an application’s method

without the knowledge of the actual code of such a method. A repository API is similar to the

programmatic API, however, the functions or methods of such API perform operations over

repository items that may be in a database or some other option. A RESTful API is a set of

definitions for methods of an application. Such an API is designed based on the REST architecture

(Fielding, 2000) which utilizes Hypertext Transfer Protocol (HTTP) requests to interact with the

data of a client/system. Cloud services are the APIs that define the way that cloud consumers can

access and utilize cloud computing resources such as software. These cloud services can be

designed using web services such as Representational State Transfer (REST), Simple Object

Access Protocol (SOAP), etc.

The third issue that impacts the choice of an integration option is the source code availability

of the mixed clients and pure or mixed systems such as the app, APIs, server code, or database.

Since a client/system can be developed based on different architectures (as described in issue 1),

it is crucial to consider the availability of source code of components such as the app, APIs, server,

or repository. Specifically, the source code of the client/system is the code that is used to

implement: the user interface component and the methods that interacting with any external

servers. The API’s source code is the code that is utilized to map the application’s methods to an

abstract set of calls that an external source can invoke. The server code is the code that is used to

implement the business logic of the application. The repository source code is the source file or

database schema and any code that is used to access data in such a repository. Some of the

109

architectural blueprint options require access to source code in order to make limited programmatic

changes to support the integration. The intent is to try to minimize these changes when attempting

to integrate an app with multiple mixed clients and pure or mixed systems via FSICC, in order to

have little or no impact on existing code.

The fourth and final issue that impacts the choice of an integration option is the allowable

access to the mixed clients and pure or mixed systems via RESTful APIs, programmatic APIs, etc.

This enables external applications to be integrated with such mixed clients and pure or mixed

systems. The ability to integrate these various API and services seamlessly with an integration

framework such as HAPI FHIR is critical to support the different integrations options presented in

this chapter. Recall in the introduction to this chapter, we defined an integration framework,

IFMWK, as a set of standards and associated technologies that allow different systems to interact

with one another utilizing one common data representation. The associated technologies allow

integration servers to be designed and implemented to facilitate the exchange of information using

the common data representation via a set of shared unified services. The FHIR standard is one

example of an integration framework which has a set of resources in XML, JSON, RDF, and Turtle

that are a common data representation with associated services for CRUD and searching. The

HAPI FHIR reference implementation is the associated technology that implements the FHIR

framework that uses CRUD services; as a result, it is possible to develop a FHIR server as a means

to support integration. In summary, the exact configuration of each of the four aforementioned

issues (overall architecture, involved technologies, source code availability, and allowable access

to mixed clients and pure or mixed systems) has a direct impact on the different available options

that can be utilized via an integration framework such as HAPI FHIR to integrate a particular

application architecture and multiple mixed clients and pure or mixed systems via FSICC.

110

5.2 Application Integration Options

In this section, we enumerate a number of different Application Integration Options to allow

an application to send/receive data with multiple mixed clients and pure or mixed systems, via

FSICC, by the creation of integration servers. To begin, Figure 5.1 contains an architecture of an

App (a client/system), its RESTful API, and its repository along with three systems (OpenEMR,

OpenMRS, and a PHR such as MTBC (MTBC, 2016)). Note that while we use health information

technology (HIT) in the example, the integration options and blueprints work for any IT system

from any domain. The different components in Figure 5.1 define three architectural blueprint

options that illustrate the alternate ways that the App can be integrated with the systems, via

FSICC, based on the four issues previously discussed in Section 5.1 (overall architecture, involved

technologies, source code availability, and allowable access to client/system). In order to facilitate

the integration of multiple systems with one another, we utilize the previously integration

framework, IFMWK, to accomplish this mapping, we assume that the integration framework

IFMWK has an available implementation that can be utilized to generate dedicated IFMWK

servers as needed. Note that the aforementioned FHIR standard and its HAPI FHIR reference

implementation correspond to the sample of an integration framework and its implementation.

Using this discussion as a basis, in this section, we present three architectural blueprint options: a

Basic Architecture option that includes an IFMWK server that works directly with the App

repository and IFMWK servers for OpenEMR, OpenMRS, and PHR; an Alternative Architecture

option that includes an IFMWK server that works directly with the App RESTful API and IFMWK

servers for OpenEMR, OpenMRS, and PHR; and, a Radical Architecture option that removes the

111

repository and has IFMWK servers for the App API, OpenEMR, OpenMRS, and PHR. Note that

the HITs that are shown (OpenEMR, OpenMRS, and PHR) are illustrative and in practice, a

generalized version could have one or more systems via FSICC, but for explanation purposes we

utilize three HIT systems. Note that in the rest of this chapter, we use the term HIT systems as

follows. HIT is referring to health information technology such as EMRs and PHRs, and systems

is referring to pure or mixed systems as discussed in Defn. 7 of Section 4.2.

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

App

Repository

PHR

Figure 5.1. App and HIT Systems.

The Basic Architecture option is shown in Figure 5.2a, where the assumption is made that:

direct access to the app repository is available; and, the source codes of app, RESTful API,

OpenEMR and OpenMRS HIT systems and their APIs are available. In Figure 5.2a, at the bottom,

there are IFMWK servers, see the ovals in Figure 5.2a, to load/store data from OpenEMR,

OpenMRS and PHR (named OpenEMR.IFMWK, OpenMRS.IFMWK, and PHR.IFMWK) using

their APIs (a third tier) into selected IFMWK resources; and an App.IFMWK server to load/store

data from the App repository, at the top of Figure 5.2a. Basically, each HIT systems requires an

IFMWK server (e.g., OpenEMR.IFMWK) to extract data to/from HIT via IFMWK resources that

in turn interacts with the App.IFMWK server of the App repository. Interactions from the App

via its RESTful API are not impacted; also, the App RESTful API to the App repository. However,

112

to enable the App to take advantage of the HIT systems, two new IFMWK services

App.IFMWK.LOAD and App.IFMWK.STORE are defined. The App.IFMWK.LOAD service

retrieves all of the data from either OpenEMR, OpenMRS, or the PHR in the IFMWK format.

This App.IFMWK.LOAD service takes the JSON IFMWK from the HIT.IFMWK (e.g.,

OpenEMR.IFMWK) server and add them into the App repository via an App IFMWK service,

which converts the IFMWK format into App repository format. This allows all of the App

RESTful API calls to use this temporary data. The App.IFMWK.STORE service extracts data

from the App repository, via an App IFMWK service, which coverts App repository format into

IFMWK format and adds them into the OpenEMR, OpenMRS, or the PHR repository. The

App.IFMWK.LOAD and App.IFMWK.STORE services require source code availability of the

repository in order to make the needed calls to stage data back and forth from HIT sources. Note

that the App.IFMWK.LOAD and App.IFMWK.STORE services may also be periodically called

to ensure that the repositories at both sides are updated. In this way, the App, API, and repository

are not modified. Figure 5.2b presents a customized Basic Architecture applied to the healthcare

domain where the FHIR framework is used as an example of an integration framework for

healthcare, where all IFMWKs in Figure 5.2a is replaced by FHIR in Figure 5.2b.

113

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

App

Repository

PHR

APP.IFMWK

A
P

I

A
P

I

A
P

I

Figure 5.2a. Basic Architecture with Direct Database Access using IFMWK.

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I
App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

App

Repository

PHR

APP.FHIR
A

P
I

A
P

I

A
P

I

Figure 5.2b. Basic Architecture customized with FHIR for IFMWK.

In the second option, shown in Figure 5.3a, the situation is similar to the basic option in Figure

5.2a, except that there is no direct access to the app repository. Thus, the App.IFMWK server on

the App side is moved in order to directly interact with the App RESTful API. There are still the

HIT.IFMWK servers for OpenEMR/OpenMRS/PHR as in Figure 5.3a. In this option, the App

continues to use the App RESTful API without change. However, the App.IFMWK.LOAD and

App.IFMWK.STORE services transition to become part of the App RESTful API. That is, each

App.IFMWK.READ service of the App RESTful API first calls the App.IFMWK.LOAD service,

which takes an id of the queried instance and: retrieves the related data from OpenEMR,

OpenMRS, or PHR via their IFMWK server. The second call adds retrieved data into the App

repository via another App IFMWK API service using the App.IFMWK.CREATE service. This

requires slight programmatic changes and source code availability (third issue of Section 5.1). The

114

next step in the process calls the App.IFMWK.READ service of the App RESTful API which

retrieves the related data from the App repository (which is updated with the new data from the

HIT system). Similarly, each App.IFMWK.CREATE service of the App RESTful API first adds

the related data into the App repository. Then, the App.IFMWK.CREATE service of the App

RESTful API calls the STORE service, which takes the newly added data from the App repository

via another App.IFMWK API service (i.e., a App.IFMWK.READ service) and adds them into the

OpenEMR, OpenMRS, or the PHR database, via their IFMWK service. Note that, in this way,

while the App and its calls to the App.IFMWK.RESTful API are not modified, there is a single

call is added to either the App.IFMWK.LOAD or App.IFMWK.STORE services RESTful API.

This requires source code availability of the RESTful API. Figure 5.3b presents a customized

Alternative Architecture applied to the healthcare domain where the FHIR framework is used as

an example of an integration framework for healthcare, with all of the IFMWKs in Figure 5.3a is

replaced by FHIR in Figure 5.3b.

App

Repository

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

PHRA
P

I

A
P

I

A
P

I

APP.IFMWK

Figure 5.3a. Alternative Architecture with App RESTful API Access using IFMWK.

115

App

Repository

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

PHRA
P

I

A
P

I

A
P

I

App.

FHIR

O
p

e
n

M
R

S
.

F
H

IR

Figure 5.3b. Alternative Architecture customized with FHIR for IFMWK.

In the Radical Architecture, shown in Figure 5.4a, the situation is the same as the alternative

option of Figure 5.3a, but alters the tiers by removing the repository (database). As a result, this

option is a more drastic and involves replacing the App repository and so that it now totally relies

on the HIT systems. This option would move and reconfigure all of the App data under the control

of the HIT system to store and manage all data. This requires a total rewrite of the code for the

App RESTful API with the strong requirement that all service signatures remain unchanged so as

not to impact the App. In this case, every rewritten App RESTful API service implements a

App.IFMWK service to directly call OpenEMR.IFMWK, OpenMRS.IFMWK, or PHR.IFMWK

as required to load/store data as needed. In the Radical Architecture, the services defined are:

App.IFMWK.CREATE, App.IFMWK.READ, App.IFMWK.UPDATE, and

App.IFMWK.DELETE. Source code availability and changing the APIs may be required. This

approach is clearly time and effort prohibitive. Figure 5.4b presents a customized Radical

Architecture applied to the healthcare domain, where the FHIR framework is used as an example

of an integration framework for healthcare, with all of the IFMWKs in Figure 5.4a is replaced by

FHIR in Figure 5.4b.

116

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

PHRA
P

I

A
P

I

A
P

I

APP.IFMWK

Figure 5.4a. Radical Architecture without a Database using IFMWK.

OpenEMR OpenMRS

R
E

S
T

fu
l

A
P

I

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

PHRA
P

I

A
P

I

A
P

I

App.

FHIR

O
p

e
n

M
R

S
.

F
H

IR

Figure 5.4b. Radical Architecture customized with FHIR for IFMWK.

5.3 Integration Steps and Processes of Architectural Blueprints

This section presents a discussion of the steps and processes that are necessary to develop the

various IFMWK servers illustrated in Figures 5.2a, 5.3a, and 5.4a for the Basic, Alternative, and

Radical options. The end result is set of guidelines for the architectural blueprints for the

integration of an App application, via a App.IFMWK server that integrates with the App RESTful

API, with multiple HIT systems, via FSICC, and a HIT.IFMWK server that integrates with the

APIs of OpenEMR, OpenMRS, and PHR. The guidelines presented in this section provides

stakeholders with a process to integrate an App with multiple HIT systems via FSICC using

IFMWK servers. This section details the blueprints for the Basic, Figure 5.2.a, Alternative, Figure

5.3.a, and Radical, Figure 5.4.a, architectures. All three of these architectures blueprints share the

117

common HIT.IFMWK blueprint which involves defining the HIT system data items to be

sent/received and designing a HIT.IFMWK server to facilitate the exchange. The three

architectures have their own specific needs, namely, the App.IFMWK server required at the App

side Repository in Figure 5.2.a, the App.IFMWK server in Figure 5.3.a, and rewriting the App

RESTful API in Figure 5.4.a with a App.IFMWK server. Note that while we are using an HIT

system and the health care domain, this is generalizable to any IT system and associated domain.

To begin, the common HIT IFMWK Blueprint involves defining the HIT system data items to

be sent/received back and forth via a set of Identified IFMWK Resources to another IFMWK

server or client, and designing a HIT IFMWK server (HIT.IFMWK) with a RESTful API to

facilitate the exchange. The processes of each step that are the guidelines are as:

1. Define the HIT system data items (i.e., for the HIT repositories in Figures 5.2.a, 5.3.a, and

5.4.a) that are needed to be exchanged to/from the App. This step consists of four sub-steps:

a. Identify each single candidate data item (e.g., “patient name” table field) in the HIT

repository that are accessible via an HIT API.

b. For each candidate data item:

▪ Provide a short and clear item name: by reviewing the IFMWK resources, identify

a IFMWK resource, and mapping the candidate data item to the most comparable

data item of the identified IFMWK Resource.

▪ For the candidate data item, if there is no similar item’s name for the identified

IFMWK resource, identify an item of a IFMWK resource that has the same datatype

as the candidate data item.

118

▪ Provide a brief description that explains the mapping for the case where there is a

comparable IFMWK data item and more importantly, the case where there is only

a comparable IFMWK data type.

c. Group multiple related HIT system data items (e.g., patient name and patient gender) into

a separate and distinct data abstraction (e.g., patient entity). This would make mapping to

an Identified IFMWK Resource clearer by finding the most similar IFMWK resource’s

name.

d. End Result: A set of Identified IFMWK Resources that map to the HIT data entities and

items.

2. Design an HIT.IFMWK server in front of the HIT system API in two sub-steps:

a. A HIT.IFMWK server is designed for all of the Identified IFMWK Resources in Step 1d

that defines a IFMWK API that has CRUD operations for all of the Identified IFMWK

Resources and interacts with the HIT API.

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the HIT.

▪ Create an HIT.IFMWK.Controller class that receives requests from the App (or any

other system) and forwards each request to the appropriate Identified IFMWK

Resource class based on the universally unique identifier (UUID) of an Identified

IFMWK Resource.

▪ Create a class for each Identified IFMWK Resource that receives requests from the

IFMWK controller class and performs the requested CRUD service. This class is

defined for each Identified IFMWK Resource as HIT.IFMWK.IFRCName where

IFCRName is the Identified IFMWK Resource Class name. This class implements

four main CRUD services:

119

• A HIT.IFMWK.IFRCName.Create service that stores an instance of a

IFMWK resource from an external call from another IFMWK server to

create and store new data into the HIT repository. This service takes the data

in as a IFMWK Resource and then converts the data into a format that can

be stored in the HIT repository via a call to one or more HIT API services.

This effectively stores IFMWK Resource data into the HIT repository. For

example, OpenEMR.IFMWK.Patient (the Patient IFMWK Resource)

would call the service of an OpenEMR API that stores the data into the

Patient_data table of OpenEMR’s MySQL database.

• A HIT.IFMWK.IFRCName.Read service that is a request for an instance of

a IFMWK resource from an external call from another IFMWK server that

to read existing data from the HIT repository. This service takes the request

for a IFMWK Resource that requires a call to one or more HIT API services

to retrieve the data from the HIT and create an instance of an Identified

IFMWK Resource to send back. For example, OpenEMR.IFMWK.Patient

(the Patient IFMWK Resource) would call the service of an OpenEMR API

that reads the data from the Patient_data table and perhaps other tables of

OpenEMR’s MySQL database and creates a FHIR Patient instance.

• An HIT.IFMWK.IFRCName.Update service that receives an instance of a

IFMWK resource from an external call from another IFMWK server to

update existing data into the HIT repository. This service takes the data in

as a IFMWK Resource and then converts the data into a format that can be

120

stored in the HIT repository via a call to one or more HIT API services that

update an existing instance.

• A HIT.IFMWK.IFRCName.Delete service that receives a request to

remove one or more instances (based on the parameters in the request) of a

IFMWK resource from an external call from another IFMWK server to

delete existing data from the HIT repository. This service takes the request

for a IFMWK Resource and interprets the request to call one or more HIT

API services to delete instance(s).

Note that for healthcare and similar domains in practice, there may be a desire to not implement

either HIT.IFMWK.IFRCName.Update or HIT.IFMWK.IFRCName.Delete services since in

electronical medical records, incorrect data is not deleted, but is marked as incorrect. For example,

an incorrect laboratory test result assigned to the wrong patient can be marked as not valid.

The Basic Architecture Blueprint, Figure 5.2.a, allows information from the App repository to

be sent/received back and forth via a set of Identified IFMWK Resources to another IFMWK

server or client by designing an App IFMWK server (App.IFMWK) with a RESTful API to

facilitate the exchange. There are three main steps to the guideline: define the App data items,

design the App IFMWK server with the LOAD and STORE services, and reuse the HIT IFMWK

guideline:

1. Define the App data items (i.e., App repository tables’ fields in Figure 5.2.a) needed to be

exchanged with an HIT system. This step consists of four sub-steps in which the first three

processes are identical to the processes of Step 1 of the HIT IFMWK Blueprint with the data

121

items now referring to the App data items as opposed to the HIT data items.

End Result: A set of Identified IFMWK Resources that map to the App data items.

2. Design the App IFMWK server which consists of the App.IFMWK.LOAD and

App.IFMWK.STORE services. This step has two sub-steps.

a. A App.IFMWK.LOAD service that calls “read” services of an HIT.IFMWK to retrieve

(in IFMWK format) all of the new added data from the HIT repository. Then, the

App.IFMWK.LOAD service converts the retrieved IFMWK resources into a format

that can be stored into App repository via App repository API. This read occurs upon

startup to initialize the App repository with information from HITs.

b. A App.IFMWK.STORE service that calls App repository API to retrieve all of the new

added data in App repository and converts into the IFMWK format. Then, the

App.IFMWK.STORE service simply forwards the converted data to appropriate

HIT.IFMWK.CREATE services which add the new data into the HIT repository. This

store occurs when the mobile app closes to update the HIT repository with information

from App repository.

3. Employ the HIT IFMWK Blueprint.

Recall that the Basic Architecture has access to the source code of the repository. There may be

more than one way to access the repository via Web/cloud services, an API (as with OpenEMR),

or by direct programmatic access to the repository (e.g., a MySQL database). As a result,

App.IFMWK.LOAD and App.IFMWK.STORE services would utilize one of these access modes

in conjunction with calls to HIT.IFMWK CRUD services (e.g., OpenEMR.IFMWK.Patient.Read)

and take the result of these calls for the identified IFMWK resources, and parse and put this

information to/from App repository.

122

The Alternative Architecture Blueprint, Figure 5.3.a, also communicates with the common HIT

IFMWK Blueprint as previously described in the last step of the Alternative Architecture blueprint.

There are four main steps to the Alternative Architecture guideline: define the App data items and

design the App IFMWK server (similar to the one in the Basic Architecture Blueprint), design the

LOAD and STORE services, and reuse the HIT IFMWK Blueprint. The processes of each step are

similar to the ones of the Basic Architecture guideline of Figure 5.2.a:

1. Define the App data items (i.e., App repository tables’ fields in Figure 5.3.a) that are needed

to be exchanged with an HIT system. This step consists of four main processes in which the

first three processes are identical to the processes of Step 1 of the HIT IFMWK Blueprint with

the data items now referring to the App data items as opposed to the HIT data items.

End Result: A set of Identified IFMWK Resources that map to the App data items.

2. Design an App.IFMWK server in front of the App RESTful API in two sub-steps:

a. A App.IFMWK server is designed for all of the Identified IFMWK Resources in Step

1d that defines a IFMWK API that has CRUD operations for all of the Identified

IFMWK Resources and interacts with the HIT.IFMWK server.

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the

App repository.

▪ A App.IFMWK.IFRCName.Create service that stores an instance of a IFMWK

resource from an external call from another IFMWK server to create and store new

data into the App repository. This takes the data in as a IFMWK Resource and then

converts the data into a format that can be stored in the App repository via a call to

one or more App RESTful API services. This effectively stores IFMWK Resource

123

data into the App repository. This would be similar to the OpenEMR example for

the HIT.IFMWK server.

▪ A App.IFMWK.IFRCName.Read service that is a request for an instance of a

IFMWK resource from an external call from another IFMWK server that to read

existing data from the App repository. This takes the request for a IFMWK

Resource that requires a call to one or more App RESTful API services to retrieve

the data from the App repository and create an instance of an Identified IFMWK

Resource to send back. This would be similar to the OpenEMR example for the

HIT.IFMWK server.

▪ An App.IFMWK.IFRCName.Update service that receives an instance of a IFMWK

resource from an external call from another IFMWK server to update existing data

into the App repository. This takes the data in as a IFMWK Resource and then

converts the data into a format that can be stored in the App repository via a call to

one or more App RESTful API services, updating an existing instance.

▪ A App.IFMWK.IFRCName.Delete service that receives a request to remove one or

more instances (based on the parameters in the request) of a IFMWK resource from

an external call from another IFMWK server to delete existing data from the App

repository. This takes the request for a IFMWK Resource and interprets the request

to call one or more App RESTful API services to delete instance(s).

These App.IFMWK CRUD services are called by the App API in order to send information

back and forth in a IFMWK format that can then be shifted to the HITs via the

App.IFMWK.LOAD and App.IFMWK.STORE operations defined in Step 3.

124

3. Design the App.IFMWK.LOAD and App.IFMWK.STORE services. These two services are

located between the App.IFMWK server and any HIT system IFMWK server and have sub-

steps. The HIT.IFMWK CRUD services are used to support these functions.

a. A App.IFMWK.LOAD service that calls “read” services of an HIT.IFMWK to

retrieve (in IFMWK format) the new added data into HIT system. Then, the

App.IFMWK.LOAD service simply forwards the retrieved data to “create” services

of App.IFMWK which adds the new data into the App repository. This read occurs

when the App.IFMWK.IFRCName.Read is called to update the App repository

with information from HITs.

b. A App.IFMWK.STORE service that calls “read” services of the App.IFMWK to

retrieve (in IFMWK format) the new added data in App repository. Then, the

App.IFMWK.STORE service simply forwards the retrieved data to “create”

services of HIT.IFMWK which adds the new data into the HIT repository . This

store occurs after the App.IFMWK.IFRCName.Create is called to update the HIT

repository with information from App repository.

4. Employ the HIT IFMWK Blueprint.

Note that in practice, there may be a desire to not implement either

App.IFMWK.IFRCName.Update or App.IFMWK.IFRCName.Delete since in electronical

medical records, incorrect data is not deleted, but is marked as incorrect. In this case, we may not

want the App to propagate incorrect data into the HIT systems.

Finally, the Radical Architecture Blueprint, Figure 5.4.a, has three main steps: define the App

data items, redesign the App RESTful API, and communicate the IFMWK HIT Blueprint. The

processes of these steps in this guideline are:

125

1. Define the App data items, see Figure 5.4.a, that are needed to be exchanged with an HIT

system. This step consists of four main processes in which the first three processes are identical

to the processes of Step 1 of the HIT IFMWK guideline with the data items now referring to

the App data items as opposed to the HIT data items.

End Result: A set of Identified IFMWK Resources that map to the App data items.

2. Redesign the App RESTful API to implement App.IFMWK server in two sub-steps:

a. App.IFMWK server is designed for all of the Identified IFMWK Resources in Step 1d that

defines a IFMWK API that has CRUD operations for all of the Identified IFMWK

Resources and interacts with the HIT.IFMWK.

b. Create Classes and CRUD services for all of the Identified IFMWK Resources for the App.

▪ A App.IFMWK.IFRCName.Create service that receives the new data from the

App, converts it into a format that can be assigned to a IFMWK resource, creates

an instance of the IFMWK resource, and populates the IFMWK resource with the

converted data. After that, this service calls the HIT.IFMWK.IFRCName.Create

service with the IFMWK resource as a parameter.

▪ A App.IFMWK.IFRCName.Read service that receives the id of a IFMWK resource

from the App, invokes the HIT.IFMWK.IFRCName.Read service with the id as a

parameter. After receiving the result in IFMWK format, this service converts the

result into a format that can be used by the App and sends it to the App.

▪ An App.IFMWK.IFRCName.Update service that is similar to the

App.IFMWK.IFRCName.Create service, however, this service updates the existing

data.

126

▪ A App.IFMWK.IFRCName.Delete service that receives the id of a IFMWK

resource from the App, calls the HIT.IFMWK.IFRCName.Delete service.

3. Employ the HIT IFMWK Blueprint.

Note that for healthcare and similar domains in practice, there may be a desire to not invoke either

App.IFMWK.IFRCName.Update or App.IFMWK.IFRCName.Delete services for the same issue

discussed above. Also note that there is no need for LOAD and STORE in this Radical option

since there is no repository remaining on the App side of Figure 5.4.a.

In summary, there are a number of observations to make regarding the IFMWK CRUD, LOAD,

and STORE services. The CRUD services are defined to manipulate a single IFMWK resource

that interacts with either the App Repository or the HIT system in order to take information in

IFMWK format and convert it back and forth into the format of the data items in the

Repository/HIT. This requires creating, reading, updating or deleting to/from the Repository/HIT

using the respective API. For the read service on a particular resource, the information is retrieved

using services of the API in the native format of the Repository/HIT and converted to the common

format of the IFMWK resource so that it can be delivered through the IFMWK.READ service.

