
16 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 HOD2MLC,	Hybrid	Ontology	Life	Cycle,	Model	Driven	Ontology	Development,	Ontology	
Meta-Modeling,	Ontology	Modeling

ABSTRACT
Ontologies	have	gained	increasing	usage	to	augment	an	application	with	domain	knowledge,	particularly	
in	healthcare,	where	 they	represent	knowledge	ranging	 from:	bioinformatics	data	such	as	protein,	gene,	
etc.	to	biomedical	informatics	such	as	diseases,	diagnosis,	symptoms,	etc.	However,	the	current	ontology	
development	efforts	and	process	are	data	intensive	and	construction	based,	creating	ontologies	for	specific	
applications/requirements,	rather	than	designing	an	abstract	ontological	solution(s)	that	can	be	reusable	
across	the	domain	using	a	well-defined	design	process.	To	address	this	deficiency,	the	work	presented	herein	
positions	ontologies	as	software	engineering	artifact	that	allows	them	to	be	placed	into	the	position	to	share	
the	captured	domain	conceptualization	and	its	vocabulary	involving	disparate	domain	backgrounds,	that	can	
then	be	created,	imported,	exported	and	re-used	using	different	frameworks,	tools	and	techniques.	Towards	
this	end,	the	authors	propose	an	agile	software	process	for	ontologies	referred	to	as	the	Hybrid	Ontology	
Design	&	Development	Model	with	Lifecycle,	HOD2MLC.	To	place	HOD2MLC	into	a	proper	perspective,	
they	explore,	compare,	and	contrast	it	to	existing	ontology	design	and	development	alternatives	with	respect	
their	various	phases	as	related	to	the	authors’	work	and	phases	in	varied	SDP	models.

HOD2MLC:
Hybrid Ontology Design and

Development Model with Lifecycle
Rishi	Kanth	Saripalle,	School	of	Information	Technology,	Illinois	State	University,	Normal,	

IL,	USA

Steven	A.	Demurjian,	Department	of	Computer	Science	and	Engineering,	University	of	
Connecticut,	Storrs,	CT,	USA

Michael	Blechner,	Department	of	Pathology,	University	of	Connecticut	Health	Center,	
Farmington,	CT,	USA

Thomas	Agresta,	Department	of	Family	Medicine,	University	of	Connecticut	Health	Center,	
Farmington,	CT,	USA

DOI: 10.4018/IJITWE.2015040102

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 17

1. INTRODUCTION

An ontology is a compilation of concepts that can be represented as a class composed of at-
tributes coupled with relationships or associations that define interactions between the classes
and augmented with axioms which are rules or constrains on classes, attributes, or relationships.
Ontologies are promoted as a part of the Semantic Web to attach knowledge to information thereby
aiding users (humans and agents) in various ways. Ontologies are heavily utilized in research
such as knowledge engineering and representation, domain modeling (Saripalle, Demurjian, &
Behre, 2011), database integration (Konstantinou, Spanos, & Mitrou, 2008), natural language
processing (Kaihong, Hogan, & Crowley, 2011), etc. For our purposes, we have focused on
clinical informatics that involves medical organizations (e.g., private practices, hospitals, etc.)
that represent, store patient data (e.g., demographics, diagnosis, vitals, etc.) electronically using
standards such as Continuity of Care Record (CCR)1, Health Language Seven (HL7) Standard
Clinical Document Architecture (CDA) (Boone, 2011), etc. and share the data in the form of
Electronic Health Record (EHR) or Personal Health Record (PHR). As shown in the top portion
of Figure 1, EHRs, PHRs, and other health IT systems are brought together by Health Informa-
tion Exchange (HIE) (Demurjian, Saripalle, & Behre, 2009) (promoted by the HITECH Act2)
into a conceptual setting called the Virtual Chart (VC) which provides a common global view
for all potential users. For semantic knowledge, each of these systems employs standard medical
ontologies such as: Logical Observation Identifiers Names and Codes (LOINC)3 a standard for
identifying medical laboratory observations; International Classification of Disease (ICD)4 to
hierarchically organize medical concepts such as diseases, symptoms, injuries, procedure, etc.,
Unified Medical Language System (UMLS) (Bodenreider, 2004) aggregation of medical ontolo-
gies and terminology such as ICD, LOINC, SNOMED, etc.; and have a semantic network and
metathesaurus. The main objective of our work is to achieve interoperability among the health
systems by unifying not only the data, but most importantly, unify their ontologies through their
schema or model integration, as shown in the third horizontal box from the top of Figure 1.

As we seek to achieve this interoperability, we have identified a number of problems that
significantly affect the process. First, individual EHRs or healthcare applications are built using
different ontologies organizing domain knowledge in different ways to suit the specific business
and medical requirements. This current approach is often an ad-hoc process, with minimal at-
tention given to process and to a consideration of the impact of the ontology on other software
components or ontologies. As a result, the developed ontologies are often incompatible and
difficult to integrate. For example, UMLS Metathesaurus is the most comprehensive effort for
integrating independent/disparate medical ontologies. The integration of a new ontology into
UMLS is ad-hoc and exhaustive process that includes the following steps: automatic techniques
- mostly a combination of natural language processing, corpus processing, linguistic analysis,
etc., expert assessment – human intervention mostly for validating automatic techniques, and
auditing protocols- for verifying the correctness of the resulting system. Second, the existing
ontology building process is predominantly data intensive and construction based, often dictated
by the talent and expertise of the designer rather than using any concrete well-defined process.
For example, UMLS and FMA (Formal Model of Anatomy) comprise of millions of concepts
and relationships, where the focus is on the acquiring the domain data rather than an ontologi-
cal model that is reusable, modular and importantly, that describes the data. Third, the current
ontology development processes and knowledge representational frameworks lack an ability to
design solutions that are broader in scope i.e. they have a convoluted design and development
processes that are clearly disjoint in a conventional software modeling approach (Kuhn, 2010;
Guizzardi, 2010). Gonzalez-Perez and Henderson-Seller also state that for achieving interoper-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

able ontological systems, the ontological domain must have an approach that executes ontology
modeling and development process simultaneously (Gonzalez-Perez & Henderson-Seller, 2006).
This further supports our statement on ontology design/modeling and its existing development
methodologies.

To address these deficiencies, our prior work as shown in the bottom portion of Figure 1
(fourth horizontal block) has proposed an integrated ontology framework for HIE which includes
a need for a software design process for ontologies that uses our three ontological modeling
extensions (Saripalle, Demurjian, Algarín, & Blechner, 2013)(fifth horizontal block, Figure 1).

Our objective in this paper is to explain our preliminary ontology process (Saripalle & De-
murjian, 2011), extend the process to utilize the previous research work on ontology modeling
extensions, provide a detailed discussion of the importance of the software development process
(SDP) (Docherty, 2005) and the vital role that different software process models can play in
conceptualizing, sharing, modularizing, and reusing software artifacts across multiple setting,
and using this as a basis to propose a Hybrid	Ontology	Design	&	Development	Model	with	
Lifecycle (HOD2MLC). Historically, SDP methodologies have proven to be: efficient by reduc-

Figure	1.	A	framework	for	ontology	design	and	development

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 19

ing	latency via defining workflows, tasks, roles, etc., to be executed at specific time intervals;
promote improved	communication between divergent teams; demonstrate a degree of reliability
to be applied to other projects of similar time-scales and budget; and, hopefully result an easily	
maintainable system developed in a systematic allowing efficient debugging of problem and
performance. HOD2MLC strives to attain these same benefits when designing, developing, and
deploying ontologies from software engineering perspective.