For the update service on a particular resource, the resource comes in the common format and the

update service would extract out the data items so that they can be assembled to call the appropriate

Repository/HIT API services. The create and delete services would work in a similar fashion. The

LOAD and STORE services differ in that they deal with multiple IFMWK resources. For STORE,

a set of IFMWK resources is passed in via a common format and these resources are extracted and

assembled to allow multiple API services to be called to store the information in the destination

format of the Repository or HIT system. For LOAD, multiple API services from the

repository/HIT are called to gather information that is then converted and assembled into the

127

appropriate IFMWK resources. The resource concept of IFMWK facilitates information

exchange. However, there is still extraction/conversion required to transition the data from the

source to the sharable IFMWK format.

5.4 Blueprint Prototype Applied to the Healthcare Scenario

This section presents a proof-of-concept prototype that demonstrates the ability of a select

subset of the Blueprints from Sections 5.2 and the usage of the corresponding guidelines in Section

5.3, that can be applied to the healthcare scenario from Section 2.4. This is by applying the

blueprint process on two integration cases: (case 1) integrate the CT2 mHelth app into the

OpenEMR HIT system via FSICC (Chapter 3); and (case 2) integrate the ShareMyHealth

mHelth app into the MyGoogle HIT system via FSICC (Chapter 3). In the process, we fully

illustrate the application of two of the three architectures blueprints (Basic, Alternative, Radical)

and the HIT IFMWK blueprint to the two integration cases above. The end result of this process

is that the CT2 and ShareMyHealth client Apps are able to utilize the services of the OpenEMR

and MyGoogle systems, respectively, via the global services of the FSICC. The remainder of

this section is organized into two parts. In Section 5.4.1, we detail the rational of the chosen

architectural options for integrating the two mHelth apps into the two HIT systems (cases 1 and

2) using: the Alternative architecture to integrate CT2 app into OpenEMR, see Figure 5.3b in

Section 5.2; and the Basic architecture to integrate ShareMyHealth app into MyGoogle, see Figure

5.2b in Section 5.2. Then, in Section 5.4.2, we apply the three architectural options and associated

guidelines of Section 5.3 to describe the integration steps and processes for integration cases 1 and

2.

5.4.1 Integrating Architectural Options for CT2 and ShareMyHealth

128

This section explains the rationale that influenced the selection of the most suitable integration

option for the two mHealth apps/clients CT2 and ShareMyHealth and two HIT systems

OpenEMR and MyGoogle for the three architecture options, Basic Figure 5.2, Alternative Figure

5.3, Radical Figure 5.4, discussed in Section 5.2. Note that we made an assumption that the FSICC

has already been built and published its own IFMWK server (FSICC.FHIR) so that different apps

and systems can integrate via the FSICC FHIR server. To begin, for the CT2 mHealth app (case 1),

the Alternative architecture was chosen and reconfigured, as shown in Figure 5.5, based on a

number of reasons. First, we had significant human knowledge of the CT2 mHealth app and

RESTful API and maintain the MySQL database. Second, we had the source code available for:

the App, the RESTful API, and the MySQL database. This meant that we had the ability to do any

of the three architectural options, but we chose the Alternative architecture we were able to

maintain the processing and flow of the CT2 app through the RESTful API to the database. To

apply the Alternative architecture, two FHIR servers, as shown in Figure 5.5, are created: one for

the CT2 RESTful API (CT2.FHIR) and another one for the OpenEMR API (OpenEMR.FHIR).

These two FHIR servers are utilized for exchanging data between CT2 and OpenEMR via FSICC.

Moreover, from the CT2 App’s perspective, the signatures of the services of the CT2 RESTful APIs

remained unchanged, while from the CT2 API’s perspective, the interaction with the app and the

database remained unchanged. For example, when a user interacts with the CT2 App to view and

modify a concussion incident for a student, the process transitions from the user request to an API

call to a database access to a returned concussion incident. The only change in the process is at the

start when a user requests a concussion incident for the student and at the end when a user stores

the modified concussion incident for a student. In both situations, the FHIR server of the CT2

RESTful API intercepts and retrieves/stores the concussion incident to OpenEMR via FSICC.

129

When the incident is loaded from OpenEMR.FHIR via FSICC.FHIR, a temporary copy is made in

the CT2 database and all of the changes that occur via the RESTful API are made to the database

on that temporary copy. The final store sends the temporary copy through the CT2.FHIR and

FSICC.FHIR servers to OpenEMR.FHIR. We decided against the Radical Architecture since we

didn’t want to make the substantial changes that would be required to migrate all of the information

in the CT2 database to OpenEMR. This would have included registration information, permissions

(who can see/modify which concussion incidents), etc., that would have been difficult to directly

store in OpenEMR.

FSICC

C
T

2

R
E

S
T

fu
l

A
P

I

CT2

mHealth

App

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

CT2

App

Database

CT2.

FHIR

FSICC.FHIR

OpenEMR API

OpenEMR.

FHIR

Figure 5.5. Alternative Architecture for Integrating CT2 into OpenEMR via FSICC.

For case 2, the Basic architecture was chosen and reconfigured for the ShareMyHealth (SMH)

mHealth app as shown in Figure 5.6. For the SMH app, the source code is available for: the app,

the RESTful API, and the repository. Based on this, we are able to utilize any of the three

architectural options. However, we decide to apply the Basic architecture since we want to keep

the SMH’s architecture unchanged as much as we can. To apply the Basic architecture two FHIR

servers as shown in Figure 5.6 are created: one for the SMH repository (SMH.FHIR) and another

one for the MyGoogle API (MyGoogle.FHIR). These two FHIR servers, in addition to

130

FSICC.FHIR server, are utilized for exchanging data between SMH and MyGoogle via FSICC.

The Basic architecture also requires SMH to create two services into FHIR: SMH.FHIR.LOAD

which retrieves related data from MyGoogle, via FSICC.FHIR, in the FHIR format; and,

SMH.FHIR.STORE which grabs the data from the SMH repository, via an SMH FHIR service,

and sends them to MyGoogle via FSICC.FHIR. These two services are meant to be periodically

called to ensure that the repositories at both sides are updated. Note that interactions from both the

SMH via its RESTful API and the SMH RESTful API to the SMH repository are not changed The

Alternative and Radical architectures are not suitable for the same reason stated for case 1.

R
E

S
T

fu
l

A
P

I

SMH

C
a
ll

s
 t

o

R
E

S
T

fu
l
A

P
I

SMH

Repository

SMH.FHIR

FSICC FSICC.FHIR

MyGoogle API

MyGoogle.

FHIR

Figure 5.6. Basic Architecture for Integrating SMH into MyGoogle via FSICC.

5.4.2 Applying Integration Steps and Processes

In this section, we apply the guidelines of the Blueprint of Sections 5.2 and 5.3 to enumerate

the integration steps and processes for integration cases 1 and 2 from Section 5.4.1. For case 1 in

Section 5.4.1, we know that we need to integrate the CT2 mHelth app into the OpenEMR HIT

system via FSICC, see Figure 5.5, using two blueprints: the Alternative architecture to create

131

the CT2.FHIR server, and the HIT FHIR blueprint to create OpenEMR.FHIR server. First, the

steps of the Alternative architecture from Section 5.3 can be reformulated as:

1. Define the CT2 mHealth data items from the CT2 that need to be exchanged with

OpenEMR via FHIR to yield the Identified FHIR resources for CT2.

2. Design a CT2.FHIR server in front of the CT2 RESTful API.

3. Design CT2.FHIR CRUD services (CT2.FHIR.IFRCName.Create,

CT2.FHIR.IFRCName.Read, CT2.FHIR.IFRCName.Update, and

CT2.FHIR.IFRCName.Delete) in addition to CT2.FHIR.LOAD and CT2.FHIR.STORE

services that extend the CT2 RESTful API so that the exchange via FHIR can occur

with OpenEMR.

4. Employ the HIT FHIR Blueprint.

Then for the HIT FHIR blueprint, the two steps can be reformulated as:

1. Define the OpenEMR system data items that are needed to be exchanged to/from the

CT2 mHealth app via FHIR to yield the Identified FHIR resources for OpenEMR.

2. Design an OpenEMR.FHIR server in front of the OpenEMR system API.

The main focus for both of these blueprints is in Step 1 of each which focuses on the way to identify

the data items that need to be exchanged from each side via FHIR. This requires a designer to

understand the correspondence between two sets of information:

• The data items of the CT2 concussion MySQL database and the relevant FHIR resources

that can be chosen to store them.

• The data items of the OpenEMR MySQL database and the relevant FHIR resources that

can be chosen to store them.

132

The challenge is to consider these correspondences simultaneously to understand the way that the

data items of the concussion app can be mapped via FHIR resources to the data items of OpenEMR.

The end result is a set of Identified FHIR resources that serves as the common layer to facilitate

the exchange of data between CT2 and OpenEMR via FHIR services.

To begin this analysis process, in Step 1 of the Alternative Architecture Blueprint from Section

5.3, we start by identifying the four key data items of CT2 mHealth that are in four tables of the

MySQL Concussion database, namely: the Students table that tracks basic information on students

(e.g., demographics, school, etc.); the Incidents table that tracks information on the concussion

incident (e.g., when concussion happened, initial symptoms, etc.); the Incident_Locations table

that tracks where the concussion occurred (e.g., at school, at sports field, at home, etc.); and, the

Incident_Lingering_Symptoms table that tracks concussion symptoms observed in the days

following the concussion (e.g., dizzy, nauseous, etc.). These four tables are shown in Figure 5.7.

Figure 5.7. CT2 Data Items of Interest.

Given the understanding of this information, we can continue the analysis process with Step 2

of the Alternative Architecture Blueprint in Section 5.3 to determine the Identified FHIR

Students
student_id

first_name

middle_name

last_name

suffix

Email
student_number

school_id

incidents
incident_id
incident_reference_id
student_id
incident_location_id
incident_location_details
sport_id
contact_mechanism_id
impact_location_id
Removed
removed_by_user_id
tool_id
symptom_comments
Date
school_id
reporting_user_id
head_gear_usage
parents_notified
loss_conciousness

incident_locations

location_id
title
description

incident_lingering_symptoms
record_id
symptom_id

133

Resources that can be utilized to capture the information from Figure 5.7. To track concussion

data on a student, we can use the FHIR resources (Health Level 7, Fast Health Interoperable

Resources, 2016) as shown in Figure 5.8. The Identified FHIR Resources are: Patient, Condition,

Encounter, and Observation. Specifically: Patient to track demographic and other basic

information on patients (students that suffer concussions); Condition to track a medical condition,

in our case a concussion; Encounter to track the different times that changes are made, in our case,

as the concussion incident is tracked over time such as lingering symptoms; and Observation to

track symptoms and lingering symptoms of patients (students). Examining the MySQL tables of

the CT2 database in comparison to the aforementioned FHIR resources, we can establish a

correspondence or mapping between them as shown in Figure 5.9. In this mapping of CT2 database

MySQL tables  FHIR resources we have: students  Patient; incidents  Condition;

incident_lingering_symptoms  Observations; and incident_locations Encounter.

Observation

id
Encounter.id
Subject.id
Performer.id
issued
related.type
status
value

Patient
Id
name.given
name.given
name.family
name.suffix
Telecom
Identifier
managingOrganization

Condition
id
Code
Patient.reference
Encounter.id
Notes
category
Evidence.id
bodySite
clinicalStatus
Asserter
Abatement
evidence.detail
dateRecorded
identifier
Encounter.reference
Evidence.detail
Evidence.FormatComment
Evidence.hashCode

Encounter
Id
location
reason

Figure 5.8. FHIR Resources of Interest.

134

Students
student_id

first_name

middle_name

last_name

suffix

Email

student_number

school_id

incidents
incident_id
incident_reference_id
student_id
incident_location_id
incident_location_details
sport_id
contact_mechanism_id
impact_location_id
Removed
removed_by_user_id
tool_id
symptom_comments
Date
school_id
reporting_user_id
head_gear_usage
parents_notified
loss_conciousness

incident_locations
location_id
title
description

incident_lingering_symptoms
record_id
symptom_id

Patient
Id
name.given
name.given
name.family
name.suffix
Telecom
Identifier
managingOrganization

Condition
id
Code
Patient.reference
Encounter.id
Notes
category
Evidence.id
bodySite
clinicalStatus
Asserter
Abatement
evidence.detail
dateRecorded
identifier
Encounter.reference
Evidence.detail
Evidence.FormatComment
Evidence.hashCode

Encounter
Id
location
reason

Observation
id
value

Figure 5.9. Mapping from CT2 to/from FHIR.

Now, let’s turn the discussion to Steps 1 and 2 of the HIT FHIR Blueprint from Section 5.3 that

involves an analogous process to Figures 5.7, 5.8, and 5.9, with the data items of OpenEMR. Since

we have already arrived at the FHIR resources needed for mapping, Figure 5.8, we can reuse the

aforementioned Identified FHIR Resources to assist in the identification of the appropriate four

data items in OpenEMR in Figure 5.10, namely: the Patient_Data table that tracks patient (student)

demographic data; the Lists table that tracks issues related to medical problems, etc. (concussion

medical problem); the Form_Encourter table that tracks the event involved with the patient

visiting (student seeing nurse); and, the Procedure_Order_Code table that tracks different codes

associated with procedures. These four items correspond to the FHIR Resources as shown in

Figure 5.11. This mapping has: Patient_data  Patient; Lists  Condition; procedure_order_code

 Observations; and form_encounter Encounter.

135

Patient_data

Pid

Fname

Mname

Lname

Title

Email

Pubpid

referrerID

Lists
Id
Title
Pid
injury_type
Extrainfo
Activity
injury_grade
injury_part
Occurance
User
reinjury_id
Comments
Begdate
Destination
Referredby
Type
Classification
Diagnosis

form_encounter
id
facility
reason

procedure_order_code
procedure_order_id
procedure_order_seq

Figure 5.10. The OpenEMR Data Items of Interest.

Patient
Id
name.given
name.given
name.family
name.suffix
Telecom
Identifier
managingOrganization

Condition
id
Code
Patient.reference
Encounter.id
Notes
category
Evidence.id
bodySite
clinicalStatus
Asserter
Abatement
evidence.detail
dateRecorded
identifier
Encounter.reference
Evidence.detail
Evidence.FormatComment
Evidence.hashCode

Encounter
Id
location
reason

Observation
id
value

Patient_data

Pid

Fname

Mname

Lname

Title

Email

Pubpid

referrerID

Lists
Id
Title
Pid
injury_type
Extrainfo
Activity
injury_grade
injury_part
Occurance
User
reinjury_id
Comments
Begdate
Destination
Referredby
Type
Classification
Diagnosis

procedure_order_code
procedure_order_id
procedure_order_seq

form_encounter
id
facility
reason

Figure 5.11. Mapping from OpenEMR to/from FHIR.

The last step of the HIT FHIR Blueprint is the creation of the OpenEMR.FHIR server. As

described in the HIT FHIR Blueprint and based on the selected FHIR resources in the provisos

steps, we created a FHIR controller class which receives requests from the CT2 mHealth app, or a

third-party such as FSICC, and sends the request to the appropriate OpenEMR FHIR resource class

along with any parameters. We also created four OpenEMR Identified FHIR resources classes

(i.e., Patient, Condition, Observation, and Encounter) as shown in the bottom right of Figure 5.12.

For each OpenEMR FHIR resources classes, we defined: OpenEMR.FHIR.IFRCName.Create and

OpenEMR.FHIR.IFRCName.Read). The OpenEMR.FHIR.IFRCName.Create service receives an

instance of a FHIR resource that involves new data, of a specific class, converts the data into a

136

format that can be stored in the OpenEMR system, and sends the converted data to a create service

of the OpenEMR system API that stores the data into the OpenEMR database. The

OpenEMR.FHIR.IFRCName.Read service retrieves data from the OpenEMR database via a read

service of the OpenEMR system API, creates a new instance of the specific FHIR resource class,

and converts the retrieved data into a format that can be assigned to the identified OpenEMR FHIR

resource instance. Following that, this service populates the corresponding OpenEMR FHIR

resource instance with the converted data, and sends this FHIR resource instance to the CT2

mHealth app, or a third-part such as FSICC. This service is also designed to retrieve all of the

related data on the specific data item if there are no passed parameters.

Finally, the remaining step of the Alternative Architecture Blueprint in Section 5.3 is to

implement the CT2.FHIR server. As described in the Alternative Architecture Blueprint and based

on the selected FHIR resources, we created a FHIR controller class which receives requests from

the CT2.FHIR.LOAD and CT2.FHIR.STORE services; and sends the request to the appropriate

CT2 FHIR resource class along with any parameters. We also created four CT2 Identified FHIR

resources classes (i.e., Patient, Condition, Observation, and Encounter) at the top right of Figure

5.12 shows. For each of these CT2 FHIR resources classes, we created two main CRUD service,

CT2.FHIR.IFRCName.Create and CT2.FHIR.IFRCName.Read and CT2.FHIR.LOAD and

CT2.FHIR.STORE services. The CT2.FHIR.IFRCName.Create service receives an instance of a

FHIR resource with new data, converts the data into a format that can be stored in the CT2 database,

and sends the converted data to the CT2 RESTful API (a create service) which stores the data into

the CT2 database. The CT2.FHIR.IFRCName.Read service retrieves data from the CT2 database

via a CT2 RESTful API (a read service), creates a new instance of related CT2 FHIR resource class,

and converts the retrieved data into a format that can be assigned to the CT2 FHIR resource

137

instance. After that, the CT2.FHIR.IFRCName.Read populates the CT2 FHIR resource instance

with the converted data, and finally sends this FHIR resource instance to the request source. The

CT2.FHIR.IFRCName.Read service also retrieves all of the related data about specific data item

if there are no passed parameters. The CT2.FHIR.LOAD service takes an id of the queried

CT2.FHIR resource instance, retrieves the related data from the OpenEMR system via

OpenEMR.FHIR and FSICC.FHIR servers, and adds retrieved data into the CT2 database via

another CT2 FHIR service (i.e., the CT2.FHIR.IFRCName.Create service). Finally, the

CT2.FHIR.STORE service calls the CT2.FHIR.IFRCName.Read service to retrieve (in FHIR

format) all of the new added data in CT2 database. Then, the CT2.FHIR.STORE service simply

sends the retrieved data to “create” services of OpenEMR.FHIR, via the FSICC.FHIR server,

which adds the new data into the OpenEMR system.

OpenEMR

API

OpenEMR FHIR Server

FHIR Controller

Encounter

Resource

Patient

Resource

Condition

Resource

Observation

Resource

CT2 mHealth app

RESTful API

Encounter

Resource

Patient

Resource

Condition

Resource

Observation

Resource

FHIR Controller

CT2 FHIR Server

STORELOAD

FSICC FHIR Server
FHIR Controller

Observation

Resource
Patient

Resource

User

Resource

Encounter

Resource
Condition

Resource

SMH mHealth app

Repository

User

Resource

Patient

Resource

Observation

Resource

FHIR Controller

SMH FHIR Server

STORELOAD

MyGoogle

API

MyGoogle FHIR Server

FHIR Controller

User

Resource

Patient

Resource

Observation

Resource

Figure 5.12. Combined Result of the Two Blueprints.

138

From Section 5.4.1, we know that, for case 2, we need to integrate the SMH mHelth app into

the MyGoogle HIT system via FSICC, see Figure 5.6, using: the Basic architecture blueprint to

create the SMH.FHIR server, and the HIT FHIR blueprint to create MyGoogle.FHIR server.

First, the steps of the Basic architecture can be reformulated as:

1. Define the SMH mHealth data items from the SMH’s repository that need to be

exchanged with MyGoogle via FHIR to yield the Identified FHIR resources for SMH.

2. Design a SMH.FHIR server in front of the SMH repository that includes the two service

SMH.FHIR.LOAD and SMH.FHIR.STORE so that the exchange via FHIR can occur

with MyGoogle.

3. Employ the HIT FHIR Blueprint.

Then, for the HIT FHIR blueprint, the two steps can be reformulated as:

1. Define the MyGoogle system data items that are needed to be exchanged to/from the

SMH mHealth app via FHIR to yield the Identified FHIR resources for MyGoogle.

2. Design an MyGoogle.FHIR server in front of the MyGoogle system API.

Similar to case 1, we start by performing Step 1 of the Basic Architecture Blueprint. Specifically,

we identify the three key data items of SMH mHealth that are in three tables of the SMH repository,

namely: the Measurements table that tracks fitness data of each patient (e.g., height, weight, steps,

etc.); the Patients table that tracks basic information on patients (e.g., demographics, gender, etc.);

and, the Users table that holds information on SMH’s users (e.g., user_id, user_name, etc.). These

three tables are shown in Figure 5.13.

139

Patients
patient_id

first_name

middle_name

last_name

Email

Measurements
measure_id
measure_name
measure_type
value
date

Users

user_id
user_name
Password_hash

Figure 5.13. SMH Data Items of Interest.

Given the understanding of this information, we can continue the analysis process with Step 2

of the Basic Architecture Blueprint to determine the Identified FHIR Resources that can be utilized

to capture the information from Figure 5.13. To track measurement data on a patient we can use

the FHIR resources as shown in Figure 5.14: Observation, Patient, and User. Specifically:

Observation to track measurement of patients; Patient to track demographic and other basic

information on patients; and, User to maintain users’ data. Examining the tables of the SMH

repository in comparison to the aforementioned FHIR resources, we can establish a

correspondence or mapping between them as shown in Figure 5.15. In this mapping of SMH

repository tables  FHIR resources, we have: Measurements  Observation; Patients  Patient;

and Users  User.

Patient
Id

Name.given

Name.given

Name.family

Telecom

Observation
Id
Note
Type
Value
Issued

Users

Id
Name
Note

Figure 5.14. FHIR Resources of Interest.

140

Patient
Id

Name.given

Name.given

Name.family

Telecom

Observation
Id
Note
Type
Value
Issued

User

Id
Name
Note

Patients
patient_id

first_name

middle_name

last_name

Email

Measurements
measure_id
measure_name
measure_type
value
date

Users

user_id
user_name
Password_hash

Figure 5.15. Mapping from SMH to FHIR.

For the HIT FHIR Blueprint, we now discuss Steps 1 and 2 that are similar to the processes in

Figures 5.13, 5.14, and 5.15, with the data items of MyGoogle. Since we have already arrived at

the FHIR resources needed for mapping, Figure 5.14, we can reuse the aforementioned Identified

FHIR Resources to assist in the identification of the appropriate three data items in MyGoogle in

Figure 5.16, namely: the DataSources table that tracks fitness data of each patient (e.g., height,

weight, steps, etc.); the Patients table that tracks patient demographic data; and, the Users table

that holds about MyGoogle users. These three items correspond to the FHIR Resources as shown

in Figure 5.17. In the mapping of MyGoogle data items  FHIR resources we have: DataSources

 Observation; Patients  Patient; and Users  User.

Patients
p_id

f_name

m_name

l_name

Email

DataSources
datasource_id
datasource_name
datasource_type
value
date

Users

u_id
u_name
Psswrd_hash

Figure 5.16. MyGoogle Data Items of Interest.

Patient
Id

Name.given

Name.given

Name.family

Telecom

Observation
Id
Note
Type
Value
Issued

User

Id
Name
Note

Patients
p_id

f_name

m_name

l_name

Email

DataSources
datasource_id
datasource_name
datasource_type
value
date

Users

u_id
u_name
Psswrd_hash

Figure 5.17. Mapping from MyGoogle to FHIR.

141

The last step of the HIT FHIR Blueprint is the creation of the MyGoogle.FHIR server. As

described in the HIT FHIR Blueprint and based on the selected FHIR resources in the provisos

steps, we created a FHIR controller class which receives requests from the SMH mHealth app, or

a third-party such as FSICC, and sends the request to the appropriate MyGoogle FHIR resource

class along with any parameters. We also created three MyGoogle Identified FHIR resources

classes (i.e., Patient, Observation, and User) as shown in the bottom left of Figure 5.12. For each

of these MyGoogle FHIR resources classes, we defined: MyGoogle.FHIR.IFRCName.Create and

MyGoogle.FHIR.IFRCName.Read). The MyGoogle.FHIR.IFRCName.Create service receives an

instance of a FHIR resource that involves new data, of a specific class, converts the data into a

format that can be stored in MyGoogle system, and sends the converted data to a create service of

the MyGoogle system API that stores the data into the MyGoogle database. The

MyGoogle.FHIR.IFRCName.Read service retrieves data from the MyGoogle database via a read

service of MyGoogle system API, creates a new instance of the specific FHIR resource class, and

converts the retrieved data into a format that can be assigned to the identified MyGoogle FHIR

resource instance. Following that, this service populates the corresponding MyGoogle FHIR

resource instance with the converted data, and sends this FHIR resource instance to the SMH

mHealth app, or a third-part such as FSICC. This service is also designed to retrieve all of the

related data on the specific data item if there are no passed parameters.

Finally, the remaining step of the Basic Architecture Blueprint is to implement the SMH.FHIR

server. As described in the Basic Architecture Blueprint and based on the selected FHIR resources,

we created a FHIR controller class which receives requests from the SMH.FHIR.LOAD and

SMH.FHIR.STORE services and sends the request to the appropriate SMH FHIR resource class

along with any parameters. We also created three SMH Identified FHIR resources classes (i.e.,

142

Patient, Observation, and User) at the top left of Figure 5.12 shows. Then, we created the two

services: SMH.FHIR.LOAD and SMH.FHIR.STORE. The SMH.FHIR.LOAD service retrieves

all related data from the MyGoogle system via MyGoogle.FHIR and FSICC.FHIR servers, and

adds retrieved data into the SMH repository. Finally, the SMH.FHIR.STORE service retrieves, in

FHIR format, all of the new added data in SMH repository. Then, the SMH.FHIR.STORE service

simply sends the retrieved data to “create” services of MyGoogle.FHIR, via the FSICC.FHIR

server, which adds the new data into the MyGoogle system.

Note that the FSICC.FHIR, middle of Figure 5.12, has five resources: Observation, Patient,

Encounter, Condition, and User. These resources were selected as a result of FHIR resources

selection of both sides: CT2 and OpenEMR require Observation, Patient, Encounter, and Condition

FHIR resources on the right side of Figure 5.12; and, SMH and MyGoolge require Observation,

Patient, and User FHIR resources on the left side of Figure 5.12. Also note that the role of

FSICC.FHIR server simply is to send the FHIR instances back and forth between the associated

clients and systems. That is, between CT2 and OpenEMR FHIR servers on one side; and between

SMH and MyGoogle FHIR servers on the other side.

5.5 Related Work

This section reviews two efforts that illustrate FHIR design and implementation: enabling better

interoperability for healthcare (Kasthurirathne, Mamlin, Kumara, Grieve, & Biondich, 2015) and

applying FHIR in an integrated health monitoring system (Franz, Schuler, & Kraus, 2015). The

work in (Kasthurirathne, Mamlin, Kumara, Grieve, & Biondich, 2015) provided a new API module

143

for OpenMRS system that has been built using FHIR. The processes of designing and developing

the OpenMRS FHIR API included: design a framework that assists in adding FHIR-based API for

OpenMRS; select a third party FHIR library to implement FHIR resources creation and validation;

develop a FHIR-based API for the OpenMRS system; and, implement the search service of a

number of FHIR resources that are capable of retrieve data from the OpenMRS system. The

architecture of the presented FHIR module consists of two layers: the FHIR web layer which

mainly retrieves FHIR resources from the FHIR API layer and the FHIR API layer that basically

models and validates FHIR resources. The initial prototype of the FHIR controller interacted with

the Patient and Observation resources with a middle layer that transitions information to/from

OpenMRS. This effort is similar to our work on architectural blueprints guidelines as both works

presented steps to design and develop an integration framework in front of systems that

facilitates system interoperability. However, their effort was focus on the FHIR standard, and

as a result is limited to the healthcare domain and only highlighted the main steps of

implementing a HAPI FHIR API without providing a detailed discussion on such steps.

Furthermore, their effort presented an integration option, similar to our Radical Architecture

Blueprint, that extended OpenMRS system with FHIR API. In contrast to this effort, our

approach provided detailed steps and process of designing and implementing an integration

framework that can be applied to any integration framework of any domain including FHIR and

HAPI FHIR.

The work of (Franz, Schuler, & Kraus, 2015) presented an extension to a health monitoring

system using FHIR to enable interoperability between medical devices and HIT systems. The

health monitoring system consists of an aggregation manager module which is a mobile device

and a telehealth service center module which is a server. These two modules were extended by

144

adding components, which are implemented using FHIR, to enable their integration. The

aggregation manager module was extended with two services: FHIROBSMessageSender which

sends the measured data as Observation FHIR resource to the telehealth service center module;

and, FHIRDORMessageSender that sends DeviceObservationReport FHIR resource to the

telehealth service center module. The telehealth service center module was extended with two

services: OBSController and DORController which receive Observation and

DeviceObservationReport FHIR resources respectively from the aggregation manager module.

This effort is similar to our work on architectural blueprints guidelines as both works successfully

applied and implemented an integration framework to extend different systems and make such

systems more interoperable. However, this effort discussed only one integration option, similar to

our Alternative Architecture Blueprint, that was specific to the reported effort. In contrast, our

approach provided a generalizable integration framework that can be applied to any integration

framework of any domain including FHIR and HAPI FHIR.

145

Chapter 6

Global Security Policy Generation and Dynamic Enforcement for

FSICC

In this chapter, we discuss GSP (Global Security Policy) Generation and GAPI (Global API)

Generation and Global Security Policy and Global API Utilization and Security Enforcement which

was shown in the 4th and 5th horizontal boxes, respectively, in Figure 1.3 of Chapter 1. As

described earlier in Chapter 3, the global security policy of FSICC is generated by cloud

computing capability two, Local Security Policies Registration to Yield Global Security Policy, of

FSICC, that utilizes two components of FSICC: Security Policy Mapping, see the Security Policy

Mapping box of FSICC in Figure 1.1 form Chapter 1; and Global Security Policy, see the Global

Security Policy box of FSICC in Figure 1.1. Specifically, capability two of FSICC enables any

system, which corresponds to the Systems box in the Involved Parties component at the top of

Figure 1.2, to register the system’s security policy that can be any combination of RBAC, MAC,

and DAC, which corresponds to the Access Control Models component in Figure 1.2. For RBAC,

the system registers to provide: the defined roles, the defined services, the role-services

authorization list, the role hierarchy, the defined users, the user-role assignment list. For MAC,

the system registers to provide: the defined services along with a classification for each service;

and the defined users in which each user has a clearance, a read property and a write property.

Finally, for DAC, the system registers to provide: the role delegation list and the clearance

delegation list. In further support of this chapter, we utilize the Unified Cloud Computing

Access Control Model (UCCACM), from Chapter 4, which has a set of definitions for global

security policy generation and utilization (see Defns. 41-48 in Section 4.6). These definitions

ensure that such global security policy can control access to a set of global services that are

146

generated using one or more of integration architecture blueprints: Basic Architecture,

Alternative Architecture, or Radical Architecture from Chapter 5. In addition, from the

enforcement perspective to check whether applications are allowed to call particular services,

UCCACM has definitions for RBAC interceptors (see Defns. 50-52 in Section 4.7.1), MAC

interceptors (see Defns. 53-56 in Section 4.7.2), and DAC interceptors (see Defns. 57-60 in Section

4.7.3).

Based on this, this chapter has two main parts. The first part presents a set of algorithms for

generating the global security policy of FSICC; this partially addresses Contribution EC-C:

Security Mapping/Enforcement Algorithms and SSEP, from Section 1.5, by focusing on Security

Mapping/Enforcement Algorithms, this is represented by the Global Security Policy Generation

box of the GSP (Global Security Policy) Generation and GAPI (Global API) Generation horizontal

box in Figure 1.3 from Chapter 1. To support this, we present a set of algorithms to implement

the concepts of global security policy definition and mapping of services to/from mixed clients

and pure and mixed systems. These algorithms support: global RBAC generation, global MAC

generation, global DAC generation, and global policies combination. The second part introduces

and discusses three security interceptors for RBAC, MAC, and DAC (which are the

implementation of the UCCACM for the FSICC) via a number of checks and an algorithmic

approach for each interceptor; this addresses Contribution EC-D: Dynamic Enforcement via

Intercepting Process from Section 1.5, this is represented by the Security Enforcement via

Interceptors box of the GSP (Global Security Policy) and GAPI (Global API) Utilization and

Security Enforcement horizontal box in Figure 1.3. This is accomplished by presenting a set of

programmatic RBAC, MAC, and DAC interceptors, which are the implementation of the

definitions in Section 4.7 for UCCACM, that intercept any request to access FSICC’s global

147

services, that are generated using one or more of integration architecture blueprints from

Chapter 5. To support this, a number of security interceptors (i.e., RBAC Interceptor, MAC

Interceptor, and DAC Interceptor) are presented to enforce such global security policy on the

users’ access requests.

 In the remainder of this chapter, we discuss Global Security Policy Generation and Dynamic

Enforcement for FSICC in three sections. In Section 6.1, a set of security policy integration

algorithms are presented and discussed for: global RBAC generation, global MAC generation,

global DAC generation, and global policies combination. In Section 6.2, we demonstrate the

realization of UCCACM of FSICC in HAPI FHIR utilizing the healthcare scenario of Section 2.4

of Chapter 2 that involves the implementation of HAPI FHIR APIs and its server interceptor to

support UCCACM checks with three different algorithms to support three different HAPI FHIR

interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. Moreover, the interceptor

discussions are supported by two access scenarios. Section 6.3 presents and discusses related work

in both security policy integration and enforcing security policies on FHIR API. Note that the

work in this chapter has been published in (Baihan, M., et al., 2017).

6.1. Security Policy Integration Algorithms

To start this discussion, Figure 6.1 shows architecture for global security policy generation and

utilization (see Defns. 37-44 of Section 4.6). The global security policy generation process consists

of four main phases: generating global RBAC, see the RBAC Integration and Review & Correct

Role Names boxes in the middle of Figure 6.1, generating global MAC, see the MAC Integration

and Building Global MAC boxes in the middle of Figure 6.1, generating global DAC, see the DAC

Integration box in the middle of Figure 6.1, and global policies combination. Pure and mixed

systems (see Defn. 7 of Section 4.2) at the bottom of Figure 6.1 and mixed clients (see Defn. 6 of

148

Section 4.2) at the top left of Figure 6.1 use the global security policy generation process to add

their security policies and services into the FSICC as indicated by the dash lines in the figure. Pure

clients and mixed servers are free to utilize the global security policy to call authorized services as

indicated by the solid lines in Figure 6.1. The generating global RBAC phase has two tasks. First,

RBAC integration takes all of the RBAC policies from pure and mixed systems and mixed clients

(dashed lines) and through the RBAC Integration box combines them into one RBAC policy.

Second, review and correct role names, which corrects and updates the name of a number of global

roles through the RBAC Integration box to the Review and Correct Role Names box. Using input

from the FSICC’s security engineer in conjunction with the two tasks, then the global RBAC

instance, the Global RBAC Instance cylinder in the middle of Figure 6.1 is generated.

The generating global MAC phase also has two tasks. First, MAC Integration requires human

interaction to map sensitivity levels of pure and mixed systems and mixed clients (dashed lines) via

the MAC Integration box in Figure 6.1 to the sensitivity levels of the global MAC. Second, global

MAC is designed and constructed, in which users and services of the system are utilized to generate

the global MAC in which users’ clearances and services’ classifications are assigned based on the

global sensitivity levels (solid line) from the MAC Integration box to the Building Global MAC

box. Using input from the FSICC’s security engineer, the global MAC instance via the Global

MAC Instance cylinder in the middle of Figure 6.1 is generated. The generating global DAC phase

has one main task. DAC integration takes all of the DAC policies from pure and mixed systems and

mixed clients (dashed lines) to the DAC Integration box in Figure 6.1 and combines them into one

DAC policy and then generates the global DAC instance via the Global DAC Instance cylinder in

the middle of Figure 6.1. Finally, in the last phase, the Combine Global Security Policies Instances

box in the middle of Figure 6.1 combines the generated global RBAC instance, global MAC

149

instance, and global DAC instance into one global security policy model instance, in which the data

updating and retrieving actions are also controlled. To complete the process, the security engineer

of FSICC insures that all of the policy requirements are define that are capable of controlling the

services of pure and mixed clients and mixed systems via the solid lines to the Global Security

Policy Model Instance cylinder in Figure 6.1.

DAC

System 1

….

MAC

RBAC

MAC

System 2

RBAC

DAC

System M

MAC

RBAC

RBAC
Integration

MAC
Integration

DAC
Integration

Review &
Correct Role

Names

Building
Global MAC

Combine
Global

Security
Policies

Instances

Client 1 Client 2

….
MAC

RBAC

DAC

RBAC

Client N

Global
RBAC

Instance

Global
MAC

Instance

Global
DAC

Instance

Global
Security

Policy Model
Instance

Legend
----- register security
___ utilize security

Pure System

Pure System

Mixed System

Mixed ClientMixed Client Pure Client

Figure 6.1. An Architecture for Global Security Policy Generation & Utilization

The remainder of this section presents and discusses a set of algorithms and human process for

the Global Security Policy Generation in four parts. In Section 6.1.1, we discuss the way that the

global RBAC generation phase processes each RBAC policy from each pure or mixed system or

mixed client, and generates the global RBAC policy. In Section 6.1.2, the global MAC generation

phase is presented to show the way that each MAC policy from each pure or mixed system or mixed

150

client is processed to generate the global MAC policy. Section 6.1.3 explains the way that the global

DAC generation phase uses to process each DAC policy from each pure or mixed system or mixed

client and to generate the global DAC policy. Finally, in Section 6.1.4, we describe the way that the

global policies combination phase uses the global RBAC policy, global MAC policy, and global

DAC policy to build the global security policy. Note that in the rest of this section we use the term

“system” to indicate pure systems, mixed systems (services registering part) and mixed clients

(services registering part), and the term “client” to indicate pure clients, mixed clients (services

utilization part) and mixed systems (services utilization part).

6.1.1 Global RBAC Generation

The Global RBAC (GRBAC) Generation phase is divided into two tasks, each of which consists

of one or more algorithms: RBAC Integration in Figure 6.1; and, Review and Correct Role Names

in Figure 6.1. First, the RBAC Integration task, integrates any number of systems’ RBAC policies

into one global RBAC policy that can be utilized to restrict access to services of all of the

participated systems, where the presented approach makes policy integration decisions based on

permissions similarity. Since each system may define an RBAC policy against a common set of

services (the integration layer e.g., FHIR in HITs case), the similarity between two systems’ RBAC

policies, or between a system’s RBAC policy and a global RBAC policy, can be determined based

on the similarity of the permissions. For the purposes of our examples, assume that we have two

roles Srs and Grg where Srs ϵ {
S

i

RS ,
C

i

RC } is a role of a pure or mixed system or a mixed client and

Grg ϵ
G

i

RG is a global role. Further, assume that there are two corresponding role permission sets

Srpss ϵ { i

RPSS
S , i

RPSC
C } and Grpsg ϵ i

RRPSG
G . For example, say Srs authorized to permissions Srpss

151

={(Patient, READ), (Patient, CREATE)}, and Grg authorized to permissions Grpss={(Patient,

READ), (Patient, CREATE), (Patient, UPDATE)}.

 When comparing Srs and Grg , our focus is on comparing permissions their respective Srpss and

Grpsg ; in this case, there are common permission {(Patient, READ), (Patient, CREATE)}. Note

that, in permissions comparison, we omit the base URL from a service URI and focus only on the

Endpoint (i.e., permission name) and Method (i.e., access method), since the permission name and

access method of the service are the confidential part that need to be protected. Based on this, the

comparison between any two role permission sets (Srpss and Grpsg) have one of the five results:

(1) Srpss ⊃ Grpsg which means all of the permissions in Grpsg are in Srpss which in the above

example is false; (2) Grpsg ⊃ Srpss which means all of the permissions in Srpss are in Grpsg which

in the above example is true; (3) Srpss ∩ Grpsg ≠ ∅ (or Srpss and Grpsg overlap) which means both

role permission sets have common permissions but no role permission set contains the other; (4)

Srpss = Grpsg (or Srpss and Grpsg are equivalent) which means both role permission sets have the

same set of permissions; or (5) Srpss ∩ Grpsg = ∅ (Srpss and Grpsg are not related) which means

there is no common permissions between Srpss and Grpsg. Based on the assumptions above, the

RBAC Integration task utilizes four algorithms: Global-RBAC, Initialize_GRBAC,

IntegrateRBAC, and AddBasicParents. These algorithms utilize a set of primitive functions in

Table 6.1 that simplify the explanation of the aforementioned four algorithms. Table 6.1 has two

columns: Function Signature, that has a name and a set of parameters for each function; and

Description, that briefly explains each function. We highlight key functions. The first three

functions: returns the parent roles of a given role, sets a parent role, and returns permissions of a

role (i.e., Srpss or Grpsg). The next function, compareRolesPerm, does the comparison between a

system role (Srs) and a global role (Grg) using two factors of each role: role permission sets (Srpss

152

and Grpsg), and inherited role permission sets from all of the parent roles (inhSrpss and inhGrpsg).

The mapRoles function creates new entries in the global policy regarding the mapping of system

roles to global roles.

Table 6.1. Primitive Functions Utilized by the Algorithms for Global RBAC Generation

Function signature Description
getParents(RH, r) Returns all of the parent roles of the role r according to the given role hierarchy RH

addParent(RH, pr , r) Defines the role pr as a parent role of the role r in the given role hierarchy RH

dirPset(r) Returns a list of permissions directly authorized to the role r

compareRolesPerm(Grpsg ,
Srpss , inhGrpsg , inhSrpss)

Returns one of the following:
- not related (if simCount(Grpsg , Srpss) is 0)
- equivalent (if simCount(Grpsg , Srpss) equals both Grpsg.size & Srpss.size and
simCount(inhGrpsg, inhSrpss) equals both inhGrpsg.size & inhSrpss.size)
- contains GR (if simCount(Grpsg , Srpss) equals Grpsg.size but less than Srpss.size and
inhGrpsg.size is 0)
- GR contains (if simCount(Grpsg , Srpss) equals Srpss.size but less than Grpsg.size and
inhSrpss.size is 0)
- overlap (if simCount(Grpsg , Srpss) is less than both Grpsg.size & Srpss.size but > 0 or
simCount(Grpsg , Srpss) equals both Grpsg.size and Srpss.size and both inhGrpsg.size and
inhSrpss.size > 0)

mapRoles(Grg, Srs) Adds all of the users in users(Srs) into users(Grg), and

adds a new entry (Grg, Srs , Srs.system name) to the role mapping list

users(r) Returns all of the users assigned to role r

createGlobalRole(roleName) Creates a new global role s.t. the role name = roleName; if roleName exists use roleName_X

(where X= number of Roles with same name +1)

comPset(r1, r2) Returns a list of common permissions between Pset(r1) and Pset(r2)

uncomPset(r1, r2) Returns a list of permissions exist in Pset(r1) but not in Pset(r2)

removePer(perList , r) Removes all of the permissions in perList from Pset(r)

addPer(perList , r) Adds all of the permissions in perList into Pset(r)

getMappedGRole(global RH,
Srs)

Returns the global role associated with the given system role Srs

AllPset(r) Returns a list of all of the permissions (directly and by inheritance) authorized to the role r

inherPset(RH, r) Returns a list of by inheritance permissions authorized to the role r according to the given role
hierarchy RH

exist(Srs) Returns true if the role mapping list contains the entry (*, Srs , Srs.system name), where * means
for any Grg

notRelatedList.add(Grg , Srs) Add an entry (Grg , Srs) that means these two roles are unrelated

notRelatedList.cleare () Removes all of the Entries

The Global-RBAC algorithm in Figure 6.2 is for generating the entire GRBAC policy for all of

the systems in FSICC, and takes as input a set of m systems’ RBAC policies (SRBAC1, SRBAC2,

.. SRBACm), where m is the number of the participated systems, and initializes the global RBAC

policy (GRBAC) using SRBAC1, line 1 in Figure 6.2. Note that, SRBAC1 is arbitrarily chosen from

153

the set of systems RBAC policies. The Global-RBAC algorithm then iterates (lines 2-3) through

RBAC policies of the remaining systems, SRBAC2 to SRBACm, by integrating one system’s RBAC

policy at a time with the previously computed GRBAC. Finally, the Global-RBAC algorithm

returns the final GRBAC, combined Global RBAC policy constructed from all of the constituent

systems of FSICC, line 4 in Figure 6.2. Moreover, as Figure 6.2 shows, the Global-RBAC algorithm

utilizes the Initialize_GRBAC and IntegrateRBAC algorithms.

Global-RBAC

Input: set of m Systems RBAC (SRBAC1, SRBAC2, .. , SRBACm)

Output: Global RBAC (GRBAC)

1. GRBAC ← Initialize_GRBAC(SRBAC1)

2. for i ← 2 to m
3. GRBAC ← IntegrateRBAC(GRBAC , SRBACi)
4. return(GRBAC)

Figure 6.2. The Global-RBAC Algorithm

The Initialize_GRBAC algorithm in Figure 6.3 is for initializing the GRBAC policy to generate

the initial state of a global-system role mapping list, and receives SRBAC1 and performs three main

steps. Step 1 (line 1) copies roles (Srs), users (Sus), permissions (Sscs), role-permission

authorizations (Srpss), user-role assignments (Surass), and role hierarchy (Srhs), see Defn. 19 of

Section 4.3, from SRBAC1 to the GRBAC. Step 2 (lines 2-3) generates a global-system role

mapping list by mapping each global role with the original system role. Step 3 (lines 4-6) creates

a new global role that has no permissions or users (i.e., RootRole) to be the parent role for each

global role with no parents. Finally, the initialized GRBAC is returned in line 7.

Initialize_GRBAC

Input: System RBAC (SRBAC)

Output: Global RBAC (GRBAC)

1. GRBAC ← {SRBAC[Srs, Sus, Sscs, Srpss, Surass, Srhs]}

2. for each Grg ∈ GRBAC and each Srs ∈ SRBAC

3. mapRoles(Grg, Srs)

4. RootRole ← createGlobalRole(RootRole)

5. for each Grg ∈ GRBAC that has no parents

154

6. addParent(global RH , RootRole , Grg)

7. return(GRBAC)

Figure 6.3. The Initialize_GRBAC Algorithm

The IntegrateRBAC algorithm in Figure 6.4 is for combining the current GRBAC policy with a

new system’s RBAC (SRBAC) policy, and receives SRBAC and the current GRBAC and performs

two nested loops. The first loop in line 1 iterates through each system role (Srs) in SRBAC, starting

with each Srs with no parents, then with one parent, and so on, until each Srs reaches the bottom of

the system role hierarchy. The second loop in line 4 iterates through each global role (Grg) in

GRBAC, except the RootRole, starting with each Grg that only has the RootRole as its parent, then

with one parent other than the RootRole, and so on, until each Grg reaches the bottom of the global

role hierarchy. Then, in line 7, each Srs and Grg are compared based on two factors of each role:

role permission sets (Srpss and Grpsg), and inherited role permission sets from all of the parent roles

(inhSrpss and inhGrpsg), utilizing the compareRolesPerm primitive function in Table 6.1 that

returns: equivalent, Grpsg ⊃ Srpss, Srpss ⊃ Grpsg, overlap, or not related as explained by the

compareRolesPerm function in Table 6.1. Note that simCount, which is utilized in the description

of the compareRolesPerm function in Table 6.1, is the similarity counter that is initiated to 0 and is

incremented each time a global permission and system permission are equal. There are five

comparison possibilities:

• If the comparison result is “equivalent”, one step is performed: mapping Grg with Srs,

lines 8-9 in Figure 6.4.

• If the comparison result is “Grpsg ⊃ Srpss”, six steps are performed: creating a new global

role (Grg_New); the common permissions between Grpsg and Srpss are removed from

Grg and added to Grg_New; adding Grg_New as a parent of Grg; adding one or more

155

parents to Grg_New utilizing the AddBasicParents algorithm in Figure 6.5; and, mapping

Grg_New with Srs, lines 10-16 in Figure 6.4.

IntegrateRBAC

Input: System RBAC (SRBAC) & current Global RBAC (GRBAC)

Output: Global RBAC (GRBAC)

1. for each Srs ∈ SRBAC

2. Srpss ← dirPset(Srs)

3. inhSrpss ← inherPset(system RH, Srs)

4. for each Grg ∈ GRBAC except RootRole

5. Grpsg ← dirPset(Grg)

6. inhGrpsg ← inherPset(global RH, Grg)

7. res ← compareRolesPerm(Grpss , Srpss, inhGrpsg, inhSrpss)

8. If(res==equivalent)

9. mapRoles(Grg, Srs)

10. Else If(res== Grpsg ⊃ Srpss)

11. Grg_new= createGlobalRole(Srs.name)

12. removePer(comPset(Grg, Srs) , Grg)

13. addPer(comPset(Grg, Srs) , Grg_new)

14. addParent(global RH , Grg_new , Grg)

15. AddBasicParents(Srs , Grg_new)

16. mapRoles(Grg_new, Srs)

17. Else If(res== Srpss ⊃ Grpsg)

18. If(!exist(Srs))

19. Grg_new= createGlobalRole(Srs.name)

20. addPer(uncomPset(Srs, Grg) , Grg_new)

21. removePer(comPset(Grg, Srs) , Srs)

22. addParent(global RH , Grg , Grg_new)

23. AddBasicParents(Srs , Grg_new)

24. mapRoles(Grg_new, Srs)

25. Else

26. removePer(comPset(Grg, Srs) , Grg_new)

27. removePer(comPset(Grg, Srs) , Srs)

28. addParent(global RH , Grg , Grg_new)

29. Else If(res==overlap)

30. Grg_new_2= createGlobalRole(NEW_ROLE)

31. addPer(comPset(Grg, Srs) , Grg_new_2)

32. removePer(comPset(Grg, Srs) , Grg)

33. addParent(global RH , Grg_new_2 , Grg)

34. addParent(global RH , RootRole , Grg_new_2)

35. If(!exist(Srs))

36. Grg_new= createGlobalRole(Srs.name)

37. addPer(uncomPset(Srs, Grg) , Grg_new)

38. removePer(comPset(Grg, Srs) , Srs)

39. addParent(global RH , Grg_new_2 , Grg_new)

40. AddBasicParents(Srs , Grg_new)

41. mapRoles(Grg_new, Srs)

42. Else

43. removePer(comPset(Grg, Srs) , Grg_new)

44. removePer(comPset(Grg, Srs) , Srs)

45. addParent(global RH , Grg_new_2 , Grg_new)

46. Else If(res==not related)

47. notRelatedList.add(Grg , Srs)

48. If(Srs is not related to any Grg)

49. Grg_new = createGlobalRole(Srs.name)

50. addPer(Pset(Srs) , Grg_new)

156

51. AddBasicParents(Srs , Grg_new)

52. mapRoles(Grg_new, Srs)

53. return(GRBAC)

Figure 6.4. The IntegrateRBAC Algorithm

• If the comparison result is “Srpss ⊃ Grpsg”, there are two cases. In the first case, Srs is

not already added to the global role hierarchy, so six steps are performed: creating a new

global role (Grg_New); the common permissions between Grpsg and Srpss are removed

from Srs; the uncommon permissions between Grpsg and Srpss are added to Grg_New;

adding Grg as a parent of Grg_New; adding one or more parents to Grg_New utilizing the

AddBasicParents algorithm in Figure 6.5; and mapping Grg_New with Srs, lines 18-24

in Figure 6.4. In the second case, Srs is already added to the global role hierarchy, so

three steps are performed: the common permissions between Grpsg and Srpss are

removed from Srs and Grg_New; and adding Grg as a parent of Grg_New, lines 25-28 in

Figure 6.4.