In this paper, we propose a Hybrid	Ontology	Design	&	Development	Model	with	Lifecycle
(HOD2MLC) model by leveraging software development concepts and methodologies with the
objective of narrowing the gap between ontology design and development and the SDP. To meet
this objective, the remainder of the paper is organized into four sections. Section 2 introduces
a complex clinical scenario on health care and the role of ontologies in clinical informatics.
Section 3 provides a conceptual model of a patient medical record and background information
on our previous work on ontological modeling extensions (Saripalle, Demurjian, Algarín, &
Blechner, 2013) providing examples via the scenario of Section 2. Section 4, has a three-fold
presentation: motivation on select SDP models that have impacted our work; an overview of the
HOD2MLC that describes its nine phases (Problem	Analysis, Integration,	Knowledge	Acquisition,	
Specification,	Design,	Analysis,	Implementation,	Testing, and Maintenance	and	Documentation)
and their interactions in general terms using a combination of SDP and other software model-
ing techniques; and, a detailed review of the nine phases of HOD2MLC that demonstrates the
process with examples that build on the clinical scenario in Section 2 and OWL (Web Ontol-
ogy Language) extensions in Section 3. To place our work into its proper perspective, Section
5 introduces and reviews seven ontology development process alternatives, and compares and
contrasts them against HOD2MLC using a set of qualitative criteria. Finally, Section 6 concludes
the paper and details ongoing and planned research.

2. A CLINICAL SCENARIO OF HEALTH CARE

This section presents a realistic scenario of patient care that includes: a patient, relevant medical
problem, involved laboratory tests and results, resulting medical diagnosis, the role of involved
HIT systems in the process, motivation to fully place our work in this paper in an appropriate
context as shown in Figure 1. To begin, suppose that a 72 year old male, Mr. Smith, with a
history of type 2 diabetes presents to the emergency room (ER) complaining of shortness of
breath (SOB, also known as dyspnea) on exertion and is triaged by an ER physician and nurse.
He reports experiencing increased difficulty climbing the one flight of stairs in his house. Mr.
Smith also indicates experiencing occasional chest pressure on exertion (stable angina). He has
recently developed swelling in his ankles and feet (edema). He indicates that he takes metformin
for his diabetes and benazepril for his blood pressure. He also takes an aspirin a day because his
regular doctor told him that he should. The physical exam of Mr. Smith reveals a gentleman in
mild respiratory distress with moderate pedal (foot) and lower extremity edema (fluid in tissues).
He has a regular pulse at 90 beats per minute and blood pressure of 140/90 (mildly elevated).
Oxygen saturation5 on room air is 88% and rises to 98% when given supplemental oxygen by
nasal cannula at 2 liters/min. The diagnosis is that Mr. Smith is suffering from an exacerbation of
congestive heart failure (CHF). Further, the occasional chest pressure on exertion suggests that
he has coronary artery disease where inflammation and deposition of cholesterol in the vessel
wall results in a localized expansion of the vessel wall that can impede blood flow.

In terms of HIT, there are many systems that are involved and must be consulted. Mr. Smith
provided the ER physician with access to his PHR that had been recently initiated by the pa-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

tient’s son who was not present. Through HIE, the PHR can be utilized by the provider to find
out information on supplements or other medications that the patient has neglected to tell him
about that are accessible via the PHR to pharmacies and drug stores. A search of the regional
HIE revealed that the patient had a recent admission at another hospital for CHF; thus data must
be gathered from that EHR, his primary physicians EHR, and potentially others in support of
his ongoing care. The discharge summary from that admission indicated that the patient had
improved after 2 doses of a diuretic that increases urination and the loss of fluid decreases your
blood volume which often improves CHF symptoms and the patient had been discharged. A
query of the electronic prescription database determines that the patient never filled the Lasix
prescription, and this is confirmed by reviewing the mediations in the PHR loaded from Mr.
Smith’s pharmacy. The HIE also informed the ER physician that the patient has a documented
allergy to sulfa containing medications; the PHR may have other information on allergies or
medication reactions.

The scenario as presented in this section has the underlying aspect of information that has
been gathered for this patient from multiple data sources that have been utilized for his treatment.
From a research perspective, an almost limitless number of questions can arise when considering
Mr. Smith’s case or similar patients. A number of broad research topics (RT) can be posed that:

• RT1: Effects of a specific medical therapy on a patient’s co-morbid conditions:
 ◦ How does metformin used for glucose control in type 2 diabetics effect the incidence

and natural history of CHF and Chronic Renal (kidney) Failure or stable Angina (chest
pain successfully treated)?

 ◦ If there is an effect on any of these conditions, is type 2 diabetics dose dependent on
metformin or does the absence of any other medications alter it?

 ◦ Symptoms and Diseases with high BNP (800 pg/mL)?
• RT2: Comparative study of different diabetic therapies with CHF using various patient groups:

 ◦ What is the patient’s profile with CHF and associated medications involved for diabetic
therapies?

 ◦ What are the incidence and/or severity of CHF for diabetes patients who use the class
of hyperglecimic agents?

 ◦ Is metformin more or less effective in maintaining glucose control in type 2 diabetics
with a history of stable angina as compared to other anti-hyperglycemic medications?

Individually, each of these research topics provides a means to allow a physician or clinical
researcher to explore various aspects of a disease, its symptoms, medications, therapies, interac-
tions with other conditions, etc.

3. BACKGROUND ON ONTOLOGIES AND OWL EXTENSIONS

This section provides background information on our previous work on Web Ontology Language
(OWL) (Allemang & Hendler, 2011) extensions for Attribute, Domain Profile, and Schema
Associations (Saripalle, Demurjian, Algarín, & Blechner, 2013), and our use of the UML meta-
model as applied to OWL and the associated extensions (see bottom of Figure 1). By presenting
our prior ontology modeling work coupled with an ontology design of the scenario of Section
2, we provide a set of ontology design components as realized in the figures in this section. As
a result, these ontology design components are utilized in Section 4 to illustrate the process the
Hybrid Ontology Design & Development Model with Lifecycle (HOD2MLC)

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 21

To begin, the sample EHR UML class diagram that we will use for examples throughout
the paper is shown in the Figure 2a, and has; Person and Patient classes with their respective at-
tributes; the Immunization class for the patient’s immunization records; the Vitals class captures
all of the patient body vital signs such as blood pressure, heart rate, respirations, weight, height,
BMI etc.; and the Observation class captures any other patient medical information such as al-
lergies, interventions, lab results (captured as a group of Observations), adverse reactions, etc.
Our first extension to OWL is Attribute, which augments OWL with the capability to capture
characteristics owned by a class and define an OWL Class as an aggregation of attributes and
datatypes. We introduced a first class element OWL Attribute (owl:Attribute) and redefined the
semantics of the existing OWL Class to handle attributes. For example, Vitals and Patient are
connected using association hasVitals and Vitals has attributes effectiveTime of type IVL and
vitalValue of type Observation. Thus, classes Patient, Vitals, Observation, etc., from Figure 2a
are of type owl:Class, while the attributes attached to the class (e.g., hasName, vitalObservation,
hasEffectiveTime, has Address, etc.) are of type owl:Attribute, and the associations between
classes (e.g., hasVitals, hasImmunizationRecords, etc.) are of type owl:ObjectProperty. Figure
2b renders the OWL attribute representation.

The next set of ontology design components serve as an abstract representation of ontolo-
gies at a metamodel level and facilitates the ability to define sample ontology domain models
as ontology design components for the scenario of Section 2. Figure 3a (left, Figure 3) is the
Diagnosis Model which captures the required knowledge for identifying a patient’s conditions,
its causes and the approaches to mitigate these conditions by defining classes such as Metabolic
System Diseases, Digestive System Diseases, Cardiac System Diseases, Respiratory System
Procedure, Digestive System Medications, Fractures, Dislocations, etc., that capture the respec-
tive medical vocabulary/data and are connected via associations such as has GeneralSymptoms,
hasCardiacSymptoms, hasCardiacProcedure, causedByGeneralInjury, etc.

Similarly, Figure 3b (right, Figure 3) details the Test Model to capture knowledge on various
medical tests for analyzing patient conditions, and Figure 3c (bottom, Figure 3) has the Anatomy
Model to capture knowledge on physical characteristics of the human body. These design models

Figure	2.	EHR	model	and	OWL	attribute	representation

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

are realized in OWL using the Protégé editor6 in Figure 4a with the Diagnosis Model (Figure 3a),
Figure 4b with the Test Model (Figure 3b), and Figure 4c with the Anatomy Model (Figure 3c).

The next set of ontology design components leverage Figures 3 and 4 to abstract and define
generic	domain	specific	type	concepts, shown in Figure 5a that include: Disease (classes Metabolic
System Diseases, Respiratory System Diseases, Digestive System Diseases, etc., which are all
of type Disease); Symptom (classes General Symptoms, Cardiac System Symptoms, Respiratory
System Symptoms, etc., which are all of	type Symptom); Medication (classes Cardiac System
Medication, Respiratory System Medication, Nervous System Medication, etc., which are all
of type Medication); etc. Within these abstract types, attribute abstract concept types can be
defined, namely: hasName (pharmaceuticalName, commonName, family-name, given-name,

Figure	3.	Sample	diagnosis,	test	and	anatomy	ontology	models	represented	in	UML

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 23

etc., which are all of type hasName); and hasId (hasUId, hasDeaNumber, etc., which are all of
type hasId), etc.

The OWL	Domain	Profile (Saripalle, Demurjian, Algarín, & Blechner, 2013) enables the
user to capture these abstract types as profile	concepts as shown in Figure 5b and impose them
onto the ontology model concepts (Level M1, Figure 1) as shown in Figure 6. The OWL Domain
Profile supports the ontology OWL framework at the metamodel level by imposing the profile
concepts onto the OWL domain ontology as shown in the Figure 6a.

In order to impose the profile types onto the domain model entities we have designed and
implemented an algorithm Domain	Profile	parser that authenticates and validates the imposing
of the profile entities onto the ontology model concepts. First, the defined sample profile (Fig-
ure 5b) is loaded into the ontology editor where there the algorithm validates the profile for its
structural and semantic correctness against the ODP framework and parses the profile to identify
the defined profile abstract types. Then, the domain expert selects the types and impose them
onto the domain model entities, i.e., the Cardiac System Diseases (Figure 3a) is oftype	Disease
(Profile type, Figure 5b) as shown in the Figure 6c.

The final extension, OWL	Schema	Associations, captures associations across ontology mod-
els by interlinking ontology descriptive concepts defined in Ontology Meta Vocabulary (OMV)
(Hartmann, Palma, & Sure, 2005). OMV model for providing metadata about the ontology.
OMV provides a way to capture the metadata for an ontology including domain,	organization,	
language,	place,	version,	tools, etc. For example, this extension can be used to associate the
three models: Diagnosis,	Tests and Anatomy to one another. The Diagnosis Model (O1) (Figure
4a) has OMV concept ontologyDomain with value “Diagnosis”, the Anatomy Ontology model
O2 has ontologyDomain with value “Anatomy”, and, the Test Ontology model O3 has the concept

Figure	4.	OWL	implementation	of	the	domain	models	from	Figure	3

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

ontologyDomain with value “Test”. These OMV concepts across these individual ontology models
(O1, O2, and O3) are associated to form OWL	Schema	Associations as shown in the Figure 7 whose
implementation is shown in Figure 8. Figure 8a renders a subset of OMV concepts in OWL,
Figure 8b shows Diagnosis_Ontology”, “Tests_Ontology” and “Anatomy_Ontology” as instances
of OMV concept “Ontology”, and Figure 8c shows various properties of “Diagnosis_Ontology”
including the schema associations hasTests and effects with Test and Anatomy ontologies.

Figure	5.	Sample	abstract	theory	and	its	implementation	using	OWL	domain	profile

Figure	6.	ODP	domain	profiles	and	the	parser

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 25

4. HYBRID ONTOLOGY DESIGN AND DEVELOPMENT
MODEL WITH LIFECYCLE (HOD2MLC)

In this section, we define the various phases involved in designing and building ontologies, and
then organize these phases to propose a Hybrid Ontology Design & Development Model with
Lifecycle (HOD2MLC) model. To begin, in Section 4.1, we expand our motivation from the
introduction of the usefulness and utility of the software development process (SDP) for ontology
design and development, by examining the process in detail; this sets the context for both the
rest of this section, and the comparison of other ontology processes in Section 5. Using this as a
basis, Section 4.2 presents a high level view of HOD2MLC which contains nine phases (Problem	
Analysis, Integration,	Knowledge	Acquisition,	Specification,	Design,	Analysis,	Implementation,	
Testing, and Maintenance	and	Documentation) and the interactions among them, influenced by
the agile methodology and feature-driven development. Then, in Section 4.3, we examine each of
these phases in detail, explore their interactions with one another, and provide a comprehensive
example based on the OWL extensions in Section 3 and using Figures 2-7 supplemented with
additional material.

Figure	7.	Illustrating	ontology	schema	relationships	between	ontology	models

Figure	8.	Ontology	schema	relationships	implementation

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

4.1. Motivation of the Software Development Process

A Software	Development	Process (SDP) is a systematic procedure of developing a software
application that provides a set of phases that all stakeholders (end users, domain specialists,
designers, developers, maintainers, etc.) participate in at different times for different purposes
towards the conceptualization, specification, design, implementation, and deployment of a work-
ing system. There are many different SDP methodologies that have emerged over the history of
computing. One of the first approaches, the waterfall	model (Docherty, 2005) involve the classical
phases (requirements, design, implementation, analysis, maintenance, etc.), with the requirement
that each phase being completed before moving to the next phase. To address this deficiency,
the iterative	model (Docherty, 2005) that introduces loops and cycles among waterfall phases
allowing stakeholders to analyze and revise their solutions. Taking a leap forward from these
models was the spiral	model, a cyclical process of four stages to: identify objectives and design
alternatives, evaluate alternative and identify/deal with potential risks, develop and verify the
next level product, and review results and plan for the next iteration. More recent emphasis on
SDPs has been with the Unified Process Model (Kruchten, 2003), a conglomeration of iterative
and incremental approaches that employs use case design to focus end user participation, creating
multiple architecture and system views. Today, the agile	development	lifecycle (Craig, 2003),
also available as a unified process model, has become a dominant approach to SDP, blending the
best aspects of many different process models and expanding the scope and role of stakeholders
of all types to participate in a process that truly results in the desired application.