• If the comparison result is “overlap”, the algorithm starts with five steps: creating a new

global role (Grg_New_2); the common permissions between Grpsg and Srpss are

removed from Grg and added to Grg_New_2; adding RootRole as a parent of

Grg_New_2; and adding Grg_New_2 as a parent of Grg, lines 29-34 in Figure 6.4. Then

the algorithm applies similar steps as in the “Srpss ⊃ Grpsg” case, except that Grg_New_2

(instead of Grg) is added as a parent of Grg_New, lines 35-45 in Figure 6.4.

• If the result of all of the comparisons between Srpss and all of the Grpsg is “not related”,

four steps are performed: creating a new global role (Grg_New); adding the permission

set of Srs to Grg_New; adding one or more parents to Grg_New utilizing the

AddBasicParents algorithm in Figure 6.5; and mapping Grg_New with Srs, lines 48-52

in Figure 6.4.

157

Finally, the IntegrateRBAC algorithm returns the resulted GRBAC, line 53 in Figure 6.4. Moreover,

the AddBasicParents algorithm in Figure 6.5, that is utilized extensively by the IntegrateRBAC

algorithm, is for adding a set of parent roles to a specific role, and receives a system role (Srs) and

a new global role (Grg_New). Then, if Srs has no parents, the RootRole is added as a parent of

Grg_New. However, if Srs has one or more parents, for each parent of Srs, the associated Grg is

retrieved and added as a parent of Grg_New. The Global-RBAC algorithm runs in polynomial time

and has a worst-case complexity of O(m|P|), where m is the number of the participated systems and

|P| is the total number of permissions from all of the systems RBAC’ policies. That is, the Global-

RBAC algorithm visits each RBAC of each system once in which each permission is compared

once.

AddBasicParents

Input: a system role (Srs), and a new global role (Grg_new)

1. parentList=getParents(system RH, Srs)

2. If(parentList==Null)

3. addParent(global RH , RootRole , Grg_new)

4. Else

5. for each prnt ∈ parentList

6. gPrnt=getMappedGRole(global RH, prnt)

7. addParent(global RH , gPrnt, Grg_new)

Figure 6.5. The AddBasicParents Algorithm

 The second task of the global RBAC generation phase is Review and Correct Role Names.

The main purpose of this task is to address two issues that the generated global RBAC policy may

have as a result of using the algorithms in Figures 6.2 to 6.5. Issue 1 can arise when a system role

and global role comparison is “overlap” can the automatically created new role name is not real.

Issue 2 can arise when two different Global roles are generated with very similar names but with

dramatically different permissions. Specifically, when the IntegrateRBAC algorithm compares

each global role Grg to each system role Srs, in which the comparison result is “overlap”, a new

global role named “NEW_ROLE” is created, clearly this is not a real role name (issue 1). Moreover,

158

when the IntegrateRBAC algorithm processes all of the comparison cases, except the “equivalent”

case, a new global role is created in which its name is copied from a system role Srs followed by a

number X, where X is 1 plus the number of global roles that share a similar role name with Srs.

Based on this, the IntegrateRBAC algorithm may generate a GRBAC that has two global roles that

have a similar role name but are authorized to different sets of permissions; this is not a desirable

situation (issue 2). For example, assume that the GRBAC had a global role named “Patient” that is

authorized to {(Patient, READ), (Patient, CREATE)}, and the IntegrateRBAC algorithm is about

to create a new global role named “Patient” that is authorized to {(Observation, READ),

(Observation, CREATE)}. In this case, the IntegrateRBAC algorithm will create a new global role

named “Patient_2”, note that the number 2 here came from 1+ number of global roles that share a

similar role name with “Patient” which is 1, and hence the GRBAC now has two global roles:

“Patient” with permissions {(Patient, READ), (Patient, CREATE)}, and “Patient_2” with

permissions {(Observation, READ), (Observation, CREATE)}. Our approach to solve not a real

role name (issue 1) and two global roles with similar role name and radically different permissions

(issue 2) is through the Review and Correct Role Names task, which has two steps. In the first step,

the security engineer of FSICC reviews and suggests a name for each of two conflicting global

roles, based on the authorized permission. The two new roles are generated as described in issue

1 or 2 and a name list of corrected global roles in the form of (global role ID, corrected name) is

also generated. In the second step, the security engineer of FSICC sends the name list of corrected

global roles to the Update Global Roles algorithm, as shown in Figure 6.6. The Update Global Roles

algorithm iterates through the name list of corrected global roles and for each global role Grg_U in

the list, the algorithm finds a global role Grg in GRBAC in which the id of both entries is equal.

Then, the algorithm updates the name of the global role Grg to be the name of the corrected global

159

role Grg_U and finally returns the updated global RBAC policy GRBAC, see lines 1-4 of Figure

6.6.

Update Global Roles

Input: Global Roles List (GRL) & current Global RBAC (GRBAC)

Output: Global RBAC (GRBAC)

1. for each Grg_U ∈ GRL

2. find Grg ∈ GRBAC s.t. Grg.id = Grg_U.id
3. Grg.name = Grg_U.name
4. return(GRBAC)

Figure 6.6. The Update Global Roles Algorithm

6.1.2 Global MAC Generation

The Global MAC (GMAC) Generation phase is divided into two tasks in Figure 6.1: MAC

Integration and Building Global MAC. The MAC Integration task is conducted based on the

assumption that the five sensitivity levels, introduced in Section 4.4, (0-Public Information, 1-Basic

Sensitive Information, 2-Sensitive Information Summary, 3-Sensitive Information Details, and 4-

Very Sensitive Information), are available to each system to classify their data and to assign each

user a clearance. This can be useful in a complex domain such as healthcare all of the five levels

are expected to be utilized due to the fact that healthcare data is complex, while in other domain

such as education only a subset of the five sensitivity levels may be needed to classify data in that

domain. However, although all of the participating systems are using the same set of sensitivity

levels, two systems may have different semantic and usages of each sensitivity level. To overcome

this issue, the presented sensitivity levels mapping step can be utilized. That is, this step is a human

interaction between the security engineer of FSICC and the security engineers of participating

systems to map each system sensitivity levels to the global sensitivity levels so that one set of

sensitivity levels (the global sensitivity levels) can be utilized to: assign each service from each

system a classification; and assign each user from each system a clearance, as we explain in the

160

second task below. Note that the semantics of the global sensitivity levels is based on the sensitivity

levels of the first participating system. The output of this task is a sensitivity levels mapping list in

which each entry in the list has the following format {a global sensitivity level, a system sensitivity

level, system name}.

Second, based on the sensitivity levels mapping list that is generated in the MAC Integration

task, in the Building Global MAC task, the global MAC, GMAC, is generated utilizing users and

services from each participating system in which users’ clearances and services’ classifications are

assigned based on the global sensitivity levels in which the read/write properties of each user are

remain unchanged. To perform this task, the security engineer of FSICC needs to send the

sensitivity levels mapping list to the global MAC algorithm, see Figure 6.7, that utilizes a set of

primitive functions in Table 6.2 to generate the global MAC policy. These primitive functions

simplify the explanation of the global MAC algorithm. Table 6.2 has two columns: Function

Signature, that has a name and a set of parameters for each function; and Description, that briefly

explains each function. The global MAC algorithm takes as input: the sensitivity levels mapping

list (SLML) and a set of m MAC policies from each participating system. The algorithm goes

through each MAC policy of each system to add users and services of that MAC policy. First, in

lines 2-6, the first loop iterates through each user of each system MAC policy to: find the global

clearance that is associated with the user system’s clearance; retrieve the read and write properties;

and, add the user into the global MAC policy as a global user. Second, in lines 7-9, the second loop

iterates through each service of each system MAC policy to: find the global classification that is

associated with the service system’s clearance; and, add the service into the global MAC policy as

a global service. Third, the algorithm returns the GMAC. The global MAC algorithm runs in linear

161

time and has a worst-case complexity of O(m), where m is the number of the participated systems.

That is, the global MAC algorithm visits each MAC of each system once.

Global-MAC

Input: set of m Systems MAC (SMAC1, SMAC2, .. , SMACm) and

 sensitivity levels mapping list (SLML)

Output: Global MAC (GMAC)

1. for i ← 1 to m
2. for each user u in SMACi[Sus]
3. u.gCLR=globalClearance(SLML, u.CLR, SMACi.Name)

4. u.gRP= u.RP

5. u.gWP= u.WP

6. addUser(GMAC, u)

7. for each service s in SMACi[Sscs]
8. s.gCLS=globalClassification(SLML, s.CLS, SMACi.Name)

9. addService(GMAC, s)

10. return(GMAC)

Figure 6.7. The Global-MAC Algorithm

Table 6.2. Primitive Functions Utilized by the Algorithms for Global MAC Generation

Function signature Description
globalClearance(SLML, u.CLR, SMACi.Name) Returns a global sensitivity level in SLML that is mapped to u.CLR of the

SMACi.Name system

globalClassification(SLML, s.CLS, SMACi.Name) Returns a global sensitivity level in SLML that is mapped to s.CLS of the
SMACi.Name system

addUser(GMAC, u) Adds the user u to the global MAC

addService(GMAC, s) Adds the service s to the global MAC

6.1.3 Global DAC Generation

 The Global DAC (GDAC) Generation phase has one main task and one algorithm, DAC

Integration in Figure 6.1. This task takes all of the DAC policies from each system and combines

them into one global DAC policy. The DAC Integration task is performed through the global DAC

algorithm, see Figure 6.8, that utilizes a set of primitive functions in Table 6.3 to generate the global

DAC policy. These primitive functions simplify the explanation of the global DAC algorithm. Table

6.3 has two columns: Function Signature, that has a name and a set of parameters for each function;

and Description, that briefly explains each function. The global DAC algorithm takes as input: the

global RBAC, the global MAC, and a set of m DAC policies from each participating system. The

162

algorithm iterates through each DAC policy of each system to retrieve and add role and/or clearance

delegations into the global DAC policy. First, in lines 2-4, the first loop iterates through each role

delegation rd of each system DAC policy to: find the global IDs of delegator user, delegated user,

and delegated role using the getGobalIDs primitive function in Table 6.3; and, add a new role

delegation into the global DAC policy using the retrieved global IDs. Next, in lines 5-7, the second

loop iterates through each clearance delegation cd of each system DAC policy to: find the global

IDs of delegator user, delegated user, and delegated clearance using the getGobalIDs primitive

function; and, add a new clearance delegation into the global DAC policy using the retrieved global

IDs. Finally, the algorithm returns the global DAC policy. The global DAC algorithm runs in

polynomial time and has a worst-case complexity of O(m|d|), where m is the number of the

participated systems and |d| is the total number of all of the role and clearance delegations from all

of the systems DAC’s policies. That is, the global DAC algorithm visits each DAC of each system

once.

Global-DAC

Input: set of m Systems DAC (SDAC1, SDAC2, .. , SDACm),

 GMAC, and GRBAC

Output: Global DAC (GDAC)

1. for i ← 1 to m
2. for each role delegation rd in SDACi[Sdss]
3. global_rd =getGlobalIDs(rd)

4. addGlobalDel(GDAC, global_rd)

5. for each clearance delegation cd in SDACi[Sdss]
6. global_cd =getGlobalIDs(cd)

7. addGlobalDel (GDAC, global_cd)

8. return(GDAC)

Figure 6.8. The Global-DAC Algorithm

Table 6.3. Primitive Functions Utilized by the Algorithms for Global DAC Generation

Function signature Description
getGlobalIDs(rd/cd) Returns global IDs of delegator, delegated, and role/sensitivity level

addGlobalDel(GDAC, global_rd/cd) Adds a global role/clearance delegation to global DAC

163

6.1.4 Global Policies Combination

 The results from the algorithms in Sections 6.1.1-6.1.3 serve as input to the combine global

security policies instances phase that is divided into two tasks: combining the generated global

RBAC instance, global MAC instance, and global DAC instance into one global security policy

model instance which can be utilized by any interested clients to control their own services; and,

controlling the way that data that global services can access are read and/or writtenn. The first task

generates one policy document that concatenates all of the separate policies (i.e., GRBAC, GMAC,

and GDAC) into one Global policy. The second task is intended to restrict clients at the data level.

That is, while the global RBAC, MAC and DAC policies control who can access what set of global

services, the controlling data task is intended to control what set of data, that global services can

access and what each user can read/write. To control reading data actions, there are three read data

access types that the security engineer of FSICC needs to choose from:

1. Open to All (default): This read data access type is for the case where two or more

users, from different systems, who are assigned to the same global role can read any data

that the global role can retrieve.

2. Open to Same System Users: This read data access type is for the case where a user from

system X who is assigned to a global role can only read a subset of data (only data

from system X) that the global role can retrieve.

3. Customize Data Read: This read data access type is for the case in which for each global

service, the security engineer of FSICC needs to specify which systems that their users can

read the retrieved data.

 Moreover, to control writing data actions, there is one write data access type:

164

1. Open to Same System Users: This write data access type is for the case where a user from

system X who is assigned to a global role can only write data (only data from system X)

that the global role can write.

The output of the global policies combination step is a single unified security policy document that

has global RBAC, global MAC, and global DAC coupled with one read data access type and one

write data access type.

6.2 HAPI FHIR Implementation and RBAC/MAC/DAC Interceptors

In this section, we demonstrate the realization of UCCACM of FSICC via a HAPI FHIR

Implementation and the underlying RBAC/MAC/DAC Interceptors. These are represented by the

Security Enforcement via the Interceptors box of the GSP and GAPI Utilization and the Security

Enforcement horizontal box in Figure 1.3 from Chapter 1, utilizing the healthcare scenario of

Section 2.4 of Chapter 2. This leads to that the implementation of HAPI FHIR APIs and its server

interceptor to support UCCACM checks with three different algorithms to support three different

HAPI FHIR interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. This section

involves the implementation of FHIR APIs and the customization and adaptation of the HAPI

server interceptor to support UCCACM checks: Defns. 50 and 51 that determine if a service is

authorized by a user/role pair; Defn. 55 that determines if a service is authorized by a

user/clearance pair; and Defns. 57, 58, and 59 that determine if a service is authorized by a

user/(delegated_role/delegated_service /delegated_clearance) pair (see Section 4.7). Three

integration layers were implemented utilizing the HAPI FHIR reference library (HAPI community,

2016), namely: Clients, top of Figure 1.1 and Involved Parties component of Figure 1.2; Systems,

165

bottom of Figure 1.1 and Involved Parties component of Figure 1.2; and FSICC, the Global

Services in the middle of Figure 1.1.

The remainder of this section has five subsections. Section 6.2.1 provides a more detailed

discussion than Section 2.3 of Chapter 2 on HAPI-FHIR Concepts and Background. Using this as

a basis, Sections 6.2.2, 6.2.3, and 6.2.4 review and explain, respectively, the RBAC interceptor,

MAC interceptor, and DAC interceptor. Finally, Section 6.2.5 presents two usage scenarios

utilizing the global security policy sample from Sections 6.2.2, 6.2.3, and 6.2.4.

6.2.1 HAPI-FHIR Concepts and Background

As discussed in Section 2.3, the HAPI-FHIR library provides a general HAPI server interceptor

(University Health Network, 2016) which is a programmatic approach that allows a developer to

examine each incoming HTTP request to add useful features to the HAPI ResfulServer such as

authentication, authorization, auditing, logging, etc. This is accomplished by implementing a

number of methods: incomingRequestPreProcessed that is invoked before performing any action

to the request; incomingRequestPostProcessed that is invoked after determining the request type

by classifying the request; incomingRequestPreHandled which is invoked before sending the

request to the Resource Provider; and, outgoingResponse which is invoked after the request is

handled by the appropriate Resource Provider. To implement each of these HAPI FHIR APIs, the

HAPI RestfulServer and HAPI IResourceProvider classes were utilized.

To support cloud computing capability 3 (Global Registration, Authentication, Authorization,

and Service Discover for Consumers) of FSICC (see Section 3.2), the Clients Registry, Systems

Registry, and Global Security Policy components in Figure 1.1 are developed as simple RESTful

APIs, which were implemented using the JAX-RS Java library (Hadley & Sandoz, 2009). The

166

Clients Registry and Systems Registry components supports adding systems/clients HAPI-FHIR

APIs and discovering corresponding FHIR APIs, while the Global Security Policy component

enables the security engineer of FSICC to add/modify the global policy in Section 4.6 of Chapter

4 (see Defn. 39 of UCCACM). In addition, the RBAC, MAC, and DAC interceptors presented in

Section 4.7 of Chapter 4 (see Defns. 52, 56, and 60 of UCCACM respectively - middle of Figure

1.1), were implemented by extending the HAPI InterceptorAdapter class to retrieve the global

security policy from the Global Security Policy component and then extract the appropriate part

(i.e., global RBAC for the RBAC Interceptor, global MAC for the MAC Interceptor, and global

DAC for the DAC Interceptor) in order to performing enforcement check on each access request

at runtime. Although each of the RBAC interceptor, MAC interceptor, and DAC interceptor is

designed to enforce the appropriate global security policy separately, the handleRequest method

of the RestfulServer class works as a monitor that makes sure each part of the global security

policy (RBAC, MAC, and DAC) is checked and enforced, via the three interceptors, before

allowing any access request.

6.2.2 RBAC Interceptor

To support security requirement 2 of FSICC, Control Access to Cloud Services Using RBAC,

in this section, we present and explain the pseudo-code of the RBAC interceptor (see Defn. 52 of

UCCACM) that is utilized at runtime to check security permissions (see Defns. 50 and 51 of

UCCACM) of all of the calls to global services. To facilitate our explanation on the RBAC

interceptor, Figure 6.9 presents a global RBAC policy example in JSON format that consists of:

USERS, ROLES, RESOURCES, USER_ROLE_ASSIGNMENTS,

ROLE_RESOURCE_AUTHORIZATIONS, ROLE_HIERARCHY, & ROLES_MAPPINGS.

Each user is represented by three fields: id, name, and system_name. Each role is represented by

167

two fields: id and name. Each resource is represented by three fields: id, name, and method. Each

user_role_assignment is represented by two fields: user_id and role_id. Each

role_resource_authorization is represented by two fields: role_id and resource_id. Each

role_hierarchy relationship is represented by two fields: role_id and parent_id. Finally, each

role_mapping is represented by three fields: global_role_id, system_role_id, and system_name.

As shown in Figure 6.9, the global SECURITY_POLICY is based on the healthcare scenario

example from Section 2.4 of Chapter 2. Notice that there are users, Defn. 14, defined for the

systems OpenEMR and MyGoogle and the client app SMH. Likewise, there are roles, Defn. 8,

that include roles from OpenEMR and MyGoogle systems, roles form the SMH client app, and

new roles generated as during combining roles of OpenEMR and MyGoogle systems, and SMH

client app. The Global RBAC example, Figure 6.9, also has a set of resources, Defn. 2, that are

created from OpenEMR and MyGoogle systems, and SMH client app. The user role assignment

set, Defn. 16, in the Global RBAC example is generated based on user role assignment sets from

OpenEMR and MyGoogle systems, and SMH client app. Similarly, the role resource authorization

set, Defn. 13, in the Global RBAC example is compiled based on role resource authorization sets

from OpenEMR and MyGoogle systems, and SMH client app. The role hierarchy, Defn. 19, in the

figure describes how roles in the Global RBAC example relate to each other using the parent-child

relationship. Finally, the role mapping, Defn. 45, in the figure shows how each role in the Global

RBAC example is mapped to the original role in OpenEMR or MyGoogle systems, or SMH client

app.

In the Global RBAC example, 5 different global users are shown, three from systems (John,

Sara, ShareMyHealth) and two from clients (Sarah and Nasser). There have been 11 global roles

created, that have different origins: Physician with role id 1 was an original role of OpenEMR,

168

Patient_2 with role id 4 was an original role of CT2, and RootRole with role id 3 was created as a

parent role for all of the root roles from each system and client. Note that a root role in a system

or client is the role that has no parents but has at least one child. The Global RBAC example also

has 5 global resources: Observation with resource id 1 and GET method name; Patient with

resource id 2 and PUT method name; Observation with resource id 3 and PUT method name;

Patient with resource id 4 and GET method name; and Person with resource id 5 and PUT method

name. Each user is assigned a role based on their ids. For example, the user with id 1 is assigned

the role with id 1, the user with id 3 is assigned the role with id 4, and the user with id 5 is assigned

the role with id 10. Likewise, some roles are authorized to access some resources based on their

id. For example, the role with id 6 is authorized to access the resource with id 1, the role with id 8

is authorized to access the resource with id 2, and the role with id 11 is authorized to access the

resource with id 5. Based on the role hierarchy presented in Figure 6.9: the role with id 3 is a parent

of roles with id 6, 7, 8, 9 and 11; the role with id 9 is a parent of roles with id 2, 4, and 10; and, the

role with id 11 is a parent of roles with id 4, and 10. Finally, the role mapping in the Figure 6.9

shows that: the global role with id 1 is originated from the OpenEMR’s system role with id 1; the

global role with id 4 is originated from the SMH’s client role with id 1; and, the global role with

id 10 is originated from the MyGoogle’s system role with id 1.

169

Figure 6.9. A Global RBAC Policy Example in JSON

Figure 6.10 presents the RBAC enforcement code realized within the

incomingRequestPostProcessed method of the RBAC Interceptor as introduced in Section 6.2.1,

which is an extension of the HAPI InterceptorAdapter class, which is registered in the

RestfulServer class. This method starts by retrieving a secure Token (line 3) from a HTTP header

(Authorization) of the request parameter, that is then passed to the extractUser function that can

obtain the user credentials (user Id, see Defn. 15v2, and role Id, Defn. 9v2) from the Token (line

170

5). Next, the Global Policy (see Defn. 39), which is in JSON format, is retrieved by calling the

Global Policy URL (line 7). The global RBAC policy example in Figure 6.9, is then extracted from

the Global Policy through the extract_RBAC function (line 8). Then, the details of the requested

resource (resource name, see Defn. 2, and HTTP method, see Defn. 4) are obtained from the

requestDetails and request parameters, respectively, and passed along with the RBAC policy to

the getResourceId function that returns the Id of the requested resource (lines 9 to 11). In line 14,

the user credentials and the RBAC policy are passed to the checkCredentials function (see Defn.

50) to determine whether the user has the claimed role (see Defn. 9v2). If the check fails, the value

of the accessDecision variable becomes false (lines 27-30). If the user passes the check, the

associated role Id, the resource Id, and the RBAC policy are passed to the checkPerm function (see

Defn. 51 - line 19) that returns true if the user with such a role can access the requested resource

or false otherwise. Note that the checkPerm function works by retrieving a list of parent roles of

the user role (passed) based on the global role hierarchy, part of RBAC policy, in which the user

can access all of the resources that are authorized to the user role of any of its parents. Based on

the result of the checkPerm function, the variable accessDecision is assigned (true or false) and

returned as the result of the incomingRequestPostProcessed method (lines 20-25 and 31).

171

1 //Serves as Access Control Interceptor function

2 public boolean incomingRequestPostProcessed(requestDetails, request, response){

3 secToken = request.getHeader(“Authorization”);

4 // Retrieves the user id and role id of the current user

5 [userId,roleId] = extractUser(secToken);

6 // Retrieves the RBAC policy from the Global Policy URL

7 Global_Policy= HttpGet(Global_Policy_URL);

8 RBAC_Policy= extract_RBAC(Global_Policy);

9 resourceName = requestDetails.getResourceName();

10 httpMethod = request.getMethod();

11 resourceId = getResourceId(httpMethod, resourceName, RBAC_Policy);

12 // check if the user has the claimed role

13 verifiedUser=false;

14 verifiedUser=checkCredintals(userId, roleId, RBAC_Policy); // true or false

15 // check if the user (role) can access the requested resource and method

16 verifiedPerm=false;

17 accessDecision=false;

18 if(verifiedUser==true){

19 verifiedPerm=checkPerm(roleId, resourceId, RBAC_Policy); // true or false

20 if(verifiedPerm==true){

21 accessDecision=true; // allow user request

22 }

23 else {

24 accessDecision=false; // deny user request

25 }

26 }

27 else{

28 // Error Message: User could not be verified

29 accessDecision=false; // deny user request

30 }

31 Return accessDecision;

32 }

Figure 6.10. RBAC Interceptor Pseudo Code.

6.2.3 MAC Interceptor

To support security requirement 4 of FSICC, Control Access to Cloud Services Using MAC,

in this section we present and explain the pseudo-code of the MAC interceptor (see Defn. 56 of

UCCACM) that is utilized at runtime to check security permissions (see Defn. 55 of UCCACM)

of all of the calls to global services. To facilitate our explanation, Figure 6.11 presents a global

MAC policy example in JSON format that consists of three parts: USERS, RESOURCES, and

SENSITIVITY_LEVELS_MAPPING_LIST. Each user is represented by six fields: id, name,

clearance, read property, write property, and system_name. Each resource is represented by four

fields: id, name, method, and classification. Finally, each sensitivity level mapping is represented

by four fields: id, global_level, system_level, and system_name. Notice that there are users, Defn.