One of the characteristics that all of the aforementioned SDP shares are a set of phases
organized in different ways, but having similar purposes and intent across the varied process
models. The requirements	phase is intended to capture the main features and capabilities of the
intended application in a manner suitable for all stakeholders; for a clinical application, bringing
in appropriate medical professionals of all types relevant staff, and for our purposes, ontology
designers, will be vital to achieve this phase. The specifications	phase provides a clear, unambigu-
ous description of the way the components of the software should be inter-connected, utilized
and their responses to inputs ranging from normal working environment to exceptional situation;
the specification may also include formal models that are later used to measure and assess the
system. The design	phase proposes alternative solutions in terms of conceptual models or do-
main schemas to solve the problem, and provides the ability to assess and evaluate them. Many
different techniques can be employed at this phase including software architectures, software
design patterns, UML design, entity-relationship and database design, ontology design, etc.;
again, in a clinical application, stakeholders will be necessary to provide vital domain expertise.
The implementation	phase at early stages of the process can involve rapid prototyping of user
interfaces for stakeholder input transitioning to implementation of design patterns, components,
subsystems, and eventually the entire system. Throughout this process, the testing	phase allows
the software to be tested against the system requirements to see if it fits the original goals, again
ranging for stakeholder input on user interfaces, component testing, acceptance testing, etc. The	
deployment	phase may involve testing on staging servers with fake and then real data, stress testing
to gauge impact on performance for expected number of users, testing with different hardware
and software configurations, and developing appropriate manuals and training materials; in a
clinical domain this will require input from stakeholders with the requisite medical expertise.
Finally, the maintenance	phase helps the team to keep track of the systems performance, up-
dates, hardware maintenance, etc. While not an exhaustive list, it represents the phases that are
employed by many SDPs; what differs is how and when they are utilized.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 27

4.2. The HOD2MLC Model

The Hybrid	Ontology	Design	&	Development	Model	with	Lifecycle (HOD2MLC) model is an
agile model comprised of a collection of sequential and parallel phases stakeholders have to
execute as shown in the Figure 9. This process results in the definition and creating of abstract
type concepts, an ontology model, and an associated ontology vocabulary/data as seen in the
bottom box of Figure 1, and replicated in Figure 9; this represents the output of the HOD2MLC.
The agile lifecycle model is adopted as it provides adaptive planning, incremental development, a
timed iterative approach, and encourages rapid and flexible response to dynamic project changes.
HOD2MLC has a set of phases (Problem	Analysis, Integration,	Knowledge	Acquisition,	Specifi-
cation,	Design,	Analysis,	Implementation,	Testing, and Maintenance	and	Documentation) to be
explored in Section 4.3, with each phase assigned a well-defined role or responsibility which is
utilized in order to identify the best-fit software design model or approach for it role in the entire
life cycle. The HOD2MLC commences with Problem	Analysis	Phase (Phase 1) which analyzes
the issues that are need to support ontology development and applies heuristic	 abstraction	
techniques (Clancey, 1985) for assisting in problem definition, its analysis, and foundations for
other phases in the cycle. Heuristic abstraction is a framework equipped with multiple methods
(data abstraction, definition abstraction, and qualitative abstraction) which can be applied to a
range of scenarios primarily faced in Phase 1.

HOD2MLC leverages aspects of the iterative model throughout Phases 2 to 8 to assist de-
velopers to take advantage of what was learned during a previous cycle to make changes in an
incremental fashion which provides periodical partial output providing development guidance.
The Ontology	Integration	Phase searches for existing ontologies that may be used at a starting
point for the intended application. The Knowledge	Acquisition	Phase tries to gather knowledge
concepts at various levels (M2, M1& M0- Figure 1). The Specification	Phase defines concrete
boundaries to refine and scope the identified problem. The Design	Phase is the core where the
domain model is developed independent of its target language platform and employs the Feature	
Driven	Development	(FDD) (Palmer & Felsing, 2002) technique for identifying various concepts
by providing iterative and incremental	top-bottom approach allowing developers to identify con-
cepts at various levels hierarchically. The Analysis	Phase allows developers (and domain users)
to validate the domain model from the design phase with the specification; this is indicated by
the backward pointing dashed arrow between these two phases in Figure 9 and may necessitate
a revising of specification, design, and analyses phases. The Implementation	Phase realizes the
domain model from Phase 5 using a chosen knowledge framework such as RDF/RDFS, OWL,
etc., and in the medical domain would be used to provide vocabulary support, knowledge acqui-
sition, decision support, etc. The Testing	Phase is intended to explore the developed knowledge
ontology in detail, at both design and instance level; at this stage, stakeholders (medical domain
users) would play a pivotal role in evaluating the ontology and its completeness, resulting in
the potential for a feedback look back to the implementation phase. Lastly, the Maintenance &
Documentation maintains the deployed ontology and documents the whole process for future
usage; this is an active collaboration between all stakeholders.

Note that the Knowledge	Acquisition	Phase can be executed in parallel with other phases
until the Implementation	Phase, since the Implementation	Phase is responsible for implement-
ing the domain model and its vocabulary gathered along the knowledge	acquisition	phase. The
Documentation	Phase can also be executed in parallel starting from the Analysis	Phase and
ending in the Maintenance and Documentation	Phase. The life cycle model also depicts two
broad types of stakeholders User and Developer involved in various phases; in a clinical ap-
plication user could be various medical providers, their staffs, other medical personnel, medical

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

ontologists etc., while the developer may play different roles such as knowledge, specification,
design, etc. To complete the entire process, the output of the HOD2MLC process is the creation
of an ontology that consists of an ontology abstract conceptual theory, the ontology model (the
types and structure), and the ontology vocabulary (terms); all of these can be instantiated to
form a specific ontology for a particular application., e.g., one for an EHR, one for PHR, one
for a Pharmacy System, etc.

4.3. Phases of HOD2MLC

In this section, we will discuss the phases involved in HOD2MLC model as shown in Figure 9.
Our intent is to detail each phase starting from (Phase 1: Problem	Analysis	Phase) through its
completion (Phase 9: Maintenance and Documentation	Phase), the importance of the phase, in-
teraction with other phases, the usage of the phase and illustrate by using the scenario introduced
in Section 2 and Figures 2-8, complemented with additional material to fully demonstrate the
methodology’s usage in the ontology design and development process. The remainder of this
section has subsections for each respective phase.

Figure	9.	HOD2MLC:	Hybrid	ontology	design	and	development	model	life	cycle

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 29

4.3.1. Phase 1: Problem Analysis

Recall from Section 2, that the objectives was to allow data from multiple sources via HIE to be
available to clinical researchers who want to query the combined clinical repository to answer
based on multiple clinical variables such as diseases, symptoms, medications, diagnoses, etc. The
Problem	Analysis phase is the commencing point of the proposed HOD2MLC model in order to
identify and analyze the overall problem	domain (e.g., queries against combined clinical reposi-
tories) faced by the desired information system which will necessitate the development of new
ontology(s) or extending existing ontology(s) or both. Our objective in this phase is to develop
representative queries for data mining in support of clinical research using the research topics as
illustrated in Section 2 or via UML use-case diagrams that represent samples that are specific to
an instance data of the domain or a state of the ontology. Essentially, the research topics in their
broad definitions provide the means for us to elicit relevant information from intended users
in order to analyze them to formulate a domain	problem, i.e., the domain level problem which
encompasses multiple component problems. For example, the two RTs:

RT1.A: How does metformin used for glucose control in type 2 diabetics effect the incidence
and natural history of CHF and Chronic Renal Failure or stable Angina?

RT1.C: Symptoms and Diseases with high BNP (800 pg/mL)?

The aforementioned questions are targeting a specific instance/data of the ontology knowledge
that can hopefully be generalized to be used in order to formulate a boarder domain	problem
along with the respective model concepts and the vocabulary to identify the domain involved
and then association (schema associations) to provide higher level overview of the problem.
Abstraction	Techniques proposed by Clancey (1985) which is further classified into: Definitional
Abstraction - based on defined, essential, and necessary, characteristics features of the concept;
Qualitative Abstraction - form of definition involving quantitative data; and Generalization –
based on concept hierarchy, can be employed for abstracting concepts from RT’s and identify their
domains to formulate a domain	problem. As shown in the Figure 10, consider that the concepts
identified for RT1.A are: Metformin, Type 2 Diabetes, CHF, and Chronic Renal Failure. Based
on these concepts, we can first surmise that Metformin (defined as - a preferred oral anti-diabetic
drug of choice for the treatment of type 2 diabetes) is a drug involving the Medication domain.

Similarly, the concepts Type 2 diabetes, and Chronic Renal Failure involve the domains
of Disease and Symptom, which are two more of the needed domains along with Medication.
Likewise, in analyzing RT1.C that has a required BNP evaluation, this indicates that Test needs
to be added as a potential ontology domain. While applying these techniques, the designer may

Figure	10.	Applying	abstraction	techniques	on	RT’s	for	obtaining	the	domains

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

also identify various concepts (e.g., Disease, Symptom, Test, Metformin, CHF, diabetes, etc.)
useful for other phases (Phase 3 in Section 4.3.3 and Phase 5 in Section 4.3.5). Thus, the problem
analysis phase assists the designers to identify the domains and concepts involved for building
the medical knowledge system, allowing teams to gather and interact in order to discern the
appropriate ontology concepts. If one extends the above discussion to include all RTs, then the
domains required for assisting researchers to solve the problem are: Symptom, Disease, Medica-
tion, Test,	Diagnostics,	Anatomy, and Procedure.

4.3.2. Phase 2: Integration Phase

The Integration	Phase allows designers to search for existing ontology model(s) meeting the
domain(s) criteria identified in Problem	Analysis	Phase (Phase 1) and to also understand the
associations that may exist among the various ontologies. For the latter case, before building an
ontology model for the domain of Medication, the designer(s) might want consider the reuse of
the RxNorm (Liu, Ma, Moore, Ganesan, & Nelson, 2005) model standard that provides normal-
ized names for clinical drugs. Similarly, for the domains of Symptom, Disease, and Procedure
the ontology designers can refer to standard medical systems such as: ICD, UMLS, LOINC,
etc. The designers can use the RT questions and their interdependencies in order to establish
associations, which are shown in Figure 8. For instance, for RT1.A the designer and the medical
user have to understand the association between the domains Test, Disease, and Symptom, as
well as their types and domain modeling elements (Section 3.3).

4.3.3. Phase 3: Knowledge Acquisition

The Knowledge	Acquisition	Phase primarily involves designers interacting with the medical
users such as clinical researchers, physicians, etc., as they attempt to discern all of the required
knowledge across multiple resources in order to determine: the appropriate model concepts
of the identified domains (Phase 1) at multiple levels; the vocabulary required for assisting in
ontology model(s) development; and the way that the associations impact knowledge usage
(Phase 2). This phase defines a Glossary	of	Terms (GT), a group of tables to encompass types,
classes,	associations,	attributes, and instances (Sections 3.2 and 3.3) for the identified focus
domains (Phase 1). The GT can be built by reusing methods proposed by Mariano Fernandez,
et.al. (1997) - the methodology builds GT through informal textual analysis from texts and hand-
books, formal and informal interviews with domain experts, etc. Asunción Gómez-Pérez, et.al.
(1996) developed a data dictionary (DD) which is similar to GT which captures knowledge of a
domain in terms of concept name, synonyms and acronyms, description, class features, instances,
etc. This Knowledge	Acquisition phase can be performed in parallel with Specification, Design,
and Analysis	Phases. While accumulating concepts from various sources, the designer may also
want to document the concept in terms of the source origin, definition, references, usage, etc.
RTs are vital to this phase, since it is not simply the information that is critical (Phases 1 and 2),
but also the way the clinical researcher understands the information and any semantics s/he may
be applying as a result of his/her own domain knowledge and practice in caring for patients as
a physician over a long time period.

4.3.4. Phase 4: Specification

The Specification Phase is an important phase in the ontology development life cycle, similar
to any software development life cycle models. In this phase, the ontology model(s) designer(s)
interact with the end users such as medical experts, physicians, nurses, etc., and other potential

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 31

stakeholders (e.g., HIT vendors) in order to defines the scope of the ontology models based on
the domains identified (from Phase 1), their associations (Phase 1), and the critical supplemental
knowledge (Phase 3). The scope assists the designers to focus on the domains without veering
out of the final goal. For example, while Phase 1 identified Disease as one of the domains, this
phase would define boundaries and specifications on Disease:

1. The ontology models will capture diseases in the domains of Mental Disorders, Respiratory
System, Cardiac System, Circulatory System, Nervous System, Metabolic System and Skin
related diseases to arrive at a solution akin to the domain model shown in Figure 3a;

2. The identified Diseases domain (Phase 1) concepts must be associated with concepts from
the domains of Symptoms, Medication, Diagnostic and Test which are the associations in
Figure 5 at detailed level, and the associations in Figure 9a at a higher conceptual level;

3. All the Disease entities must have a UID (Unique Identifier) and MedicalName to capture
its scientific name and general common name.

In general, the specification document is a cooperative and collaborative effort by all of
the involved users in ontology model(s) design and development with significant oversight and
interaction with designers. From a process perspective, the specification is evolved over time by
these stakeholders using incremental and iterative approach. During this phase, the Knowledge	
Acquisition	Phase (see Section 4.3.3) can be executed in parallel to capture vocabulary at vari-
ous levels; we refer the reader back to Figure 9 to see the HOD2MLC process. The RT’s (Sec-
tion 2) might assist the ontology designers and involved users in defining specifications on the
knowledge system as RT’s illustrate the concepts and interactions that may occur between them.
For instance, RT1.A would like to know the impact of Metamorfin (a Metabolic Medication)
on various diseases such as Type 2 Diabetes (a Metabolic Disease), CHF (a Cardiac Disease),
stable Angina (a Respiratory Disease), etc. RT1.A will assist the designer and involved users to
specify any mandatory/optional interactions between Metabolic Medication and Diseases domain
modeling elements (Figure 5).