10, defined for the systems OpenEMR and MyGoogle and the client app SMH. The Global MAC

example, Figure 6.11, also has a set of resources, Defn. 2, that are created from OpenEMR and

MyGoogle systems, and SMH client app. Finally, the sensitivity levels, Defn. 10, mapping list in

172

the figure shows how each sensitivity level in the Global MAC example is mapped to the original

sensitivity level in OpenEMR or MyGoogle systems, or SMH client app.

In the Global MAC example, 5 different global users are shown, three from systems (John,

Sara, ShareMyHealth) and two from clients (Sarah and Nasser). Moreover, the user John has: level

3 or Sensitive Information Details clearance; SS read property; and SI write property. The user

Sara has level 2 or Sensitive Information Summary clearance; SS read property; and SI write

property. The user Sarah has level 4 or Very Sensitive Information clearance; SS read property;

and SI write property. In addition, each of users Nasser and ShareMyHealth has level 3 or Sensitive

Information Details clearance; SS read property; and L* write property. There are 5 global

resources: Observation with resource id 1 and GET method name; Patient with resource id 2 and

PUT method name; Observation with resource id 3 and PUT method name; Patient with resource

id 4 and GET method name; and Person with resource id 5 and PUT method name. Note that all

resources have level 1 or Basic Sensitive Information clearance. Finally, the sensitivity levels

mapping list in the Figure 6.11 shows that: global level 0 (Public Information) is mapped to level

0 (Public Information) of OpenEMR; SMH; and MyGoogle. Global level 3 (Sensitive

Information Details) is mapped to: level 3 (Sensitive Information Details) of OpenEMR; level 2

(Sensitive Information Summary) of SMH and level 4 (Very Sensitive Information) of MyGoogle.

Global level 4 (Very Sensitive Information) is mapped to level 4 (Very Sensitive Information) of

OpenEMR and SMH but is not mapped to any level of MyGoogle.

173

Figure 6.11. A Global MAC Policy Example in JSON

Figure 6.12 has the MAC enforcement code realized within the incomingRequestPostProcessed

method of the MAC Interceptor, which is an extension of the HAPI InterceptorAdapter class,

which is registered in the RestfulServer class. This method starts by retrieving a secure Token (line

3) from a HTTP header (Authorization) of the request parameter, that is passed to the extractUser

function that can obtain the user credentials (user Id, see Defn. 15v3) from the Token (line 5).

Then, the Global Policy (see Defn. 39), which is in the JSON format, is retrieved by calling the

Global Policy URL (line 7). The MAC policy, see the global MAC policy example in Figure 6.11,

is then extracted from the Global Policy through the extract_MAC function (line 8). Next, in line

10, the user Id and MAC policy are passed to the getUserDetails function that returns the user

details (i.e., user clearance, Read property, and Write property). Then, the details of the requested

resource (resource name, see Defn. 2, and HTTP method, see Defn. 4) are obtained from the

requestDetails and request parameters, respectively, and passes along with the MAC policy to the

getResourceId function that returns the Id of the requested resource (lines 11 to 13). In line 15, the

174

resource Id and MAC policy are passed to the getResourceCLS function to find the resource

classification level. Then, using the user details and the requested resource details, the

accessDecision variable is set to true, if the user clearance satisfies the user’s predefined read or

write properties on the requested resource and method, or false, otherwise (lines 17 to 41). Finally,

in line 42, the value of the accessDecision variable is returned as the result of the

incomingRequestPostProcessed method.

1 //Serves as Access Control Interceptor function

2 public boolean incomingRequestPostProcessed(requestDetails, request, response){

3 secToken = request.getHeader(“Authorization”);

4 // Retrieves the user id of the current user

5 userId = extractUser(secToken);

6 // Retrieves the MAC policy from the Global Policy URL

7 Global_Policy= HttpGet(Global_Policy_URL);

8 MAC_Policy= extract_MAC(Global_Policy);

9 // Retrieves the Clearance level, Read, and Write properties of the current user

10 [UserCLR, RP, WP] = getUserDetails(userId , MAC_Policy);

11 resourceName = requestDetails.getResourceName();

12 httpMethod = request.getMethod();

13 resourceId = getResourceId(httpMethod, resourceName, MAC_Policy);

14 // Retrieves the classification level of the requested resource

15 ResourceCLS = getResourceCLS(resourceId , MAC_Policy);

16 // check if user with a CLR, Read, & Write properties can access requested resource and method

17 accessDecision=false;

18 if(httpMethod==“GET”){

19 if(RP==“SS”){

20 if(UserCLR < ResourceCLS){ accessDecision=false; }

21 else{ accessDecision=true; }

22 }

23 else if(RP==“SSR”) {

24 if(UserCLR != ResourceCLS){ accessDecision=false; }

25 else{ accessDecision=true; }

26 }

27 }

28 elseif(httpMethod==“POST” || httpMethod==“PUT” || httpMethod==“DELETE”){

29 if(RP==“SI”){

30 if(UserCLR < ResourceCLS){ accessDecision=false; }

31 else{ accessDecision=true; }

32 }

33 else if(RP==“LS”) {

34 if(UserCLR > ResourceCLS){ accessDecision=false; }

35 else{ accessDecision=true; }

36 }

37 else if(RP==“SSW”) {

38 if(UserCLR != ResourceCLS){ accessDecision=false; }

39 else{ accessDecision=true; }

40 }

41 }

42 Return accessDecision;

43 }

Figure 6.12. MAC Interceptor Pseudo Code.

6.2.4 DAC Interceptor

To support security requirement 3 of FSICC, Support Delegation of Cloud Services Using

DAC, in this section, we present and explain the pseudo-code of the DAC interceptor (see Defn.

60 of UCCACM) that is utilized at runtime to check security permissions (see Defns. 57, 58, and

59 of UCCACM) of all of the calls to global services. To facilitate the explanation, Figure 6.13

175

presents a global DAC policy example in JSON format that consists of one main part,

PERMISSION_DELEGATION, that can have role delegation, or clearance delegation. Each role

delegation is represented by three fields: delegator_id, delegated_id, and role_id. Each clearance

delegation is represented by three fields: delegator_id, delegated_id, and clearance. Notice that the

role delegation set, Defn. 25, in Figure 6.13 is based on a set of role delegations from OpenEMR

and MyGoogle systems, and SMH client app. Likewise, the clearance delegation set, Defn. 24, in

the figure is based on a set of clearance delegations from OpenEMR and MyGoogle systems, and

SMH client app. For example, the first permission delegation in the Global DAC example, is a

role delegation in which the user with id 2, see Figure 6.9, passed on the authorization of the role

(Patient) with id 2 to the user with id 1.

Figure 6.13. A Global DAC Policy Example in JSON

Figure 6.14 has the DAC enforcement code realized within the incomingRequestPostProcessed

method of the DAC Interceptor, which is an extension of the HAPI InterceptorAdapter class, which

is registered in the RestfulServer class. Basically, the DAC enforcement code is a combination of

both the RBAC enforcement code, lines 3-11 and line 19, and the MAC enforcement code, lines

21-22, 24-25, and 27-50, with role delegation and clearance delegation checks. This method starts

by retrieving a secure Token from a HTTP header (Authorization) of the request parameter, that is

passed to the extractUser function that can obtain the user credentials (i.e., user Id, see Defn. 15v2,

176

and role Id, see Defn. 9v2) from the Token (line 4). Then, the Global Policy (see Defn. 39), which

is in JSON format, is retrieved by calling the Global Policy URL (line 5). The global RBAC policy

example in Figure 6.9 is then extracted from the Global Policy through the extract_RBAC function

(line 6). Next, the details of the requested resource (resource name, see Defn. 2, and HTTP method,

see Defn. 4) are obtained from the requestDetails and request parameters, respectively, and are

passed along with the RBAC policy to the getResourceId function that returns the Id of the

requested resource (lines 7 to 9). In line 11, the user credentials and the RBAC policy are passed

to the checkCredentials function (see Defn. 50) to determine whether the user has the claimed role

(see Defn. 9v2). Then, the global DAC policy example in Figure 6.13 is extracted from the Global

Policy through the extract_DAC function (line 12). If the checkCredentials check fails, another

check (lines 13-15) is performed to determine whether such a role is delegated to the current user

by another user. This is done by passing the user Id, the claimed role Id, and the DAC policy to

the checkRoleDelegation function that returns true if the entry delegated_id(user Id)/claimed role

exists or false otherwise to the verifiedRoleDelegation variable.

If both checks fail (line 18), the value of the accessDecision variable becomes false (lines 57-

59). However, if the user passed at least one of these checks, the associated role Id, the resource

Id, and the RBAC policy are passed to the checkPerm function (see Defn. 51 - line 19) that returns

true if the user with such role (or delegated role) can access the requested resource or false

otherwise. Note that the checkPerm function first retrieves a list of parent roles of the user role

(passed) based on the global role hierarchy, part of RBAC policy, in which the user can access all

of the resources that are authorized to the user role of any of its parents. If the checkPerm function

returns false, then the variable accessDecision is set to false (lines 53-54). However, if the

checkPerm function returns true, then the global MAC policy example in Figure 6.11 is extracted

177

from the Global Policy through the extract_MAC function (line 21). Then, in line 22, the user Id

and MAC policy are passed to the getUserDetails function that returns the user details (i.e., user

clearance, Read property, and Write property). Next, a user clearances list is created to include the

user clearance, from the previous step, and a set of delegated clearances to the current user that is

obtained from the getUserDelegatedCLR function that takes as inputs the user id and the DAC

policy (line 23). Then, in line 24, the resource Id and MAC policy are passed to the

getResourceCLS function to find the resource classification level. After that, for each user

clearance in the user clearances list, the following procedure is performed: utilizing the user details

and the requested resource details the accessDecision variable is set to true if the user clearance

satisfies the user’s predefined read or write properties on the requested resource and method, or

false, otherwise (lines 26 to 51). Finally, in line 61, the value of the accessDecision variable is

returned as the result of the incomingRequestPostProcessed method.

178

1 //Serves as Access Control Interceptor function

2 public boolean incomingRequestPostProcessed(requestDetails, request, response){

3 secToken = request.getHeader(“Authorization”);

4 [userId,roleId] = extractUser(secToken);

5 Global_Policy= HttpGet(Global_Policy_URL);

6 RBAC_Policy= extract_RBAC(Global_Policy);

7 resourceName = requestDetails.getResourceName();

8 httpMethod = request.getMethod();

9 resourceId = getResourceId(httpMethod, resourceName, RBAC_Policy);

10 verifiedUser=false;

11 verifiedUser=checkCredintals(userId, roleId, RBAC_Policy); // true or false

12 DAC_Policy= extract_DAC(Global_Policy);

13 if(verifiedUser==false){

14 verifiedRoleDelegation=checkRoleDelegation (userId, roleId, DAC_Policy); // true or false

15 }

16 verifiedPerm=false;

17 accessDecision=false;

18 if(verifiedUser==true || verifiedRoleDelegation==true){

19 verifiedPerm=checkPerm(roleId, resourceId, RBAC_Policy); // true or false

20 if(verifiedPerm==true){

21 MAC_Policy= extract_MAC(Global_Policy);

22 [UserCLR, RP, WP] = getUserDetails(userId , MAC_Policy);

23 UserCLRList = getUserDelegatedCLR(userId , DAC_Policy) + UserCLR;

24 ResourceCLS = getResourceCLS(resourceId , MAC_Policy);

25 accessDecision=false;

26 for each UserCLR in UserCLRList {

27 if(httpMethod==“GET”){

28 if(RP==“SS”){

29 if(UserCLR < ResourceCLS){ accessDecision=false; }

30 else{ accessDecision=true; }

31 }

32 else if(RP==“SSR”) {

33 if(UserCLR != ResourceCLS){ accessDecision=false; }

34 else{ accessDecision=true; }

35 }

36 }

37 else if(httpMethod==“POST” || httpMethod==“PUT” || httpMethod==“DELETE”){

38 if(RP==“SI”){

39 if(UserCLR < ResourceCLS){ accessDecision=false; }

40 else{ accessDecision=true; }

41 }

42 else if(RP==“LS”) {

43 if(UserCLR > ResourceCLS){ accessDecision=false; }

44 else{ accessDecision=true; }

45 }

46 else if(RP==“SSW”) {

47 if(UserCLR != ResourceCLS){ accessDecision=false; }

48 else{ accessDecision=true; }

49 }

50 }

51 }

52 }

53 else {

54 accessDecision=false; // deny user request

55 }

56 }

57 else{

58 // Error Message: User could not be verified

59 accessDecision=false; // deny user request

60 }

61 Return accessDecision;

62 }

Figure 6.14. DAC Interceptor Pseudo Code.

6.2.5 Two Usage Scenarios

This section presents two access scenarios, to access global services of FSICC, of usage that

can be initiated by ShareMyHealth and MyGoogle, from Section 2.4, in order to demonstrate the

way that the three interceptors operate. The FSICC allows or rejects requests from ShareMyHealth

and MyGoogle to access the global services based on the enforcement codes that are generated by:

the RBAC Interceptor (Figure 6.10), the MAC Interceptor (Figure 6.12), and the DAC Interceptor

179

(Figure 6.14) that use the defined global security policy (see Defn. 39 - Figures 6.9 with global

RBAC, 6.11 with global MAC, and 6.13 with global DAC). That is, FSICC receives each request

which is forwarded to all three interceptors for RBAC, MAC, and DAC in which each interceptor

retrieves the appropriate security policy and returns a reject or allow decision to FSICC based on

that security policy. Note that the two requests were made with the Postman tool (Postman, 2013)

instead of directly made them from ShareMyHealth and MyGoogle in order to present a clear view

of the response the requests can have in different scenarios. In the first scenario, Figure 6.15,

FSICC rejects a request from the user (Sarah) via the ShareMyHealth (SMH) app to access the

global service (PUT Encounter). This is since the user (SSincs) with user Id (3) is assigned a role

(Patient_2) with role Id (4) that is authorized to access global services 1-5, see global RBAC in

Figure 6.9 what does not have access to the global service (PUT Encounter). Also, the access will

also fail since the user (Sarah) has no delegated roles, see global DAC in Figure 6.13.

Figure 6.15. Access Scenario One (Rejected).

In the second scenario, Figure 6.16, the request from the user (ShareMyHealth) with id (5) via

MyGoogle to access the global service (GET Patient), would be allowed by FSICC. This is since

the user (ShareMyHealth) with user Id (5) is assigned a role (SMH) with role Id (10) that is

authorized to access global services 1-5 that includes (GET Patient), as was shown in the global

180

RBAC in Figure 6.9. in summary, the three interceptors are utilized in conjunction to dynamically

check each time a user tries to invoke a global Service. All of the conditions must be satisfied in

terms of permissions against the global RBAC, MAC or DAC in order for the service to be

invoked.

Figure 6.16. Access Scenario Two (Allowed).

6.3. Related work in Security Policy Integration and Enforcement

In this section, we present related work in two areas: security policy integration and security

policies enforcement on FHIR API. For the first area, we review five related works on security

policy integration comparing and contrasting their work to our security policy integration approach.

The first effort (Shafiq, B, Joshi, B, Bertino, E, & Ghafoor, A, 2005) proposed a set of mapping

algorithms that can be utilized to combine RBAC policies from different sources into a conflict-

181

free global policy. This work is similar to our RBAC integration approach by providing an RBAC

integration solution. However, this work assumes that all of the RBAC policies from different

systems are defined and stored using the same format which is an unrealistic assumption, while in

our approach we require each system to provide an RBAC policy using a specific format in JSON.

The second effort (Gouglidis, A, Ioannis, M, & Vincent, C, 2014) extended NIST-RBAC

to define a checking technique that can be utilized as a management service/tool for the verification

of multi-domain cloud policies. This technique is capable of detecting whether a user with a role

from one domain can access an object from another domain. This effort, unlike our approach, does

not define a complete global RBAC policy for all of the integrated systems and performs an on-the-

fly authorization query for every object access request that generates an undesirable overhead.

The third effort (Bonatti, P, Maria, L, & Subrahmanian, V, 1997) focused on the issue of

integrating sensitivity levels of different systems under the assumption that one sensitivity level in

one system may have a different semantic interpretation of the same sensitivity level in another

system. To solve this issue, this effort proposed to map each sensitivity level of each system with a

sensitivity level that has similar semantics but not the same name in another system. This effort is

similar to our MAC integration approach in the way they map a number of sensitivity levels of

different systems which is similar to our mapping of classification levels. However, the way users

and objects of each system assigned clearance and classification, respectively, in the presence of

the global sensitivity levels, is not clearly articulated.

The fourth effort (Dawson, S, Shelly, Q, & Pierangela, S, 2000) proposed an approach for MAC-

based polices integration by introducing two main concepts: the wrapper and the mediator. A

wrapper is a mechanism that is associated with each system to provide a uniform data interface and

a mapping between the system’s sensitivity levels and sensitivity levels of other systems in order

182

to generate a global MAC policy. The mediator is an enforcement technique that processes global

access requests based on the generated global MAC policy. This work is similar to our MAC

integration approach as they provide a MAC integration solution and also provide a technique to

enforce the global MAC policy. However, their work assumes that each user of each system can

only be assigned to one specific read property (SS) and one specific write property (SI), unlike our

approach where any user may be assigned to any of the read properties (SS, S* read) and to any of

the write properties (SI, L*, S* write).

The last effort (Joshi, BD & Elisa, B, 2006) proposed a solution for defining RBAC-based

delegation in an integrated environment. Specifically, in this work a delegation framework is

proposed that provides two types of delegation, role delegation and permissions (sub-set of

permissions of a role) delegation, that can be user-to-user, user-to-role, role-to-role or role-to-user.

This work is similar to our DAC integration approach as they also provide a DAC integration

solution. However, their work is limited to a specific type of RBAC (i.e., GTRBAC), unlike our

approach for RBAC-based delegation. Also, their work does not support the integration of MAC-

based delegation in which our approach provides it. Note that all of the above five efforts try to

integrate policies that are defined against objects (traditional) and just target one access control

model, while our security policy integration approach provides solutions to integrate policies which

are defined against services that access objects in which such policies can be any combination of

RBAC, MAC, and DAC.

 For the second area, we review four related works on the topic of security enforcement that

utilizes FHIR. The first effort, SMART on FHIR (SMART on FHIR, 2015), proposed a standard

for authentication and authorization that controls Apps access to FHIR resources based on the

OAuth2 authentication protocol (Cook, 2012). Each App is given a cryptographic Token that has a

183

number of claims. A claim can be a scope (each App may have one or more scopes) or patient ID,

and the information in the Token is encrypted using the JWT library (JWT Team, 2012). A scope,

such as (scope=user/Patient.read), defines what type of FHIR API an App can access which allows

an App to retrieve all of the Patient data and can be further restricted to only return the Patient

record that matches the patient ID in the App's Token. This effort is similar to our approach for

enforcing security policies since they support security interceptors that perform authentication and

authorization against each request to access services. However, the authorization interceptor

presented by this effort is different from our approach since the authorization interceptor cannot be

used to enforce advanced security policies to control access to FHIR resources using roles (RBAC),

sensitivity levels (MAC), and roles/sensitivity levels delegations (DAC).

 The second effort, Vonk (Simplifier.net, 2018), is an extension of the access control approach

of SMART on FHIR, an implementation of SMART on FHIR standard in which the default

processes for Apps authentication and authorization is based on SMART on FHIR standard.

However, in Vonk, the authentication implementation can be changed from the default OAuth2

authentication protocol to any other authentication implementations and the authorization process

of SMART on FHIR can be replaced with any other authorization implementations. This effort is

similar to our approach for enforcing security policies as their approach provide authentication and

authorization capabilities. However, the authorization process of this effort is different from our

approach as it does not support advanced security requirements to control access to FHIR resources

using roles (RBAC), sensitivity levels (MAC), and roles/sensitivity levels delegations (DAC).

The third effort, SecFHIR (Altamimi, 2016), proposed a security standard that may be adopted

to extend the FHIR standard with access control specifications. Specifically, SecFHIR suggested to

define permissions on FHIR resources as an XML schema so that the defined XML schema can be

184

integrated into the XML schemas of different FHIR resources. In this way, the permissions defined

in each FHIR resource’s XML schemas can be utilized by any access control mechanism to enforce

such permissions. Clearly this approach is different from our approach since SecFHIR does not

provide any authentication capabilities that can be utilized to verify the identity of Apps. Also,

SecFHIR doesn’t provide any mechanisms to support enforcing security policies on Apps’ access

requests for important access control models such as RBAC, MAC, and DAC.

Finally, the fourth effort, HAPI FHIR reference implementation (HAPI community, 2017),

provides two security mechanisms: one to verify Apps identity using an authentication interceptor;

and another one to enforce security policies using the rule-based access control model using the

authorization interceptor. The authentication interceptor utilizes the HTTP Basic Auth protocol for

Apps authentication purposes. In addition, the rule-based access control model defines a set of rules

within the interceptor and utilizes if/else statements in order to whitelist/blacklist Apps access

requests to FHIR resources. This approach is similar to our approach for enforcing security policies

as their approach provides authentication and authorization capabilities, via the authentication and

authorization interceptors. However, the authorization interceptor of their approach is different

from our approach as they do not support advanced security requirements to control access to FHIR

resources using roles (RBAC), sensitivity levels (MAC), and roles/sensitivity levels delegations

(DAC).

185

Chapter 7

SOA-based Security Engineering for FSICC

This chapter presents and explains an SOA-based security engineering and global security policy

generation process for FSICC that involves all of the horizontal boxes in Figure 1.3 that contain the

main research foci of this dissertation: Architectural Blueprints as reviewed in Chapter 5; Unified

Cloud Computing Access Control Model as presented in Chapter 4; Access Control Models in

Section 1.3 of Chapter 1 and Section 2.2 of Chapter 2; and, GSP (Global Security Policy)

Generation and GAPI (Global API) Generation and Global Security Policy and Global API

Utilization and Security Enforcement in Chapter 6. GSP (Global Security Policy) Generation and

GAPI (Global API) Generation is for generating the security policy from multiple systems to make

global APIs available to clients what’s showing in the lower portion of Figure 1.2 of Chapter 1.

Global Security Policy and Global API Utilization and Security Enforcement that utilizes security

interceptors that was shown in the bottom of Figure 1.2 to allow/deny clients from access global

services of FSICC. A SOA-based security engineering process (SSEP) for FSICC is intended to

assist security engineers of systems and clients and security engineers of FSICC with a

structured process to define and maintain secure interoperable services for RBAC, MAC, and

DAC.

 To support SSEP, the Unified Cloud Computing Access Control Model (UCCACM), from

Chapter 4, has a set of definitions for global security policy generation and utilization (see Defns.

41-48 of Section 4.6). This set of definitions ensure that such global security policy can control

access to a set of global services that are generated using one or more of integration architecture

blueprints: Basic Architecture, Alternative Architecture, or Radical Architecture from Chapter

186

5. Based on this, this chapter introduces and discusses a SOA-based security engineering and

global security policy generation process for FSICC; this addresses Contribution EC-C: Security

Mapping/Enforcement Algorithms and SSEP from Section 1.5, this is represented by the left

vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 from Chapter 1 that spans all

of the five horizontal boxes: Architectural Blueprints, Unified Cloud Computing Access Control

Model, Access Control Models, Global Security Policy and Global API Generation, and Global

Security Policy and Global API Utilization and Security Enforcement.

In the remainder of this chapter, a SOA-based security engineering and global security policy

generation process for FSICC is presented in three main sections. In Section 7.1, a Pre-Process

Step briefly describes what each system and client need to do before joining the FSICC. In Section

7.2, a SOA-based security engineering process (SSEP) for FSICC is presented that is intended to

assist security engineers of systems and clients and security engineers of FSICC with a structured

process to define and maintain secure interoperable services for RBAC, MAC, and DAC. In Section

7.3, a complete and detailed example that illustrates the SOA-based security engineering process

of Section 7.2 is provided to demonstrate the phases and tasks of SSEP coupled with security policy

integration algorithms of Section 6.2 of Chapter 6 that can be utilized to establish and utilize security

for interoperable services via FSICC.

7.1. A Pre-Process Step for Joining FSICC

As discussed in Chapter 3, one key feature of the FSICC is to enable multiple systems to provide

their services, which can be web-based, cloud-based, or traditional API, via registering into FSICC.

This was introduced in Section 3.2 as cloud computing capability 1: Local Service Registration and

Mapping to Global Services. These web-based, cloud-based, or traditional API that are provided by

187

a system are transitioned to a set of equivalent and unified into a set of global services, via FSICC,

by utilizing cloud computing capability 1. However, as discussed in Chapter 5, each system that

provides services needs to perform a pre-process step before joining the FSICC which is creating

an integration layer utilizing a standard integration framework (IFMWK), such as FHIR API for

the healthcare domain, which is a standard API that converts system’s data from/to the integration

layer format. Such an integration layer is specified and utilized by the FCICC. To support this step,

Section 5.3 provided a specific set of instructions using the HIT IFMWK Blueprint that a system

may utilize to build its own integration layer.

From a client perspective, FSICC provides the unified Global Services so that clients can easily

create application functionality without the need to consider heterogeneous types of systems’

services. This was introduced in Section 3.2 as cloud computing capability 3: Global registration,

authentication, authorization, and service discover for Consumers. These mobile, web, or desktop

client apps then can be developed using a subset of the available unified global services, via FSICC,

by utilizing cloud computing capability 3. However, as discussed in Chapter 5, each client that is

interested in utilizing such global services may need to perform a pre-process step before joining

the FSICC to create an integration layer which is a standard API that converts a client’s data

from/to the integration layer format. To support this step, Section 5.3 provided three sets of

instructions via three architectural blueprint options that a client may utilize to build its own

integration layer: the Basic Architecture Blueprint, the Alternative Architecture Blueprint, and the

Radical Architecture Blueprint).

7.2. An SOA-based Security Engineering Process (SSEP) for FSICC

188

The SOA-based security engineering process (SSEP) is intended to help security engineers of

systems and clients, on one side, and the security engineer of FSICC, on the other side, to establish

and maintain secure interoperable services via RBAC, MAC, and DAC per security requirements

2, 4, and 3 of Section 3.1, respectively, as shown in Figure 7.1. This occurs via four main phases

(i.e., 1.a, 1.b, 2.a, and 2.b) in which the phases 2.a, and 2.b are further explained in Figures 7.2 and

7.3, respectively. This allows SSEP to enable the security engineer: of each participating system to

integrate its services into FSICC (see cloud computing capability 1 of Section 3.2) in which the

system’s security policy is enforced; of each interested client to enable the client’s users to leverage

a set of global services and global security policy (see cloud computing capability 3 of Section 3.2);

and of the FSICC to integrate all of the security policies from all of systems that are to be defined

against the global services (see cloud computing capability 2 of Section 3.2) and to control the way

that interested clients utilize the services. In the remainder of this section, we explore SSEP in

Figure 7.1, along with Figures 7.2 and 7.3, utilizing Figure 6.1 from Chapter 6 that showed the

architecture for global security policy generation and utilization, and explaining the tasks for

security engineers of systems, clients, and FSICC.

To begin, the SSEP, in Figure 7.1, is divided into four phases. In Section 7.2.1, we present the

Constructing Systems Requests phase, labeled (1.a) in the top left of Figure 7.1, that needs to be

performed by security engineers of systems. In Section 7.2.2, we describe the Constructing Clients

Requests phase, labeled (1.b) in the top right of Figure 7.1, that needs to be performed by security

engineers of clients. In Section 7.2.3, we present the Registering Requests Processing phase, labeled

(2.a) in the bottom left of Figure 7.1, that needs to be performed by the security engineers of FSICC

in which the specific tasks of this phase are depicted in Figure 7.2. In Section 7.2.4, we discuss the

Usage Requests Processing phase, labeled (2.b) in the bottom right of Figure 7.1, that needs to be

189

performed by the security engineers of FSICC in which the specific tasks of this phase are depicted

in Figure 7.3. Note that in the rest of this section, the term “system” indicates a pure system, mixed

system (services registering part) or mixed client (services registering part), and the term “client”

indicates a pure client, mixed client (services utilization part) or mixed systems (services utilization

part).

7.2.1 Constructing Systems Requests Phase

The Constructing Systems Requests phase labeled (1.a) in Figure 7.1 allows security engineers

of pure or mixed systems to provide their services via FSICC and for mixed systems to request

services. From a registering perspective, security engineers of both pure and mixed systems can

select to Register System’s Integration Layer and Security Policy, labeled (1.a.1) which utilizes the

cloud computing capabilities of FSICC to provide the system’s integration layer and security policy

that enables FSICC to recognize and integrate: a system’s integration layer with the global services;

and, a system’s security policy with the global security policy. This is indicated by the dashed line

from the Constructing Systems Requests box to the Registering Requests Processing box labeled

(2.a) at the bottom left of Figure 7.1. As part of this process, the system’s integration layer (e.g.,

FHIR for HITs) can be designed by utilizing the HIT IFMWK Blueprint from Section 5.3, as

described in Section 7.1. In addition, the system’s security policy is defined by the system’s security

engineer to control access to the system’s integration layer via one or more access control models

such as RBAC, MAC, and/or DAC that specify which services (of the system’s integration layer)

each user in that system may access. This is indicated by the RBAC Integration and Review &

Correct Role Names, the MAC Integration and Building Global MAC, and the DAC Integration

boxes of pure and mixed systems at the bottom of Figure 6.1 from Chapter 6.

190

From a usage perspective, security engineers of mixed systems can select to Utilize GSP &

GAPI labeled (1.a.3) and since they are interested in using the Global Services in order to

accomplish some of the functionalities, they need to go through a number of tasks based on the

answers to two questions:

• Question 1: Does the mixed system need to utilize a subset of the global services (i.e.,

global API) and a subset of the global security policies, labeled (1.a.q1)? If yes, then ask

Question 2.

• Question 2: Does the mixed system need to customize a subset of the global security

policies, labeled (1.a.q2)? That is, a security engineer of the system has found a global

security policy that has too few/many permissions than needed, thereby needing a

customization.

➢ If the answer to Question 2 was yes, then the security engineer of the system

would need to have human intervention with the security engineer of FSICC,

labeled (1.a.2), to customize a subset of the global security policy in which both

parties discuss and agree about adding a new customized security policy, the

global security policy is updated after this task, or to use an existing security

policy.

➢ If the answer to Question 2 was no, the security engineer of the system would

use some capabilities of FSICC to send a global security policy and global

services utilization request to FSICC, labeled (1.a.3) as indicated by the solid

line from the Constructing Systems Requests box to the Usage Requests

Processing box at the bottom of Figure 7.1.

191

(1.b) Constructing Clients Requests

(2.b) Usage Requests Processing(2.a) Registering Requests Processing

A Set of Algorithms and Human Processes for
Integrating RBAC, MAC, & DAC of Systems and

Clients that Provide Services

A Set of Human Processes to Enable Clients
and Systems that Utilize Services to Use Global

Services and Global Security Policy

[PURE CLIENT][MIXED CLIENT]

(1.b.q1) Defined
Security Policy

[NO]

(1.b.4) Utilize
GSP & GAPI

(1.b.q2) Needs
to Utilize

GSP & GAPI

(1.b.q3) Needs
to Customize

GSP

[NO]

(1.b.1) Register Client’s
Integration Layer &

Security Policy

(1.a) Constructing Systems Requests

(1.a.3) Utilize
GSP & GAPI

(1.a.q1)
Needs to
Utilize

GSP & GAPI

(1.a.q2)
Needs to

Customize
GSP

[NO]

(1.a.2) Human Intervention
with FSICC’s Security Engineer

to Customize Some of GSP

[YES]

(1.a.1) Register System’s
Integration Layer &

Security Policy

[MIXED SYSTEM][PURE SYSTEM]

[YES]

(1.b.2) Human Intervention
with FSICC’s Security

Engineer to Map Client’s
Security Policy with FSICC’s

Global Security Policy

(1.b.3) Human Intervention
with FSICC’s Security

Engineer to Customize
Some of GSP

[YES]

Legend
----- register security & API ___ utilize security & API GSP Global Security Policy GAPI Global API(Services)

Figure 7.1. A High-Level View of SOA-Based Security Engineering Process for FSICC.

7.2.2 Constructing Clients Requests Phase

The Constructing Clients Requests phase labeled (1.b) in Figure 7.1 allows security engineers

of mixed clients to provide their services via FSICC and for pure and mixed clients to request

services. From a registering perspective, security engineers of mixed clients can select to Register

System’s Integration Layer and Security Policy, labeled (1.b.1) which utilizes the cloud computing

capabilities of FSICC to provide the client’s integration layer and security policy that enables

FSICC to recognize and integrate: a system’s integration layer with the global services; and, a

system’s security policy with the global security policy. This is indicated by the dashed line from

192

the Constructing Clients Requests box to the Registering Requests Processing box at the bottom of

Figure 7.1. As part of this process, the client’s integration layer (e.g., FHIR for HITs) can be

designed by utilizing the HIT IFMWK Blueprint from Section 5.3, as described in Section 7.1.

Moreover, the client’s integration layer (e.g., FHIR for HITs) can be designed by utilizing one of

the three integration options: Basic Architecture, Alternative Architecture, or Radical Architecture

as discussed in Section 5.2, as described in Section 7.1. In addition, the client’s security policy is

defined by the client’s security engineer to control access to the client’s integration layer via one or

more access control models such as RBAC, MAC, and/or DAC that specify which services (of the

client’s integration layer) each user in that client may access, this is indicated by the RBAC

Integration and Review & Correct Role Names, the MAC Integration and Building Global MAC,

and the DAC Integration boxes of mixed clients at the top of Figure 6.1.

From a usage perspective, security engineers of pure and mixed clients that are interested in

utilizing the FSICC’s global services and global security policy in order to accomplish some of the

functionalities, need to go through a number of tasks based on the answers to three questions.

• Question 1: Does the client have a defined security policy that the client’s security

engineer prefers to use instead of the global security policy (1.b.q1)?

➢ If the answer to Question 1 was yes, then the security engineer of the client has

human intervention with the security engineer of FSICC to map the client’s security

policy to the global security policy labeled (1.b.2) in which both parties discuss and

agree about a way to map the client’s security policy to the global security policy

which is updated after this task.

➢ If the answer to Question 1 was no, the client’s security engineer needs to answer

Question 2.

193

• Question 2: Does the client need to utilize a subset of the global services (i.e., global

API) and a subset of the global security policies, labeled (1.b.q2)? If the answer to

Question 2 was no, the client’s security engineer needs to answer Question 3.

• Question 3: Does the client need to customize a subset of the global security policies,

labeled (1.b.q3)? That is, a security engineer of a client has found a global security

policy that has too few/many permissions than needed, thereby needing a customization.

➢ If the answer to Question 3 was yes, then the security engineer of the client would

need to have human intervention with the security engineer of FSICC to customize

a subset of the global security policy, labeled (1.b.3), in which both parties discuss

and agree about adding a new customized security policy, the global security policy

is updated after this task, or to use an existing security policy.

➢ If the answer to Question 3 was no, the security engineer of the client would use

some capabilities of FSICC to send a global security policy and global services

utilization request to FSICC, labeled (1.b.4) indicated by the solid line from the

Constructing Clients Requests box to the Usage Requests Processing box at the

bottom of Figure 7.1.

7.2.3 Registering Requests Processing Phase

The Registering Requests Processing phase labeled (2.a) in Figure 7.1 needs to be performed

by the security engineers of FSICC to achieve two main objectives. First, to build the global

services, which is primarily a human-based process, based on the integration layer of each system.

Second, to construct the global security policy, which is mostly an algorithm-based process, based

on security policy of each system. The Registering Requests Processing phase has three tasks and

executed for each system that is being integrated into the global policy:

194

• Task 1: The first task is to configure the global services (global API), labeled (2.a.1) at

the top of Figure 7.2, in which the FSICC’s security engineer is required to configure

each global service of the FSICC so that CRUD methods of the services can send and

receive data to/from each system’s integration layers. This is based on integration layers

provided by different systems in the phases 1.a and 1.b of Figure 7.1.

• Task 2: In the second task, the FSICC’s security engineer has three task options to

perform RBAC, MAC, and/or DAC integration on each system, which may have no

access control, only one access control, any combination of two access controls, or all

three access controls:

➢ The first task option, labeled (2.a.2) in Figure 7.2, is to send each RBAC policy of

each system to the RBAC integration algorithm. This task option is performed if

there is a system’s RBAC policy that needs to be integrated with the global security

policy. As part of this process, the generated RBAC policy is submitted to Review

and Correct Role Names Algorithm labeled (2.a.2.a) with any other required input.

➢ The second task option, labeled (2.a.3) in Figure 7.2, is to send each MAC policy of

each system to the MAC integration algorithm. This task option is performed if there

is a system’s MAC policy that needs to be integrated with the global security policy.

As part of this process, the generated Sensitivity Levels Mapping List is submitted

to the Building Global MAC Algorithm with any other required inputs, labeled

(2.a.3.a).

➢ The third task option, labeled (2.a.4) in Figure 7.2, is to send each DAC policy of

each system to the DAC integration algorithm. This task option is performed if there

is a system’s DAC policy that needs to be integrated with the global security policy.

195

• Task 3: In third task, labeled (2.a.5) at the bottom of Figure 7.2, the FSICC’s security

engineer needs to send the resulted global RBAC policy from (2.a.2), global MAC

policy from (2.a.3), and global DAC policy from (2.a.4) to Combine Updated Global

RBAC, Global MAC, and Global DAC and Control Data algorithm that concatenates

all of the three global polices to generate one global security policy. The FSICC’s

security engineer also needs to specify one read data access type, as described in Section

6.1.4 of Chapter 6, to control the way that data are read. Note that there is one write data

access type that is used by default to control the way that data are written. The third task

marks the final part of the Registering Requests Processing phase in which the global

services and global security policy are ready to be utilized by FSICC’s clients.

Moreover, at this point the complete details of the generated global security policy and

global services, such as the way to utilize the global services and global security policy

and what is the exact web location, will not be published to public.

196

(2.a) Registering Requests Processing

(2.a.2) Send RBAC of System to
RBAC Integration Algorithm

(2.a.3) Send MAC of System to MAC
Integration Algorithm

(2.a.4) Send DAC of System to DAC
Integration Algorithm

NEEDS RBAC
INTEGRATION

[DONE]

[NOT DONE]

[DONE]

[NOT DONE]

[DONE]

[NOT DONE]

(2.a.2.a) Send Global RBAC to Review &
Correct Role Names Algorithm (with

needed input)

[DONE]

[NOT DONE]

(2.a.3.a) Send the Sensitivity Levels
Mapping List to Building Global MAC

Algorithm (with needed input)

[DONE]

[NOT DONE]

(2.a.5) Combine Updated Global
RBAC, Global MAC and Global DAC
& Control Data to Generate Global

Security Policy [DONE]

[NOT DONE]

[NEEDS REVISION]

(2.a.1) Configure Global API

[DONE]

[NOT DONE]

[NO]

[YES]

NEEDS MAC
INTEGRATION

[NO]

[YES]

NEEDS DAC
INTEGRATION

[NO]

[YES]

Figure 7.2. A Detailed View of Phase 2.a of the SSEP

7.2.4 Usage Requests Processing Phase

The Usage Requests Processing phase labeled (2.b) in Figure 7.1 is performed by the security

engineers of FSICC to enable clients to leverage available global services and the corresponding

global security policy, which are built based on the tasks of the Registering Requests Processing

phase and is a human-based process. The FSICC’s security engineer has four tasks to perform the

Usage Requests Processing phase:

197

• Task 1: In the first task, the FSICC’s security engineer has three task options to process

clients’ requests:

➢ The left task option, labeled (2.b.1) in Figure 7.3, is to check the Global Security

Policy (GSP) to Find Permissions Similar to Client Security Policy (CSP). This task

option is performed if there is a client that requests to map its security policy with

the global security policy.

➢ The center task option, labeled (2.b.2) in Figure 7.3, is to assign an ID and Token to

a Client which is needed for authentication and authorization purposes. This task

option is performed if there is a client (basically all of the clients) that requests to

utilize a subset of the global security policy and global services.

➢ The right task option, labeled (2.b.3) in Figure 7.3, is to Add needed Customized

Policy to GSP as a New Policy. This task option is performed if there is a client that

requests to customize a subset of the global security policy.

• Task 2: In the second task, the FSICC’s security engineer also has three task options:

➢ The left task option, labeled (2.b.1.a) in Figure 7.3, is to map the Client Security

Policy (CSP) and Global Security Policy (GSP). This task option is performed if the

output of the task option (2.b.1) was yes, which means that the Global Security

Policy (GSP) has permissions similar to Client Security Policy (CSP).

➢ The center task option, labeled (2.b.1.b) in Figure 7.3, is to add the Client Security

Policy (CSP) to Global Security Policy (GSP). This task option is performed if the

output of the task option (2.b.1) was no, which means that the Global Security Policy

(GSP) does not have permissions similar to Client Security Policy (CSP).

198

➢ The right task option, labeled (2.b.2.a) in Figure 7.3, is to Find One Suitable System

for a Client as a Repository. This can be done by finding a registered system that

provides services similar to the set of global services the client is interested in.

• Task 3: In the third task, labeled (2.b.4) in Figure 7.3, the FSICC’s security engineer

should update the Global Security Policy (GSP,) that may have been changed as a result

of performing the tasks (2.b.1.a), (2.b.1.b) and/or (2.b.3).

• Task 4: In the fourth task, labeled (2.b.5) in Figure 7.3, the FSICC’s security engineer

can Send to the client: the Client’s ID, the Client’s Security Token, the available Global

API (services), the available Global Security Policy (GSP), and instructions on the way

to utilize such global services and global security policy. This allows the client to begin

building an App utilizing the retrieved global services and global security policy.

199

(2.b) Usage Requests Processing

(2.b.2) Assign ID & Token to a Client
(2.b.1) Check GSP to Find

Permissions Similar to CSP

[CLIENT REQUEST TO MAP CSP WITH GSP]

(2.b.3) Add Needed Customized
Policy to GSP as a New Policy

[CLIENT REQUEST TO CUSTOMIZE GSP]
[CLIENT REQUEST TO UTILIZE GSP & Global API]

FOUND

[YES]

[NO]

(2.b.2.a) Find One Suitable System
for a Client as Repository

(2.b.4) Update GSP if Needed

(2.b.1.b) Add CSP to GSP

(2.b.5) Send: Client ‘s ID & Token,
the Available Global API, and the

Available GSP to a Client [DONE]

[NOT DONE]

[NEEDS REVISION]

(2.b.1.a) Map CSP and
GSP

Legend
CSP Client Security Policy GSP Global Security Policy

Figure 7.3. A Detailed View of Phase 2.b of the SSEP

7.3. Demonstrating the SOA-based Security Engineering Process

To provide a hands-on experiment on the SOA-based security engineering process (SSEP), this

section presents a complete and detailed example that demonstrates: the way that each phase and

task of SSEP from Section 7.2 in applied, as was shown in Figures 7.1, 7.2, and 7.3; the usage of

the security policy integration algorithms from Section 6.1 from Chapter 6, see Figures 6.1-6.8;

and, the establishment and utilization of security for interoperable services via FSICC. In the

remainder of this section, our healthcare scenario from Section 2.4 is used for explaining all of the

phases and tasks of SSEP, where we assume that the CT2 client does not provide services or a

security policy. Based on this assumption, we can categorize: CT2 App as a pure client that only

utilizes services from OpenEMR system; SMH App as a mixed client that utilizes services from

200

MyGoogle system and provides a number of services; OpenEMR as a pure system that only

provides services; and, MyGoogle as a mixed system that provides services and utilizes services

from OpenEMR.

Using this setting, we apply the SSEP’s phases and tasks of Section 7.2 in the following order.

First, the Constructing Systems Requests phase, labeled (1.a) in the top left of Figure 7.1, is applied

to OpenEMR system, MyGoogle system, and SMH client App, since each of them has services and

security policy to register. Second, the Registering Requests Processing phase, labeled (2.a) in the

bottom left of Figure 7.1, is applied to OpenEMR system, MyGoogle system, and SMH client App,

since each of them has sent services and security policy registering requests to FSICC. Third, the

Constructing Clients Requests phase, labeled (1.b) in the top right of Figure 7.1, is applied to

MyGoogle system, SMH, and CT2 client Apps, since each of them is interested in utilizing the

global services and the global security policy. Finally, the Usage Requests Processing phase, labeled

(2.b) in the bottom right of Figure 7.1, is applied to MyGoogle system, SMH, and CT2 client Apps,

since each of them has sent global services and global security policy utilization requests to FSICC.

Note that in the remainder of this section, only a subset of actual services and security policies of

each system and client is used, since these subsets are enough for explaining all of the phases and

tasks of SSEP.

The remainder of this section is organized into four subsections. In Section 7.3.1, we explain the

way that the three systems OpenEMR, MyGoogle, and SMH can utilize the Constructing Systems

Requests phase from Section 7.2. In Section 7.3.2, we apply the Registering Requests Processing

phase from Section 7.2 to the three requests from OpenEMR, MyGoogle, and SMH systems. In

Section 7.3.3, we explain the way that three clients: MyGoogle, SMH, and CT2 can utilize the

Constructing Clients Requests phase from Section 7.2. Finally, in Section 7.3.4, we apply the Usage

201

Requests Processing phase from Section 7.2 to the three requests from MyGoogle, SMH, and CT2

clients.

7.3.1 Applying the Constructing Systems Requests Phase on OpenEMR, MyGoogle, and SMH

In this section, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1,

to the OpenEMR and MyGoogle systems and the SMH client. Since OpenEMR is a pure system,

the security engineer of OpenEMR must register: OpenEMR’s integration layer which are

OpenEMR’s FHIR services in Table 2.5 of Section 2.4 and Example 4.4 with Figure 4.1 in Section

4.4; and, OpenEMR’s security policy which are OpenEMR’s RBAC, MAC, and DAC in Table 2.6

of Section 2.4 and Example 4.4 with Figure 4.1 in Section 4.4. Note that the security engineer of

the OpenEMR system designed the OpenEMR’s integration layer by utilizing the HIT IFMWK

Blueprint in Section 5.4.1. This can be achieved by constructing three JSON documents, one for

OpenEMR’s FHIR services from Figure 7.4, one for OpenEMR’s RBAC/DAC from Figure 7.5,

and one for OpenEMR’s MAC/DAC from Figure 7.6, and then sending them to the System Registry

component of FSICC in Figure 7.22.

Figure 7.4. OpenEMR’s FHIR services in JSON

202

Figure 7.5. OpenEMR’s RBAC/DAC policy in JSON

Figure 7.6. OpenEMR’s MAC/DAC policy in JSON

Second, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, to the

MyGoogle system. Since MyGoogle is a mixed system, the security engineer of MyGoogle, must

register: MyGoogle’s integration layer which are the MyGoogle’s FHIR services in Table 2.7 of

Section 2.4 and Example 4.4 with Figure 4.1 in Section 4.4; and MyGoogle’s security policy which

are the MyGoogle’s RBAC and MAC in Table 2.8 of Section 2.4 and Example 4.4 with Figure 4.1

203

in Section 4.4. Note that the security engineer of the MyGoogle system designed the MyGoogle’s

integration layer by utilizing the HIT IFMWK Blueprint in Section 5.4.1. This can be achieved by

constructing three JSON documents, one for MyGoogle’s FHIR services from Figure 7.7, one for

MyGoogle’s RBAC from Figure 7.8, and one for MyGoogle’s MAC from Figure 7.9, and then

sending them to System Registry component of FSICC see Figure 7.22.

Figure 7.7. MyGoogle’s FHIR services in JSON

Figure 7.8. MyGoogle’s RBAC policy in JSON

204

Figure 7.9. MyGoogle’s MAC policy in JSON

Finally, we apply the Constructing Systems Requests phase, labeled (1.a) in Figure 7.1, to the

SMH client App. Since SMH is a mixed client, the security engineer of SMH must register: SMH’s

integration layer which are SMH’s FHIR services see Table 2.3 in Section 2.4 and Example 4.5

with Figure 4.2 in Section 4.4; and, SMH’s security policy which are SMH’s RBAC, MAC, and

DAC see Table 2.4 in Section 2.4 and Example 4.5 with Figure 4.2 in Section 4.4. Note that the

security engineer of the SMH designed the SMH’s integration layer by utilizing the Basic

Architecture Blueprint in Section 5.4.1. This can be achieved by constructing three JSON

documents, one for SMH’s FHIR services from Figure 7.10, one for SMH’s RBAC/DAC from

Figure 7.11, and one for SMH’s MAC from Figure 7.12, and then sending them to the System

Registry component of FSICC see Figure 7.22.

Figure 7.10. SMH’s FHIR services in JSON

205

Figure 7.11. SMH’s RBAC/DAC policy in JSON

Figure 7.12. SMH’s MAC policy in JSON

7.3.2 Applying the Registering Requests Processing Phase on OpenEMR, MyGoogle, and

SMH

In this section, we apply the Registering Requests Processing Phase, labeled (2.a) in Figure 7.1,

to the OpenEMR, MyGoogle systems and the SMH client. In Section 7.3.1, OpenEMR, MyGoogle,

and SMH were constructed and sent a registering request in JSON format to the FSICC, see Figures

7.4, 7.7, and 7.10 respectively. In this phase, the security engineer of FSICC, as described in Section

206

7.2.3 and Figure 7.2, processes each of these registering requests through the three tasks as

described in Section 7.2.3.

In task 1, the security engineer of FSICC needs to configure each global service of the FSICC

so that CRUD methods of the global services can send and receive data to/from the integration

layers of OpenEMR, MyGoogle, and SMH. In this task, the security engineer of FSICC reads the

JSON documents that include the registering requests of OpenEMR, MyGoogle, and SMH and

initializes the global services of FSICC with five services as presented in Table 7.1. For example,

the service (gs2) is a global service (Observation[GET]) that whenever triggered calls the mapped

services ls2 of OpenEMR, ls2 of MyGoogle, and ls2 of SMH. Similarly, the services (gs1, gs3, gs4,

gs5) are created and configured as described in Table 7.1. Note that for each created global service,

only the specified CRUD methods of the mapped service are implemented. For example, only PUT

and GET methods are implemented for the first global service (gs1) but not POST or DELETE

methods.

Table 7.1. Initial Set of FSICC’s Global Services

Service ID Service Name Method Name Mapped to

gs1 FSICC/Observation PUT ls1 (OpenEMR), ls1 (MyGoogle), and ls1 (SMH)

gs2 FSICC/Observation GET ls2 (OpenEMR), ls2 (MyGoogle), and ls2 (SMH)

gs3 FSICC/Patient PUT ls3 (OpenEMR), ls3 (MyGoogle), and ls3 (SMH)

gs4 FSICC/Patient GET ls4 (OpenEMR), ls4 (MyGoogle), and ls4 (SMH)

gs5 FSICC/Person PUT ls5 (MyGoogle), and ls5 (SMH)

In task 2, to establish the global security policy the security engineer of FSICC needs to send the

registered security policy of OpenEMR, MyGoogle, and SMH to the appropriate task 2 option based

on the type of the registered security policy (RBAC, MAC, or DAC). First, as described in the first

task option of task 2 labeled 2.a.2 in Section 7.2.3, the security engineer of FSICC sends the

OpenEMR’s RBAC policy, Figure 7.5, MyGoogle’s RBAC policy, Figure 7.8, and SMH’s RBAC

policy, Figure 7.11, to the RBAC integration algorithm that generates the initial global RBAC

207

policy as shown in Figure 7.14. Moreover, Table 7.2 has some information that the Global-RBAC

algorithm uses to generate the initial global RBAC policy given in Figure 7.14. First, the algorithm

uses the RBAC policy of OpenEMR to initialize the global RBAC policy so that OpenEMR’s roles,

Physician and Patient, are added as the first two global roles. Then, the RBAC policy of SMH is

integrated to the global RBAC policy so that six global roles, Physician_2, Patient_2, New_Role_1,

New_Role_2, New_Role_3 and New_Role_4, are added (see the first four comparisons in Table

7.2). Finally, the RBAC policy of MyGoogle is integrated to the global RBAC policy so that two

global roles, SMH and New_Role_5, are added (see the last eight comparisons in Table 7.2). Note

that roles New_Role_1, New_Role_2, New_Role_3, New_Role_4 and New_Role_5 are abstract

roles in which no users are assigned to them. Figure 7.13 provides a clear view of the role hierarchy

of the global RBAC policy.