4.3.5. Phase 5: Design

The Design	Phase is the core phase in the development life cycle, where the designer(s) identifies
the concepts involved in the domain from the GT table built in the Knowledge	Acquisition	Phase.
The concept encompassed can be classified into two types: Abstract	Type	concepts (abstract
theory, Figure 5) and Domain	Model	concepts (see Figures 3, and 4). In software engineering, the
process of defining models/concepts at various levels is called Meta	Process	Modeling	(MPM)
(Rolland, 1998). MPM is a type of metamodeling used in software engineering for developing
modular and reusable process models as shown in Figure 11. The entities developed at the meta-
level (MM1, MM2, and MM3 in Figure 1) are utilized for developing domain process models
(DM1, DM2, and DM3) which are in turn employed to capture instance data (ID1, ID2, and ID3)
as previously shown in Figure 6. For example, the abstract theory and profile entities (Figure
5) can be placed at the MPM layer. The ontology domain models in the Figures 3 and 4 can be
placed at the DPM layer. The Model	Concepts are required for developing the domain model
or schema for the ontology.

In order to represent the abstract theory and models at multiple levels, top-bottom decom-
position of the domains identified in the Problem	Analysis	Phase (Phase 1) is performed by
employing Feature	Driven	Development	(FDD) as shown in Figure 12. FDD is a model-driven
agile software process comprising of five activities: overall	model where a high-level walkthrough

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

of the domain scope of the system and its context is performed; Build	Feature	List where a de-
tailed domain walkthroughs are performed to decompose the domains into small groups which
are presented for discussions where a feature can either be a class or a method call and in our
model it’s a concept; Plan	By	Feature where the generated features are prioritized for further
the development plan; Design	By	Feature where a programmer selects a small group of features
that are to be developed within two weeks; and, Build	By	Feature to develop the actual code
for their classes.

Similarly, the FDD approach is oriented for HOD2MLC as shown in Figure 12 and the fol-
lowing steps have to be followed: Step 1, a higher-level walkthrough of the domains identified
from Problem	Analysis	Phase (Phase 1) should be performed to identify type concepts such as
Disease, Medication, Symptom, hasSymptom, hasMedication, uid, hasName, etc., illustrated in
Section 3.3 with The intent to define an abstract theory shown in Figure 5a or search and reuse
existing abstract theory; Once the abstract theory and concept types have been defined, in Step 2
they can be decomposed into domain model classes (with respective attributes and associations)
such as Respiratory System Diseases, Cardiac System Diseases, Metabolic System Diseases,
etc., to define a ontology model(s) as shown in Figures 3. In Step 3, once the ontology model(s)
have been built, the models can be described using OMV concepts and then be interconnected
with one another to form ontology schema associations (see Figure 9).

The iterative nature of the cycle will assist designers in learning from the earlier phases
and this resulting incremental process provides the degree of progress and partial output to the
end users. The cycle is stopped once an agreement has been reached on structural and semantic
aspects of the ontology model(s). The abstract theory (Figure 5a), ontology domain models
(Figure 3) and the schema associations (Figure 8) developed using FDD approach at various
levels (Figure 12) in this phase, provide structure and semantics to capture medical data. One
final note, the HOD2MLC model has two feedback loops in the process (see Figure 9) that pro-
mote an iterative and incremental design. The first feedback loop involves the Analysis	Phase,	
Specification	Phase and Design	Phase. This loop provides flexibility to the overall lifecycle in
terms of any dynamic changes to the specifications or the design model (e.g., to the RTs). For
example, after the specifications have been written and the developers start to build the model,
the user may need to add a specification (upon already defined specifications in Phase 4) such
as, “Urine Test” must be included in the Tests domain consideration due to the presence of a new
RT question. The feedback loop will help the designer to implement the new specification to

Figure	11.	Layered	architecture	of	Meta-Process	Modeling	(MPM)

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 33

the ongoing/developed domain model and analyze the new model without repeating the whole
life cycle. As the Knowledge	Acquisition	Phase runs in parallel with these phases, the domain
vocabulary can be acquired without revisiting the actual phase.

4.3.6. Phase 6: Analysis

The Analysis	Phase is another important phase that has to be executed before implementing the
abstract theory (Figure 9a) and developed domain model(s) (Figures 5, 6, and 7). In this phase,
the designers and the end users revisit the Specification	Phase to validate the design models
developed in the Design	 Phase. The involved users (clinical researchers, domain experts,
physicians, etc.) might also validate the domain model(s) to check if all the required semantic
knowledge is captured. For instance, the domain expert will test the EHR model in Figure 3
and ontology models Figure 5, 6 and 7 against the RT’s and their respective questions (RT1.A)
in Section 2 and also verify if the general problem identified in the Problem	Analysis	Phase
(Phase1) has been addressed. The developers might also check: the software principle modular-
ity to verify if the developed conceptual abstract theory and domain models are simpler enough
for domain expert understanding and portability; and, the software quality reusability to see if a
conceptual model(s) can be reused in a different environment setting (by a different HIT system
or by a new RT). These indicators don’t have any measurable scale and is completely depended
on developer’s perspective and experience. The feedback loop involving Specification,	Design
and Analysis	Phases as given in Figure 14 will bolster an incremental learning process, where
the designers and end users can learn from the previous cycle. The Knowledge	Acquisition in-
sures that defined knowledge and semantics in the domain model is appropriately structured for
specifying instances (Phase 7).

4.3.7. Phase 7: Implementation

The Design	Phase provides the user with structure and semantics of the proposed solution to
solve the Overall	Problem and the Analysis	Phase provides the feedback on abstract theory and
domain model(s). However, in the realm of ontologies, an initial final solution is in the form of

Figure	12.	Feature	driven	development	for	ontology	development

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

a domain vocabulary and is implemented using a formal language framework. For the domain
vocabulary, we can use the Glossary	of	Terms (GT) developed in Knowledge	Acquisition	Phase
responsible for gathering all of the useful and potentially usable domain knowledge and its
meanings in terms of definition, usage, references, comments, etc. The sample GT table built
for this life cycle model captures the medical vocabulary/data such as Fever, Redness of Eye,
Cough, Headache, etc. (e.g. instances of General Symptoms, Figure 3a or Figure 4a) and other
information such as the concepts definition, synonyms, etc. obtained from various medical
sources (as discussed in Phase 2). This documentation is captured as rdfs:comment, rdfs:Label,
etc. in the ODP Profile and OWL domain ontology from Section 3.3.

At this point, the designers have agreed to abstract type concepts and ontology model(s)
which needs to be realized in a formal target language. Further, we are platform independent
from an ontology modeling perspective, and now is the time to evaluate different implementation
alternatives such as RDF/RDFS, OWL, UML, a simple database schema for is-a type vocabu-
lary, etc. However, if the designers adopt Meta-processing	modeling (Phase 5), the frameworks
that support such a multiple layered architectural approach are UML profile and OWL	Domain	
Profile (ODP) (Section 3.3); other implementation approaches are likely insufficient to do a lack
of modeling abstraction and complexity. In our current scenario: the abstract theory obtained
from FDD approach (Figure 12, Step 1) illustrated in Figure 5; the domain ontology models
in Figure 3, are implemented using OWL as shown in Figure 4 using Protégé ontology editor;
the dependencies in Figure 12 illustrate the OWL schema associations between the ontology
models is implemented as shown in Figure 8 using the same Protégé editor. Thus, as proposed,
the output of the HOD2MLC model are the ontology abstract theory (and its type concepts),
ontology domain model(s), ontology schema associations between the ontology models, and
ontology vocabulary as shown in the Figure 9 and Figure 1.

4.3.8. Phase 8: Testing

The Testing	Phase carries out a technical judgment of the ontology model(s) as realized in the
chosen implementation alternative (see Section 4.3.7) by assessing the target software environ-
ment and its associated documentation. Testing can be carried out using the various proposed
previous works such as: OWL Debugger and Repair framework for testing OWL based ontolo-
gies proposed by Kalyanpur (Kalyanpur, 2006). The implemented OWL Ontology models can
also be tested using SPARQL (Prud’hommeaux & Seaborne, 2008) querying language for query
accuracy. This is particularly true in regards to all of the aforementioned RTs and their ques-
tions in Section 2. This testing process for the scenario (RTs) is imperative, since it can identify
situations and questions that aren’t support and be able to cycle back to the appropriate phase
in HOD2MLC in order to revisit as much of the process as needed to address any deficiencies.

The second feedback loop in HOD2MLC is between the Implementation	Phase and Testing	
Phase, allowing designers to rectify the developed OWL ontology models for any inconsistency.
For example, in larger ontologies, the user can define CHF and Metabolic	Disorders to be disjoint
(i.e., an instance or real world object can’t belong to both of the classes at the same time). The
Testing	Phase identifies these problems and the feedback loop allows the designer to fix these
implementation issues again without another iteration of the lifecycle. This loop is important
since end users are playing a major role in both phases, which could result to redefining an RT,
adding questions, or adding RTs, all of which would not just impact here, but revert to the first
feedback loop in Section 4.3.5. History has clearly taught us that increments and iterations is the
norm; the exception of a true waterfall model simply does not work in practice.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 35

4.3.9. Phase 9: Maintenance and Documentation

The Maintenance and Documentation	Phase is where the developed ontology has to be monitored
for smooth and efficient performance of the knowledge system. The system administrators are
primarily responsible for monitoring the system and as the system is continuously running, hence
this represents the maintenance aspect of this phase. This phase is also responsible for main-
taining version control for the ontologies developed. Various tools have been proposed for this
purpose such as Redmond, et al. (Redmond, Smith, Drummond, & Tudorache, 2008), Sungawa
(Sunagawa, Kozaki, Kitamura, & Mizoguchi, 2003), etc. that are all suitable to some degree
to manage information in repositories that can allow roll-back and roll-forward in the event of
changes or additions. The documentation aspect of this is responsible for detailed narrative report
of the ontology concepts, axioms, and instanced and the primary contributor for this documenta-
tion is the Knowledge	Acquisition	Phase. The Documentation aspect of this is initialized with
the Implementation	Phase as this phase formally finalizes the concepts used in the ontology
model(s) and runs in parallel with Testing	Phase. The documentation of the ontology concepts
is maintained both in textual format and encoded in the ontology model(s) as annotation using
OWL annotation properties such as rdfs:comment, rdfs:isDefinedBy, rdfs:label, etc. Note that
the documentation must also contain the definition of the problem (as presented in Section 2) as
well as any additional stakeholder knowledge or semantics that have been defined in this process.

5. ONTOLOGY DEVELOPMENT ALTERNATIVES

In this section, we will discuss a select set of prominent ontology development life cycle models
and techniques that have appeared in the literature, with an emphasis on the way that our approach
compares. To accomplish this, in Section 5.1, we review seven other ontology models, and in the
process, point out their similarities and differences against HOD2MLC in Figure 9. Using this as
a basis, in Section 5.2, using phases, we will compare and contrast these models to HOD2MLC
with the objective of understanding if the model completely (Full) supports the corresponding
phase in HOD2MLC, partially (Partial) supports corresponding the phase in HOD2MLC, or is
unable (None) supports the corresponding phase in HOD2MLC.

5.1. Ontology Life Cycle Alternatives

This section details seven ontology development life cycle models and methodological ap-
proaches for building and maintaining ontologies. The first approach by Fernández, et al. (1997),
has proposed the Methontology model which is composed by employing the following phases:
specifications (similar	to	Phase	4	in	HOD2MLC);	knowledge	acquisition phase which allows
the developers to explore various source such as texts, handbooks, interviews, etc. for extracting
knowledge for developing ontology vocabulary (similar	to	Phase	3	in	HOD2MLC); conceptualiza-
tion phase is when the developers will structure the domain vocabulary and develop a conceptual
model for the ontology (similar	to	Phase	5	in	HOD2MLC); and, integration,	implementation and
evaluation (similar	to Phases 2,	7	&	8	in	HOD2MLC). The author chose an Evolutionary	Model
after contrasting it against Waterfall and Spiral models, and justified the choice by stating that
the proposed model will help in expanding the ontology when needed. However, the proposed
model and the phases leave crucial unanswered questions such as: How are the different phases
inter-connected to form the model? and Are there any iteration between phases or whole model?
Also, while enumerating the various phases in their work, the integration phase is responsible
for reusing related domain ontology schema or conceptualization follows the conceptualization

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

phase of the model, and as result, this renders the integration phase inefficient, as the integration
phase is responsible for searching for existing conceptual models, look for reusable modules and
use the modules in the ongoing development.

The second approach by Gomez-Perez, et al. (2006) (Gonzalez-Perez & Henderson-Seller,
2006), proposed a method not a	complete	development	cycle for an ontology with the following
steps. First, their work develops a requirement and specification document (similar	to	Phases	
1	and	4). Second, they conceptualize the domain terminology by constructing the following
tables: Data	Dictionary (similar	to	Phase	3	in	HOD2MLC) which identifies domain classes and
instances; Concept	Classification	Tree which groups the identified concepts; Tables	of	Constants
which list all of the constants of the domain; Tables	of	Instance	and	Class	Attributes that lists
all classes and instances of the domain; and, Tables	of	Formulas which describes formulas used
to infer numerical values of attributes. However, much of this information is instance-based, as
opposed to our highly focused abstract type and schema modeling approach. Further, the steps
enumerated in the method are similar to waterfall model where the methodology phases are
executed sequentially without any feedback loop or iteration and thus inheriting the drawbacks
of the waterfall model.