Table 7.2. Comparisons Information of the RBAC Integration Step

ID System Role Global Role Direct Common
Permissions

Comparison
Result

Created Global Roles

1 Physician Physician Observation [GET] Overlap Physician_2, New_Role_1

2 Physician Patient Patient [GET] Overlap New_Role_2

3 Patient Physician Patient [PUT] Overlap Patient_2, New_Role_3

4 Patient Patient Observation [PUT] Overlap New_Role_4

5 SMH New_Role_1 Observation [GET] SR contains GR SMH

6 SMH New_Role_2 Patient [GET] SR contains GR Nothing

7 SMH New_Role_3 Patient [PUT] SR contains GR Nothing

8 SMH New_Role_4 Observation [PUT] SR contains GR Nothing

9 SMH Physician Nothing Not related Nothing

10 SMH Physician_2 Nothing Not related Nothing

11 SMH Patient Nothing Not related Nothing

12 SMH Patient_2 Person [PUT] Overlap New_Role_5

208

RootRole

NewRole_4 NewRole_1NewRole_3 NewRole_2

Physician Physician_2

Patient
Patient_2

SMH

NewRole_5

Figure 7.13. The Role Hierarchy of the Global RBAC Policy

209

Figure 7.14. The Initial Global RBAC Policy in JSON

Second, as described in the second task option of task 2 labeled (2.a.3) in Section 7.2.3, the

security engineer of FSICC and each of the security engineers of OpenEMR, SMH, and MyGoogle

systems have a discussion in order to understand the semantic and usages of each sensitivity level

of each system. In this case, the assumption is that all of the security engineers of systems and

210

FSICC have agreed to use different semantics of sensitivity levels, see Section 4.4 of Chapter 4,

and thus generate a Sensitivity Levels Mapping List as described in Table 7.3. Note that in this

example, the OpenEMR’s sensitivity levels set is used as an initial global sensitivity levels set. In

this sensitivity levels mapping list, we can describe the differences in sensitivity levels as follows:

ShareMyHealth’s sensitivity level SIS is mapped to global sensitivity level SID; while MyGoogle’s

sensitivity level VSI is mapped to global sensitivity level SID. Note that global sensitivity levels

SIS and VSI have no corresponding levels in ShareMyHealth and MyGoogle sensitivity levels,

respectively.

Table 7.3. An Example of a Sensitivity Levels Mapping List

ID Global Sensitivity Level (OpenEMR) System Sensitivity Level System Name

1 PI PI ShareMyHealth

2 BSI BSI ShareMyHealth

3 SIS - ShareMyHealth

4 SID SIS ShareMyHealth

5 VSI VSI ShareMyHealth

6 PI PI MyGoogle

7 BSI BSI MyGoogle

8 SIS SIS MyGoogle

9 SID VSI MyGoogle

10 VSI - MyGoogle

Third, as described in the third task option of task 2 labeled (2.a.4) in Section 7.2.3, the security

engineer of FSICC is required to send the DAC policy of OpenEMR, Figures 7.5 and 7.6, and DAC

policy of SMH, Figure 7.11, to the DAC Integration algorithm that generates the global DAC policy

as shown in Figure 7.15. Note that MyGoogle has no DAC policy. The generated global DAC

policy has two role delegations (one from OpenEMR and one from SMH), and one clearance

delegation from OpenEMR. Note that the Global DAC algorithm changed the role Ids, clearance,

and user Ids to the global equivalents.

211

Figure 7.15. The Global DAC Policy in JSON

In task 2, to finalize the generation of the global RBAC policy and global MAC policy the

security engineer of FSICC also needs to send the output of the first task option, labeled (2.a.2), of

task 2 and the second task option, labeled (2.a.3), of task 2 to the appropriate remaining part of each

task option, labeled (2.a.2.a) and (2.a.3.a) in Figure 7.2 respectively, based on the type of the

registered security policy (RBAC or MAC). First, after generating the initial global RBAC labeled

(2.a.2), Figure 7.14, that has some global roles with undesirable names such as New_Role_1 -

New_Role_5, the security engineer of FSICC may wish to rename such roles via the step labeled

(2.a.2.a) in Figure 7.2. To do this, the security engineer of FSICC first can review the names of all

of the global roles, Figure 7.14, and suggest a new name for a subset of the global roles, e.g., based

on the authorized permissions, as a corrected global roles list. In this case, the security engineer of

FSICC would keep the role names New_Role_1 - New_Role_5 and change the role names

Physician, Patient, Physician_2, and Patient_2 to Attending_Physician, General_Patient,

Research_Physician, and Fitness_Patient, respectively, as described in Table 7.4. Then, the security

engineer of FSICC, as described in the first task option of task 2 in Section 7.2.3, needs to send the

corrected global roles list to the Review and Correct Role Names algorithm labeled 2.a.2.a which

updates the global RBAC policy with the new role names as required.

Table 7.4. An Example of a Corrected Global Roles List

Global Role ID (Old Name) New Name

212

1 (Physician) Attending_Physician
2 (Patient) General_Patient

5 (Physician_2) Research_Physician
4 (Patient_2) Fitness_Patient

Second, as described in the second task option of task 2 labeled (2.a.3) in Section 7.2.3, the

security engineer of FSICC needs to Send the generated Sensitivity Levels Mapping List (Table

7.3) to the Building Global MAC algorithm, labeled (2.a.3.a). This step composes the global MAC

policy, Figure 7.16, utilizing users and services from MAC policy of OpenEMR, Figure 7.6,

MyGoogle, Figure 7.9, and SMH, Figure 7.12, in which users clearances and services classifications

are assigned based on the global sensitivity levels in which the read/write properties of each user

are remain unchanged.

Figure 7.16. The Global MAC Policy in JSON

213

In task 3 labeled (2.a.5) in Section 7.2.3, the global RBAC policy, Figure 7.14, the global MAC

policy, Figure 7.16, and the global DAC policy, Figure 7.15, are simply combined, utilizing the

Combine Updated Global RBAC, Global MAC, and Global DAC and Control Data algorithm, in

one JSON document that serves as the global security policy. Also, the security engineer of FSICC

augments the global security policy with two pieces of information: one of the three read data access

types, and the write data access type (i.e., Open to Same System Users) as described in Section

6.1.4 of Chapter 6. In this case, the assumption is that the security engineer of FSICC chosen to use

the default read data access type (type 1 Open to All). Based on these settings: any user from

OpenEMR, MyGoogle, or SMH who are assigned to the same global role, can read any data that

the global role can retrieve; and, a user from a specific system, OpenEMR for example, who

is assigned to a global role can only write data (only data of OpenEMR) that the global role can

write.

In summary, at this point of the example and the process, the complete details of the generated

global security policy and global services (such as the way that to utilize the global services and

global security policy) are not as yet published to the public.

7.3.3 Applying the Constructing Clients Requests Phase on MyGoogle, SMH, and CT2

We start by applying the Constructing Clients Requests phase, labeled (1.b) in Figure 7.1, to

MyGoogle system. Since MyGoogle is a mixed system, the security engineer of MyGoogle, from

a usage perspective, needs to answer the three main questions, as discussed in Section 7.2, see

Figure 7.1, after visiting the available global services and global security policy webpage. In this

case, it is assumed that the security engineer of MyGoogle has the following answers: the client has

no defined security policy (again from usage perspective); the client would utilize a subset of the

available global services and global security policy; and, the client does not need to customize any

214

subset of the global security policies. Based on these answers, the security engineer of MyGoogle

should construct a JSON document for MyGoogle utilization request that specifies in detail the

subset of global services (see Table 7.1) and global security policy, see Figures 7.14, 7.15, and 7.16,

that MyGoogle has interests in utilizing, as shown in Figure 7.17, in which MyGoogle would be

assumed to utilize: the global services: 2, 3, and 4; and the global role 2. Finally, the security

engineer of MyGoogle needs to send the JSON document to the Client Registry component of

FSICC in Figure 7.22.

Figure 7.17. MyGoogle Utilization Request in JSON

Second, we apply the Constructing Clients Requests to the SMH client App. Since SMH is a

mixed client, the security engineer of SMH, from a usage perspective, needs to answer the same

three main questions: SMH client has a defined security policy (again from usage perspective);

SMH client would utilize a subset of the available global services but not interested in the global

security policy; and, the client does not need to customize any subset of the global security policies.

Based on these answers, the security engineer of SMH should construct two JSON documents. The

first one (Policy Mapping Request) is to specify the defined security policy against the global

services, as shown in Figure 7.18, in which one role (i.e., Parent with id 12) is defined that is

authorized to access global services 4 and 5. This first JSON document needs to be sent to the

security engineer of FSICC who needs to process and update the global security policy. Based on

215

the updated global security policy, the second JSON document can be constructed for SMH

utilization request that specifies in details the subset of global services (see Table 7.1) that SMH

interests in, as shown in Figure 7.19, in which SMH would be assumed to utilize: the global

services: 4 and 5; and the global role 12 which was added into the global security policy as a result

of human intervention with the security engineer of FSICC. Finally, the security engineer of SMH

needs to send the second JSON document to the Client Registry component of FSICC in Figure

7.22.

Figure 7.18. SMH Policy Mapping Request in JSON.

Figure 7.19. SMH Utilization Request in JSON

Finally, we apply the Constructing Clients Requests phase to the CT2 client App. Since CT2 is a

pure client, the security engineer of CT2 needs to answer the three main questions: CT2 client has

no defined security policy; CT2 client would utilize a subset of the available global services and

global security policy; and the client needs to customize a subset of the global security policies.

216

Based on these answers, the security engineer of CT2 should construct two JSON documents. The

first one (Policy Customize Request) is to specify the customize security policy, as shown in Figure

7.20, in which the Physician role (id 1) of the global RBAC policy is customized to be also

authorized to access the global service 3. This first JSON document needs to be sent to the security

engineer of FSICC who needs to process it and update the global security policy. Based on the

updated global security policy, the second JSON document can be constructed for CT2 utilization

request that specifies in details the subset of global services (see Table 7.1) that CT2 interests in, as

shown in Figure 7.21, in which CT2 would be assumed to utilize: the global services: 1, 2, and 3;

and the global role 1 which can access the global service 3 as a result of human intervention with

the security engineer of FSICC). Finally, the security engineer of CT2 needs to send the second

JSON document to the Client Registry component of FSICC see Figure 7.22.

Figure 7.20. CT2 Policy Customize Request in JSON

Figure 7.21. CT2 Utilization Request in JSON

217

7.3.4 Applying the Usage Requests Processing Phase on MyGoogle, SMH, and CT2

As explained in Section 7.3.3, the MyGoogle system, and the SMH and CT2 client Apps are

constructed and sent a utilization request and/or policy customize request and/or policy mapping

request in JSON format, see Figures 7.17, 7.18, 7.19, 7.20, and 7.21, to the FSICC. In this section,

we describe the way that the security engineer of FSICC, as described in Section 7.2.4, in Figure

7.3, process each of these requests through the four tasks as described in Section 7.2.4.

In task 1, the security engineer of FSICC needs to perform the appropriate task 1 option based

on request type of the clients (policy mapping, utilization, or policy customization). First, as

described in the left task option of task 1 labeled (2.b.1) in Section 7.2.4, the security engineer of

FSICC needs to process the SMH’s policy mapping request, Figure 7.18. Since the SMH’s policy

mapping request is RBAC-based, the security engineer of FSICC checks the global RBAC policy,

Figure 7.14, and finds that the role (i.e., Parent with id 12) in the SMH’s policy mapping request is

not similar to existing roles.

Second, as described in the center task option of task 1 labeled (2.b.2) in Section 7.2.4, the

security engineer of FSICC needs to process MyGoogle’s utilization requests, Figure 7.17, SMH’s

utilization requests, Figure 7.19, and CT2’s utilization requests, Figure 7.21, by assigning an ID and

generating a security Token for each client.

Finally, as described in the right task option of task 1 labeled (2.b.3) in Section 7.2.4, the security

engineer of FSICC needs to process CT2’s policy customize request, Figure 7.20. Since the CT2’s

policy customize request is RBAC-based, the security engineer of FSICC checks the global RBAC

policy, Figure 7.14, to locate the requested global role (i.e., Physician with id 1) and add a new

global role (i.e., Visiting_Physician with id 13) and limit it to only access the specified global

service (with id 3).

218

In task 2, the security engineer of FSICC needs to perform the appropriate task 2 option based

on the outputs of task 1. First, as described in the center task option of task 2 labeled (2.b.1.b) in

Section 7.2.4, the security engineer of FSICC adds a new global role (i.e., Parent with id 12), from

the SMH’s policy mapping request, along with its permissions, to the global RBAC policy. This is

because in the left task option of task 1 the security engineer of FSICC did not find a similar role in

the global RBAC policy. Note that, in this case, the security engineer of FSICC will not perform

the left task option of task 2 in Section 7.2.4 as no similar role was found.

Second, as described in the right task option of task 2 labeled (2.b.2.a) in Section 7.2.4, the

security engineer of FSICC needs to find one suitable system as repository for each of MyGoogle,

SMH, and CT2 clients as follow. The OpenEMR system is chosen as a repository for MyGoogle,

since the requested global services (2, 3, and 4) can be mapped to OpenEMR’s services. Then, the

MyGoogle system is chosen as a repository for SMH, since the requested global services (4 and 5)

can be mapped to MyGoogle’s services. Then, the OpenEMR system is chosen as a repository for

CT2, since the requested global services (1, 2, and 3) can be mapped to OpenEMR’s services.

In task 3, labeled (2.b.4) in Figure 7.3, the security engineer of FSICC needs to update the global

security policy based on the outputs of the tasks 1 and 2 as follow. The security engineer of FSICC

will add a new global role (i.e., Visiting_Physician with id 13) to the global security policy and

limit it to only access the specified global service (with id 3), from the left task option of task 1.

The security engineer of FSICC will also add a new global role (i.e., Parent with id 12) to the global

security policy, from the center task option of task 2.

In task 4, labeled (2.b.5) in Figure 7.3, the security engineer of FSICC needs to send separate

JSON documents to each of MyGoogle, SMH, and CT2 clients that include: client’s ID, client’s

219

security token, the available global services, the available global security policy, and instructions

on the way to utilize such global services and global security policy.

To give an overall view of the final output of applying all of the SSEP phases and tasks that

described in Sections 7.3.1, 7.3.2, 7.3.3, and 7.3.4, we refine Figure 5.12 (from Section 5.4.2 of

Chapter 5) to show the overall architecture of interactions: between OpenEMR and MyGoogle with

FSICC; and between CT2 and SMH with FSICC, as Figure 7.22 shows.

OpenEMR

API

OpenEMR FHIR Server

FHIR Controller

Patient

Resource

Observation

Resource

CT2

RESTful API

FSICC FHIR Server

FHIR Controller

Observation

Resource
Patient

Resource

Person

Resource

SMH

Repository

Person

Resource

Patient

Resource

FHIR Controller

SMH FHIR Server

STORELOAD

MyGoogle

API

MyGoogle FHIR Server

FHIR Controller

Person

Resource

Patient

Resource

Observation

Resource

Clients Registry

Systems Registry

RBAC/MAC/DAC

Interceptors

Global Security

Policy

Figure 7.22. Overall Architecture of the Interactions for Clients and Systems with FSICC.

220

Chapter 8

Conclusion

This dissertation presented and explained a Framework for Secure and Interoperable Cloud

Computing (FSICC) with RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001), MAC

(Bell & La Padula, 1976), and DAC (Dittrich, Härtig, & Pfefferle, 1988) that allows clients and

systems to interact with one another. The FSICC provided the unification of services and security

capabilities from different paradigms (e.g., cloud services, programming services, web services),

alternate cloud service providers, and diverse security/access control (RBAC, MAC, and/or DAC).

From an overall viewpoint, each system may build and publish their cloud, programmatic, or web

services into FSICC that combined such services into a unified set of global services in the cloud.

Then, a developer of a mobile, web, or desktop client can discover such global services and utilize

them to develop the client application. The five main research focus of the dissertation presented:

Architectural Blueprints for Supporting FSICC that contained different options for connecting

clients and systems with FSICC; an Integrated RBAC, MAC, and DAC Model for Cloud

Computing via a Unified Cloud Computing Access Control Model (UCCACM) that contained a

set of definitions necessary for supporting our work on FSICC including Schema Definitions,

Enterprise Definitions, Policy Definitions, FSICC Definitions, and Intercepting Definitions;

Security Mapping/Enforcement Algorithms for GSP (Global Security Policy) Generation and GAPI

(Global API) Generation which included Security Policies and Services Registration, Global

Services Generation, and Global Security Policy Generation; a SOA-Based Security Engineering

Process (SSEP) for FSICC that was utilized to combine security policies from different systems

into one global security policy in which SSEP also included a process for security enforcement code

generation; and, Dynamic Enforcement via Intercepting Process involved a set of programmatic

221

mechanisms that were able to intercept a service call from a client app to a global service in FSICC

in order to perform appropriate security enforcement checks.

The reminder of this conclusion is organized as follows. Section 8.1 summarizes the dissertation,

highlighting the attainment of the five research foci in detail. Using this as a basis, Section 8.2

discusses the research contributions of this dissertation, primarily in the areas of: Architectural

Blueprints for Supporting FSICC; an Integrated RBAC, MAC, and DAC Model for Cloud

Computing; Security Mapping/Enforcement Algorithms and SSEP; and, Dynamic Enforcement via

Intercepting Process. Finally, Section 8.3 details the ongoing and future research directions that

include, but are not limited to: extending UCCACM of FSICC with Modern Access Control

Models; implementing remaining components of the FSICC; providing a more fine-grained access

control approach; and demonstrating the Architectural Blueprints on one or more different domains.

8.1 Summary

This dissertation presented a Framework for Secure and Interoperable Cloud Computing

(FSICC) that provides a set of global cloud services for use by clients and systems with access

control provided by RBAC, MAC, and/or DAC models. The main objective of this dissertation was

two-fold: to provide a solution to the service integration problem, which was the difficulties that

occur when a client is trying to access services that could be operating with different types of

application programmer interfaces (APIs); and to provide a solution to be security policy integration

problem, that occurred since the different paradigms and alternate cloud service providers may all

have different types of security and access control capabilities, that will allow clients and systems

to interact with one another in a framework. Such a framework would provide the unification of

services and security capabilities from different paradigms (e.g., cloud services, programming

222

services, web services), alternate cloud service providers, and diverse security/access control

(RBAC, MAC, and/or DAC). In support of our objective, the discussion in this dissertation was

presented throughout seven chapters.

Chapter 1 introduced the main areas for our research and a high-level view of the presented

Framework for Secure and Interoperable Cloud Computing. Section 1.1 discussed the motivation

of restricting access to a unified set of global cloud services utilizing access control models as our

main area of interest. Section 1.2 explored the motivation of the work in the healthcare domain as

an appropriate context to present the work of the dissertation since healthcare represents as a critical

emergent application for cloud computing. Section 1.3 provided a set of security requirements and

cloud computing capabilities that the FSICC needs to support. Based on this, Section 1.4 presented

and explained the Framework for Secure and Interoperable Cloud Computing with RBAC, MAC,

and DAC of this dissertation. Section 1.5 provided a list of the research objectives and expected

contributions for the dissertation. Section 1.6 discussed the work that has been published by us in

order to support the work presented in the dissertation. Finally, Section 1.7 presented an outline of

the dissertation.

Chapter 2 presented background material on the main concepts and topics that supported our

discussion and explanation of this dissertation. Section 2.1 discussed the cloud computing

concept and underlined application programming interfaces (APIs), and presented the main

technologies behind cloud computing with an emphasis on the service-oriented architecture

(SOA) technology that emphasized the cloud service model. Section 2.2 reviewed the three main

access control approaches: role-based access control (RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn,

& Chandramouli, 2001), discretionary access control (DAC) (Dittrich, Härtig, & Pfefferle, 1988),

and mandatory access control (MAC) (Bell & La Padula, 1976). Section 2.3 introduced and

223

explained the Fast Health Interoperable Resources (FHIR) standard with an emphasis on the FHIR

Resources and reviewed the HL7 Application Programming Interface FHIR (HAPI-FHIR) which

is one popular reference implementation of the FHIR standard. Section 2.4 presented a sample

healthcare scenario utilized throughout this dissertation.

Chapter 3 presented the four Security Requirements and the three Cloud Computing Capabilities

that underlined and supported FSICC. Section 3.1 defined and explained the four security

requirements for FSICC: Numerous and Varied Access Control Models, Control Access to Cloud

Services Using RBAC, Support Delegation of Cloud Services Using DAC, and Control Access to

Cloud Services Using MAC. Section 3.2 detailed the three cloud computing capabilities with

associated components of the FSICC: Local Service Registration and Mapping to Global Services;

Local Security Policies Registration to Yield Global Security Policy; and, Global Registration,

Authentication, Authorization, and Service Discover for Consumers. Section 3.3 discussed related

research in cloud computing as compared with FSICC.

Chapter 4 provided formal definitions of UCCACM in eight sections. Section 4.1 presented

a set of core definitions on schemas to support authorizing users to a set of schemas based on

roles and/or sensitivity levels. Section 4.2 provided core definitions on enterprise application

that included definitions for clients, systems, and types of clients and systems as part of the

enterprise application. Section 4.3 discussed core definitions on RBAC, MAC, and DAC

models that described the way that such access control models can be modified to support the

four security requirements of FSICC. Section 4.4 described advanced definitions on enterprise

applications in which the security aspects of RBAC, MAC, and DAC models were introduced

into clients and systems of any enterprise application. Section 4.5 had core definitions on global

resources and permissions by API in which definitions that described what were global services

224

and the way that such global services were controlled via means of RBAC, MAC, and DAC

were provided. Section 4.6 presented advanced definitions on FSICC that described the way

that services and security policies of different systems were mapped. Section 4.7 discussed core

definitions on security interceptors for RBAC, MAC, and DAC along with enforcement checks

that each security interceptor utilized. Section 4.8 presented related work on access control for

cloud computing. Throughout the entire presentation of UCCACM, detailed examples were

provided utilizing the healthcare scenario of section 2.4 Chapter 2.

Chapter 5 presented a set of Architectural Blueprints which were guidelines that defined the

way of placing and creating an integration layer for a systems or client. In Section 5.1, we

explored four issues that must be understood for an application of FSICC to support a discussion

of the options and blueprints: the overall architecture of the application; the involved technologies

that can be used to develop the application; the source code availability of the application, APIs,

server code, or database; and, the allowable access to system sources. In Section 5.2, we examined

the three different Architectural Blueprint options, namely, Basic, Alternative, and Radical, for

integrating an application to multiple HIT systems via FSICC, utilizing FHIR. In Section 5.3,

we provided an Architectural Blueprints for each of the three options that illustrated the way that

the options can be realized using FHIR including the various phases and steps that are required.

In Section 5.4, we presented a complex example that utilized the Alternative and Radical

Architectural Blueprint options applied to the healthcare scenario from Section 2.4 of Chapter

2. In Section 5.5, we discussed two related works in the literature that explained alternative

ways that FHIR can be implemented to integrate healthcare systems and/or applications in

different settings.

225

Chapter 6 presented Global Security Policy Generation process and Dynamic Enforcement

implementation for FSICC in three sections. In Section 6.1, a set of security policy integration

algorithms were presented and discussed for: global RBAC generation, global MAC generation,

global DAC generation, and global policies combination. In Section 6.2, we demonstrated the

realization of UCCACM of FSICC in HAPI FHIR utilizing the healthcare scenario of Section 2.4

of Chapter 2 that involved the implementation of HAPI FHIR APIs and its server interceptor to

support UCCACM checks with three different algorithms to support three different HAPI FHIR

interceptors: RBAC interceptor, MAC interceptor, and DAC interceptor. Moreover, the interceptor

discussions were supported by two access scenarios. Section 6.3 presented and discussed related

work in both security policy integration and enforcing security policies on FHIR API.

Chapter 7 presented a SOA-based security engineering and global security policy generation

process for FSICC in three main sections. In Section 7.1, we briefly discussed a Pre-Process Step

that described what each system and client needed to do before joining the FSICC. In Section 7.2,

a SOA-based security engineering process (SSEP) for FSICC was presented that was intended to

assist security engineers of systems and clients and security engineers of FSICC with a structured

process to define and maintain secure interoperable services for RBAC, MAC, and DAC. In Section

7.3, a complete and detailed example that illustrated the SOA-based security engineering process

of Section 7.2 was provided to demonstrate the steps and sub-steps of SSEP coupled with security

policy integration algorithms of Section 6.1 of Chapter 6 that can be utilized to establish and utilize

security for interoperable services via FSICC.

8.2 Research Contribution

226

This section revisits the expected research contributions given in Section 1.5 of Chapter 1 and

provides insight of their attainment across the chapters of the dissertation. The Framework for

Secure and Interoperable Cloud Computing (FSICC) with RBAC, MAC, and DAC has the

following contributions:

EC-A. Architectural Blueprints for Supporting FSICC: This contribution enabled the

interoperability and information exchange of clients and systems and defined and explained

a collection of three architectural blueprints (i.e., Basic Architecture, Alternative

Architecture, and Radical Architecture) for the design and development of integration

framework (IFMWK) servers utilizing a standard integration framework (e.g., FHIR in the

healthcare domain) that facilitate the integration between HIT systems with applications.

This was shown in the upper half (left) of Figure 1.2. The architectural blueprints were

represented as the first horizontal box Architectural Blueprints in Figure 1.3 and included

three main boxes for: Interoperability Issues, Integration Options, and Integration

Blueprints. Each blueprint was based on the location that IFMWK servers can be placed

with respect to the components of the application (UI, API, Server) or a HIT system in

order to define and design the required infrastructure to enable the exchange of information

via IFMWK. In support of this contribution, Chapter 5 provided details of four

interoperability issues, three integration Options, and associated integration blueprints.

Chapter 4 also supported this contribution by providing four UCCACM definitions (Defns.

41 to 44 from Chapter 4) that described: the mapping of clients and systems, the set of all

global resources, mapping clients and systems services to the global services of FSICC,

and the set of all global APIs for all clients and systems, respectively.

227

EC-B. An Integrated RBAC, MAC, and DAC Model for Cloud Computing: This

contribution presented and explained a Unified Cloud Computing Access Control model

(UCCACM) for the FSICC that provided a single view of global services to applications

(i.e., clients) and enabled those global services to be authorized according to RBAC, MAC,

and DAC policies. The UCCAC model was represented by the second horizontal box

Unified Cloud Computing Access Control Model in Figure 1.3 that included five main

boxes for: Schema Definitions, Enterprise Definitions, Policy Definitions, FSICC

Definitions, and Intercepting Definitions. The contribution involved a set of formal

definitions for RBAC, MAC, and DAC access control models that specified, in detail, the

way that: each system can register its services and security policies; and, a security engineer

can define a set of global RBAC, MAC, and/or DAC policies on a unified set of global

cloud services. The UCCAC model basically suggested formal definitions for the main

components of Figure 1.2. In support of this contribution, Chapter 4 provided the Unified

Cloud Computing Access Control model (UCCACM) for the FSICC that is an access

control model that utilized three main access control models (RBAC, MAC, and DAC)

and had a set of 60 definitions distributed in seven main groups: core definitions on

schemas, core definitions on enterprise application, core definitions on RBAC, MAC,

and DAC models, advanced definitions on enterprise applications, core definitions on

global resources and permissions by API, advanced definitions on FSICC, and core

definitions on security interceptors for RBAC, MAC, and DAC. Chapter 3 also

supported this contribution by motivating the UCCACM by the four main security

requirements of FSICC (i.e., Numerous and Varied Access Control Models, Control

228

Access to Cloud Services Using RBAC, Support Delegation of Cloud Services Using

DAC, and Control Access to Cloud Services Using MAC) as presented in Section 3.1.

EC-C. Security Mapping/Enforcement Algorithms and SSEP: This contribution

included Security Mapping/Enforcement Algorithms realized within the horizontal box

near the bottom of Figure 1.3, labeled GSP (Global Security Policy) Generation and GAPI

(Global API) Generation which included Security Policies and Services Registration,

Global Services Generation, and Global Security Policy Generation. In support of this

contribution, Chapter 6 presented: a pre-process step for joining FSICC, a SOA-based

security engineering process (SSEP) for FSICC, a set of security policy integration

algorithms, and a detailed example that illustrated the steps and sub-steps of SSEP along

with the security policy integration algorithms. Chapter 4 also supported this contribution

by providing eight UCCACM definitions (Defns. 41 to 48 from Chapter 4) which ensured

that the global security policy can control access to a set of global services of FSICC.

Moreover, Chapter 3 supported this contribution by motivating the cloud computing

capability 2 of FSICC, i.e., Local Security Policies Registration to Yield Global Security

Policy, from Section 3.2. This contribution also included a SOA-based security engineering

process (SSEP) that couples Security Mapping/Enforcement Algorithms with EC-A

Architectural Blueprints for Supporting FSICC via and EC-B An Integrated RBAC, MAC,

and DAC Model for Cloud Computing into an for FSICC that can be used to combine

security policies (that can be RBAC, MAC or DAC) from different systems into one global

security policy for security enforcement code generation. This was shown in the upper right

half of Figure 1.2. A portion of the SSEP was human assisted in order to resolve naming

229

issues of roles, mapping sensitivity levels, etc., that were combined from multiple clients

and systems. Once the policies were successfully integrated, all of the security enforcement

code can be automatically generated by algorithms. The SSEP for FSICC was represented

by the left vertical box SOA-BASED SECURITY ENGINEERING in Figure 1.3 that

spanned all of the five horizontal boxes: Architectural Blueprints, Unified Cloud

Computing Access Control Model, Access Control Models, Global Security Policy and

Global API Generation, and Global Security Policy and Global API Utilization and

Security Enforcement. The Security Mapping/Enforcement Algorithms aspect of this

contribution was realized within the horizontal box near the bottom of Figure 1.3, labeled

GSP (Global Security Policy) Generation and GAPI (Global API) Generation which

included Security Policies and Services Registration, Global Services Generation, and

Global Security Policy Generation. In support of this contribution, Chapter 6 presented: a

pre-process step for joining FSICC, a SOA-based security engineering process (SSEP) for

FSICC, a set of security policy integration algorithms, and a detailed example that

illustrated the steps and sub-steps of SSEP along with the security policy integration

algorithms. Chapter 4 also supported this contribution by providing eight UCCACM

definitions (Defns. 41 to 48 from Chapter 4) which ensured that the global security policy

can control access to a set of global services of FSICC. Moreover, Chapter 3 supported

this contribution by motivating the cloud computing capability 2 of FSICC, i.e., Local

Security Policies Registration to Yield Global Security Policy, from Section 3.2.

EC-D. Dynamic Enforcement via Intercepting Process: This contribution provided a set

of programmatic mechanisms that were able to intercept a service call from a client app to

230

an API in order to perform appropriate security enforcement checks. This was shown in

the bottom of Figure 1.2. In Figure 1.3, these security interceptors were represented within

the last horizontal box Global Security Policy and Global API Utilization and Security

Enforcement in Figure 1.3, and the Security Enforcement via Interceptors box in Figure

1.2. Interceptors included: a RBAC Interceptor that was able to determine at runtime if the

requested API call on a global service can be executed for a specific user with a specific

role; a MAC Interceptor that was able to determine at runtime if the requested API call on

a global service can be executed for a user with a clearance and limited by if the services

was read or write; and a DAC Interceptor that was able to determine at runtime if the

requested API call on a global service can be executed for a specific user with a delegated

role/service/clearance. In support of this contribution, Chapter 7 presented an

implementation of HAPI FHIR APIs and its server interceptor that supported UCCACM

checks with three different algorithms to support three different HAPI FHIR interceptors:

RBAC interceptor, MAC interceptor, and DAC interceptor. Chapter 4 also supported this

contribution by providing 11 UCCACM definitions (Defns. 50-60 from Chapter 4) that

discussed concepts of Interceptor, RBAC Interceptor, MAC Interceptor, and DAC

Interceptor. Moreover, Chapter 3 supported this contribution by motivating the cloud

computing capability 3 of FSICC, i.e., Global Registration, Authentication, Authorization,

and Service Discover for Consumers, from Section 3.2.

8.3 Ongoing and Future Work

The work presented in this dissertation can serve as a foundation for further enhancements and

extensions. A list of ongoing and future topics includes: extending UCCACM of FSICC with

231

Modern Access Control Models; implementing remaining components of the FSICC; providing a

more fine-grained access control approach to enable controlling data based on time period and data

subset; and applying the Architectural Blueprints on one or more different domains using a standard

integration framework and one of its implementations in that domain.

Extending UCCACM of FSICC with Modern Access Control Models: As we presented in

this dissertation, the Unified Cloud Computing Access Control Model (UCCACM) of the

Framework of Secure and Interoperable Cloud Computing (FSICC) provides capabilities to register

three type of access control models, namely RBAC, MAC, and DAC. As part of future work, we

are interested in extending the UCCACM with modern access control models such as Attribute-

based Access Control (ABAC) (Yuan, E. & Tong, J. , 2005), Usage Control Access Control

(UCON) (Sandhu, R. & Park, J. , 2003), History-Based Access Control (HBAC) (Banerjee, A. &

Naumann, D., 2005), Identity-Based Access Control (IBAC) (Saxena, N., Tsudik, G., & Yi, J.,

2004), Organization-Based Access control (OrBAC) (Kalam, A., et al., 2003), and Rule-Based

Access Control (RAC) (Carminati, B., Ferrari, E., & Perego, A., 2006). This way systems may

define and register their ABAC/UCON/HBAC/IBAC/OrBAC/RAC-based security policies into

FSICC that in turn combines: different ABAC/UCON/HBAC/IBAC/OrBAC/RAC-based security

policies from multiple systems to generate a global ABAC/UCON/HBAC/IBAC/OrBAC/RAC

security policy. The generated global ABAC/UCON/HBAC/IBAC/OrBAC/RAC security policies

can be then enforced against each request to access global services of FSICC using a corresponding

security interceptor.

232

Implementing Remaining Components of the FSICC: Currently, four components of the

Framework of Secure and Interoperable Cloud Computing (FSICC), see Figure 1.1 from Chapter

1, are already implemented in this dissertation. These components are: Global Authentication,

RBAC/MAC/DAC Interceptors, Global Services, and Global Security Policy. Moreover, in this

dissertation we described the login and purpose of the remaining components of FSICC (i.e., Client

Registry, System Registry, Services Mapping, and Security Policy Mapping). As part of future

work, we are planning to convert the login of the remaining components of FSICC into an actual

implementation as RESTful APIs that can be implemented using the JAX-RS Java library (Hadley

& Sandoz, 2009). The implementation of these four FSICC components will enable the interested

systems and clients to utilize all features of FSICC that we presented in this dissertation.

Providing a More Fine-Grained Access Control Approach: Presently, the global RBAC

policy, global MAC policy, and global DAC policy that are used in the FSICC as a global security

mechanism are defined to control who can access what set of global services. Moreover, the global

security mechanism also controls what set of data, that global services can access and what each

user can read/write using three read data access types and one write data access type. As part of

future work, we are contemplating to further control accessing data based on time period and data

subset to support the FSICC with a more fine-grained access control approach. That is, time period

feature will enable the global security mechanism of FSICC to specify: a start and end time (time

period) in which a user is allowed to access a global service. The data subset feature will enable the

global security mechanism of FSICC to specify what parts (fields) of data record, that is accessible

via global services, each user is allowed to access.

233

Demonstrating the Architectural Blueprints on Different Domains: Recall that in Chapter 5,

we presented a complex example that utilized the Alternative and Radical Architectural Blueprint

options prototype applied to the healthcare scenario from Section 2.4 of Chapter 2 utilizing the

FHIR standard and HAPI FHIR (FHIR reference implementation) as a standard Integration

Framework (IFMWK) in the healthcare domain. As part of future work, we are looking for

applying a subset of our Architectural Blueprints from Chapter 5 to integrate systems and clients in

domains other than the healthcare domain. This is to prove that our Architectural Blueprints can be

utilized by any stakeholders in any domain who are interested in integrating systems and clients via

FSICC. To do this, we may utilize one or more standard Integration Frameworks and their

implementations (one IFMWK for each domain such as the financial domain) that are openly

available.

234

References

Aitken, M. (2013). Patient apps for improved healthcare: from novelty to mainstream. Retrieved from

http://www.imshealth.com/en/thought-leadership/ims-institute/reports/patient-apps-for-improved-

healthcare

Amato, A., & Venticinque, S. (2013). Multi-objective decision support for bro-kering of cloud sla. In

27th International Conference on Advanced Infor-mation Networking and Applications

Workshops (WAINA), (pp. 1241-1246).

Amato, A., Di Martino, B., & Venticinque, S. (2012). Evaluation and brokering of service level

agreements for negotiation of cloud infrastructures. In Interna-tional Conference on Internet

Technology and Secured Transactions, (pp. 144-149).

Amazon.com. (2016). Cloud products. Retrieved from https://aws.amazon.com/products/?nc1=f_cc

AT&T. (2016). Cloud services. Retrieved from

http://www.business.att.com/enterprise/Portfolio/cloud/#fbid=FlPXyoa3SmP

Baihan, M., & Demurjian, S. (2017). An Access Control Framework for Secure and Interoperable Cloud

Computing Applied to the Healthcare Domain. In S. C. (ed.), In Research Advances in Cloud

Computing, (pp. 393-429). Springer.

Baihan, M., Demurjian, S., Rivera Sánchez, Y., Toris, A., Franzis, A., Onofrio, A., . . . Agresta, T.

(2017). Role-Based Access Control for Cloud Computing Realized within HAPI FHIR.

Proceedings of 16th International Conference on WWW/INTERNET, (pp. 3-14).

Baihan, M., Sánchez, Y., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. (2018). A Blueprint for

Designing and Developing M-Health Applications for Diverse Stakeholders Utilizing FHIR. In R.

R. (Ed.), In Contemporary Applications of Mobile Computing in Healthcare Settings (pp. pp. 85-

124). Hershey, PA: IGI Global.

Banerjee, A., & Naumann, D. (2005). History-Based Access Control and Secure Information Flow. In

Barthe, G., Burdy, L., Huisman, M., Lanet, JL., & Muntea, T., In Construction and Analysis of

Safe, Secure, and Interoperable Smart Devices. Springer.

Bell, D. E., & La Padula, L. (1976). Secure computer system: unified exposition and multics

interpretation.

Bonatti, P, Maria, L, & Subrahmanian, V. (1997). Merging heterogeneous security orderings. Journal of

Computer Security, 3-29.

Buyya, R., Ranjan, R., & Calheiros, R. (2010). Intercloud: Utility-oriented federa-tion of cloud

computing environments for scaling of application services. In International Conference on

Algorithms and Architectures for Parallel Pro-cessing, (pp. 13-31).

Carminati, B., Ferrari, E., & Perego, A. (2006). Rule-based access control for social networks. . In OTM

Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. pp.

1734-1744). Springer.

Dawson, S, Shelly, Q, & Pierangela, S. (2000). Providing security and interoperation of heterogeneous

systems. Security of Data and Transaction Processing, 119-145.

235

De La Rosa Algarin, A. (2014). An RBAC, LBAC and DAC Security Framework for Tree-Structured

Documents. Doctoral dissertation. Storrs: University of Connecticut.

De La Rosa Algarin, A., Ziminski, T., Demurjian, S., & Rivera Sánchez, Y. K. (2014). Generating

XACML Enforcement Policies for Role-Based Access Control of XML Documents. Web

Information Systems and Technologies, Revised Selected Papers, Lecture Notes in Business

Information Processing, Springer-Verlag, Vol. 189 (pp. 21-36). Springer.

Dell.com. (2016). Cloud computing. Retrieved from http://www.dell.com/en-us/work/learn/dell-cloud-

computing

Demurjian, S., Sanzi, E., Agresta, T., & Yasnoff, W. (2018). Multi-Level Security in Healthcare using a

Lattice-Based Access Control Model. Submitted to the International Journal of Privacy and

Health Information Management (IJPHIM), IGI Global.

Dittrich, K., Härtig, M., & Pfefferle, H. (1988). Discretionary Access Control in Structurally Object-

Oriented Da-tabase Systems. DBSec, (pp. 105-121).

Feng, X., Guoyan, L., Hao, H., & Li, X. (2004). Role-based access control system for web services . In

The 4th International Conference on Computer and Information Technology (CIT) (pp. pp. 357-

362). IEEE.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., & Chandramouli, R. (2001). Proposed NIST standard for

role-based access control. ACM Transactions on Information and System Security (TISSEC) 4(3),

224-274.

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures.

Doctoral dissertation. Irvine: University of California.

Franz, B., Schuler, A., & Kraus, O. (2015). Applying FHIR in an Integrated Health Monitoring System.

EJBI .

Gibraltar Dr. (2016). drchrono EHR. Retrieved from

https://www.drchrono.com/?referrer=adwords&ad=sem&utm_source=adwords&utm_medium=p

aid_search&utm_term=drchrono%20ehr&utm_campaign=BrandExact&gclid=EAIaIQobChMIso

T2qcKS2wIVBr7ACh0pbgOoEAAYASAAEgLssvD_BwE

Google. (2017). Google Fit Overview. Retrieved from https://developers.google.com/fit/overview

Google Inc. (2016). Google Health. Retrieved from https://www.google.com/intl/en_us/health/about/

Gouglidis, A, Ioannis, M, & Vincent, C. (2014). Security policy verification for multi-domains in cloud

systems. International Journal of Information Security, 97-111.

Hadley, M., & Sandoz, P. (2009). JAX-RS: Java™ API for RESTful Web Services. Retrieved from Java

Specification Request (JSR): http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-spec/jsr339-

jaxrs-2.0-final-spec.pdf?AuthParam=1500742971_85cc8b9e2b4f49ddac51a09d52d44ca7

HAPI community. (2016). About HAPI. Retrieved March 23, 2016, from http://hl7api.sourceforge.net/

Health Level 7. (2016). Clinical Document Architecture. Retrieved from

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7

236

Health Level 7. (2016). Fast Health Interoperable Resources. Retrieved March 16, 2016, from

http://www.hl7.org/implement/standards/fhir/

Health Level 7. (2016). Fast Health Interoperable Resources list. Retrieved February 12, 2016, from

https://www.hl7.org/fhir/resourcelist.html

Health Level 7. (2016). Health Level Seven INTERNATIONAL. Retrieved from

http://www.hl7.org/index.cfm?ref=nav

Health Level 7. (2016). HL7 Version 2. Retrieved from

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

Health Level 7. (2016). HL7 Version 3. Retrieved from

https://www.hl7.org/implement/standards/product_brief.cfm?product_id=186

Health Level 7. (2014). HL7 Version 3 Standard: Privacy, Access and Security Services; Security

Labeling Service, Release 1. Retrieved from https://www.oasis-

open.org/committees/download.php/54331/V3_SECURITY_LABELSRV_R1_2014JUN.pdf

Health Level 7. (2014). HL7 Version 3 Standard: Privacy, Access and Security Services; Security

Labeling Service, Release 1. Retrieved from https://www.oasis-

open.org/committees/download.php/54331/V3_SECURITY_LABELSRV_R1_2014JUN.pdf

Himss.org. (2016). Meaningful use stage 2 Overview. Retrieved from https://www.cms.gov/regulations-

and-guidance/legislation/ehrincentiveprograms/downloads/stage2overview_tipsheet.pdf

Himss.org. (2016). Meaningful use stage 3 final rule. Retrieved from

http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987

Himss.org. (2016). Meaningful use stage 3 final rule. Retrieved from

http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987

IBM. (2015). Service-oriented architecture. Retrieved from

https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pe

gl_serv_overview.html

Idc.com. (2015). Public cloud computing to reach nearly $70 billion in 2015 worldwide. Retrieved from

https://www.idc.com/getdoc.jsp?containerId=prUS25797415

Jamcracker. (2016). Jamcracker. Retrieved from Jamcracker Platform: http://www.jamcracker.com/

Joshi, BD, & Elisa, B. (2006). Fine-grained role-based delegation in presence of the hybrid role hierarchy.

Proceedings of the eleventh ACM symposium on Access control models and technologies. ACM .

Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., & Trouessin, G. (2003).

Organization based access control. In Policies for Distributed Systems and Networks. IEEE.

Kasthurirathne, S. N., Mamlin, B., Kumara, H., Grieve, G., & Biondich, P. (2015). Enabling Better

Interoperability for HealthCare: Lessons in Developing a Standards Based Application

Programing Interface for Electronic Medical Record Systems. Journal of medical systems, 1-8.

Kelion, L. (2014). Apple toughens icloud security after celebrity breach. Retrieved from

http://www.bbc.com/news/technology-29237469

237

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Retrieved January 20, 2016, from

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

Microsoft Inc. (2016). About MS HealthVault. Retrieved from https://www.healthvault.com/en-us/

Microsoft Inc. (2016). Understanding SOAP. Retrieved from https://msdn.microsoft.com/en-

us/library/ms995800.aspx

Microsoft.com. (2016). Service oriented architecture. Retrieved May 7, 2016, from

https://msdn.microsoft.com/en-us/library/bb833022.aspx

MTBC. (2016). MTBC PHR. Retrieved March 18, 2016, from https://phr.mtbc.com/

Nair, S., Porwal, S., Dimitrakos, T., Ferrer, A., & Tordsson, J. (2010). Towards secure cloud bursting,

brokerage and aggregation. In IEEE 8th Eu-ropean Conference on Web services (ECOWS), (pp.

189-196).

National Archives. (1982). Executive Orders. Retrieved April 21, 2016, from

https://www.archives.gov/federal-register/codification/executive-order/12356.html

OpenEMR. (2016). What Is OpenEMR. Retrieved from http://www.open-emr.org/

OpenID. (2016). What is HEART WG. Retrieved from http://openid.net/wg/heart

OpenMRS Inc. (2016). OpenMRS. Retrieved from https://openmrs.org/

Pallis, G. (2010). Cloud computing: the new frontier of internet computing. IEEE Internet Computing,

(5): 70-73.

Postman. (2013). Postman. Retrieved from About Postman: http://www.getpostman.com/

Rouse, M. (2014). REST (representational state transfer). Retrieved January 17, 2016, from

http://searchsoa.techtarget.com/definition/REST

Sandhu, R., & Park, J. . (2003). Usage control: a vision for next generation access control. Computer

network security, Springer Berlin Heidelberg, pp. 17-31.

Saxena, N., Tsudik, G., & Yi, J. (2004). Identity-based access control for ad hoc groups. In International

Conference on Information Security and Cryptology (pp. pp. 362-379). Springer.

Shafiq, B, Joshi, B, Bertino, E, & Ghafoor, A. (2005). Secure interoperation in a multidomain

environment employing RBAC policies. EEE transactions on knowledge and data engineering,

1557-1577.

Shetty, S. (2013). Gartner says cloud computing will become the bulk of new IT spend by 2016. Retrieved

from http://www.gartner.com/newsroom/id/2613015

Sirisha, A., & Kumari, G. (2010). API access control in cloud using the role based access control model .

In Trendz in Information Sciences & Computing (TISC) (pp. pp. 135-137). IEEE.

Skyhigh Networks. (2016). Advantages of Cloud Computing and How Your Business Can Benefit From

Them. Retrieved from https://www.skyhighnetworks.com/cloud-security-blog/11-advantages-of-

cloud-computing-and-how-your-business-can-benefit-from-them/

238

Subashini, S., & Kavitha, V. (2011). A survey on security issues in service deliv-ery models of cloud

computing. Journal of network and computer applications, 34(1): 1-11.

Takabi, H., Joshi, J., & Ahn, G. (2010). Securecloud: Towards a comprehensive security framework for

cloud computing environments. In 34th Annual Computer Software and Applications Conference

Workshops (COMPSACW) (pp. pp. 393-398). IEEE.

Takabi, H., Joshi, J., & Ahn, G. (2010). Security and privacy challenges in cloud computing

environments. IEEE Security & Privacy, (6): 24-31.

Tang, Z., Wei, J., Sallam, A., Li, K., & Li, R. (2012). A new RBAC based access control model for cloud

computing. In International Conference on Grid and Pervasive Computing (pp. pp. 279-288).

Springer Berlin Heidelberg.

The Direct Project. (2016). Direct Project Overview. Retrieved from

http://directproject.org/content.php?key=overview

Tordsson, J., Montero, R., Moreno-Vozmediano, R., & Llor, I. (2012). Cloud brokering mechanisms for

optimized placement of virtual machines across multiple providers. Future Generation Computer

Systems 28(2), 358-367.

University Health Network. (2016). HAPI Server Interceptors. Retrieved March 15, 2017, from

http://hapifhir.io/doc_rest_server_interceptor.html

Vordel. (2016). Vordel Products. Retrieved from Vordel: http://www.vordel.com/solutions/cloud-

servicebroker.html

Wang, L., Von Laszewski, G., Younge, A., He, X., & Kunze, M. (2010). Cloud computing: a perspective

study. New Generation Computing, 28(2): 137-146.

Wang, Z. (2011). Security and privacy issues within the Cloud Computing. In International Conference

on Computational and Information Sciences (ICCIS) (pp. pp. 175-178). IEEE.

WebMD LLC. (2016). About WebMD. Retrieved from https://www.webmd.com/

Wingfield, E. (2015). Personal cloud will be a $90 billion a year business by 2020. Retrieved from

http://www.cloudwedge.com/personal-cloud-will-be-a-90-billion-a-year-business-by-2020

Wonohoesodo, R., & Tari, Z. (2004). A role based access control for web services . In International

Conference on Services Computing (SCC) (pp. pp. 49-56). IEEE.

Yuan, E., & Tong, J. . (2005). Attributed based access control (ABAC) for web services. IEEE

International Conference on in Web Services. IEEE.

Zhang, L., Ahn, J., & Chu, T. (2001). A rule-based framework for role based delegation. In Proceedings

of the sixth ACM symposium on Access control models and technologies (pp. pp. 153-162). ACM.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges.

In Journal of internet services and applications, 1(1), 7-18.

Ziminski, T., Demurjian, S., Sanzi, E., Baihan, M., & Agresta, T. (2017). An Architectural Solution for

Health Information Exchange. . In International Journal of User-Driven Healthcare (IJUDH),

6(1), 65-103.

239