The third approach by Uschold, et al. (1996) (Uschold & King, 1996) and Uschold (1998),
proposed the Enterprise Ontology (EO) project which consists of four phases: purpose, building,
evaluating and documentation (similar	to	Phases	1,	7,	8 & 9	in	HOD2MLC). In their first phase,
the purpose of the ontology is identified, i.e., to find out why the ontology is being built and
what its intended uses are, equivalent to requirements phase. In the second phase, there is the
building of the ontology itself which is divided into three parts: capture, coding and integrating
which is equivalent to combination of knowledge	acquisition and implementation phases. In the
evaluation phase, the intent is to check that the ontology fulfills the requirements and that it does
not contain any unnecessary things, which is same as our Analysis phase. Their last phase is
the documentation phase in which the ontology should be documented in some way. However,
the work doesn’t provide any model as to the way that the phases are connected and no good
guidelines published as any optimal way to achieve the second phase.

The fourth approach Gruninger, et al. (1995) (Grüninger & Fox, 1995) have proposed
TOVE project whose primary goal is to answer enterprise queries to existing or future usecase
scenarios. Based on these scenarios, a set of questions named informal	competency	questions
is raised that the ontology has to answer (similar	to	Phase	1	in	HOD2MLC). The motivating
scenario and competency questions (similar to RT’s) provide the developer with the information
needed to develop or extend the ontology, i.e., the set of questions form the requirement phase.
The next step is to specify the terminology of the ontology by using first-order logic forming
the conceptualization and implementation phase (similar	to	Phases	4 & 7	in	HOD2MLC). The
author details the various phases a developer has to address for building an ontology, but doesn’t
provide a life cycle or a model connecting these various phases.

The fifth approach, also by Uschold (1998) (Uschold, The Enterprise Ontology, 1998),
presents a unified methodology by combining methodologies from the EO and TOVE projects.
The first step is to define the purpose of the ontology which can be done in several ways, e.g. to
identify the intended users, or as in the TOVE project with motivating scenarios and competency
questions, to form the user requirements document (similar	to	Phase	1	in	HOD2MLC). In the
conceptualization phase, the developer should decide what level of formality the ontology has
to have and find the concepts and the relations among them (similar	to	Phase	5	in	HOD2MLC).
The author describes four different approaches for constructing the ontology. First, use an ontol-
ogy editor to define terms and axioms. Second, do the previous steps and then begin a formal
encoding. The third approach is to produce an intermediate document that consists of the terms

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 37

and definitions that appeared in the previous step; this document can be the final result, or be
specification of the formal code or its documentation. The fourth and final approach is to identify
formal terms from the set of informal terms. Finally, the approach has a revision cycle, where the
developed ontology is compared to the competency questions or the user requirements (similar	
to	Phases	8 & 9	in	HOD2MLC). Similar to the previous work, the author doesn’t provide any
model interconnecting the phases. Again, there is a focus on creating the instance of the ontol-
ogy very early in the process, where our approach defers this so that an ontology model with a
schema can be defined and then potentially reused.

The sixth approach by Noy, et al. (2001) (Noy & McGuinness, 2001) describes a way to
develop an ontology iterative methodology starting with rough concepts and then revising and
filling in the details. The first step in their suggested methodology is to determine the domain
and the scope of the ontology fulfilling the requirements phase (similar	to	Phases	1 & 4	in	HOD-
2MLC). The second step is to consider whether existing ontologies are available to use, and if so,
the way to utilize them (similar	to	Phase	2	in	HOD2MLC). A list of all the terms that could be
needed or used is produced in the third step. The class hierarchy is represented using an “is-a”
relation, siblings should have the same level of generality, and also guidelines regarding when to
introduce new classes or instances are given. Now the classes are defined, i.e., the terms and the
relations, in the fourth step, the properties of the classes need to be specified (attributes) (similar	
to	Phase	5	in	HOD2MLC). One important task in this step is to check whether some relations
are inverse or not (e.g., boolean operators in description languages such as Frames, OWL, etc.),
and whether a default value for an attribute could be useful. After this, in the next step, the value
type of both the classes and the class properties are defined, this includes cardinality, domain and
range. Finally, in the last step, the individual instances are created. Their work is on the border
between instance and typed based approaches to ontology design and development.

Finally, the approach of UPON (Nicola, Missikoff, & Navigli, 2005) is a methodology that
adopts a unified	process for ontology development. The methodology has cycles, phases, itera-
tions, and workflows. Each cycle consists of four phases (inception, elaboration, construction,
and transition) and results in the release of a new version of the ontology. Each phase is further
subdivided into iterations consisting of five workflows: requirements, analysis, design, imple-
mentation and test (similar	to	Phased	1,	6,	5,	7 & 8	in	HOD2MLC). Workflows and phases are
orthogonal in that the contribution of each workflow to an iteration of a phase can be more or
less significant. The unified approach is a generic software development methodology adopted
for designing any software application. The authors simply adopt the process towards ontology
development without evaluating if all of the cycles and iterations are required for developing
robust ontology models. Similar to the previous work, UPON is on the border between instance
and typed based approaches to ontology design and development.

5.2. HOD2MLC vs. Ontology-Based Alternatives

This section presents our proposed HOD2MLC and its nine phases (see Section 4.3) which is
compared and contrasted with the seven ontology alternatives presented in Section 5.1. We
take a qualitative approach in making our assessment, and we are biased towards HOD2MLC
which is broader in its approach to include abstract concepts, types, models, and schemas, and
as a result has more phases as compared to the seven alternatives. To compare these models, we
define three qualitative criteria to evaluate: None – the methodology does not support the phase;
Partial - the methodology may have partial implemented the phase; and Full – the methodology
has the phase in its life cycle; Table 1 summarizes this discussion.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

From Table 1, all of the alternatives fulfill the problem	analysis	phase either through re-
quirements generation, usecase scenarios (Uschold & King, 1996), formulating competency	
questions (Uschold, 1998; Grüninger & Fox, 1995; Uschold & King, 1996), or through data	
abstraction. The ontology	integration	phase is not given prominence in any alternatives except
TOVE, which is primarily responsible for reuse of existing ontologies. The knowledge	acquisi-
tion	phase is the most focused phase in all of the alternatives except UPON, as they all maximize
the ontology domain vocabulary. The seven alternatives either combine the specifications with
other phases, or assume they are given to build the ontology, with Methonotology and UPON
with dedicated phase for defining concrete specifications, but again contrasting to our work with
a more instance based approach. HOD2MLC also has a focused specification	phase primarily
for defining boundaries and additionally for analyzing the developed ontology domain model.
The Design	phase has varied importance across alternatives, achieved in EO Project, TOVE,
NOY, and UPON, primarily centered on developing domain models by using metamodels such
as UML, RDF/RDFS, OWL, etc., HOD2MLC uses a layered architecture (Figure 10) and FDD
(Figure 11) for designing domain models and the target implementation is our extensions to
OWL (see Section 3). The Analysis	phase, a high priority in HOD2MLC to validate the domain
model with the specification phase, has limited consideration by other the alternatives except
UPON. The implementation phase is not taken into consideration in all but Uschold (1998)
and Uschold, et al. (1996), with the ontology realized at some point, without a consideration
of timing. All of the alternatives have no formal testing except UPON, while HOD2MLC uses
various frameworks for evaluating and testing the realized ontology. Various alternatives take
different approaches for maintaining and documenting the developed ontology, as there are no
set standards for executing them.

Table	1.	Evaluation	of	ontology	methodologies	alternatives	against	HOD2MLC	phases

Phases Ontology Life Cycle Models

Methontology Fernandaz EO
Project

TOVE Uschold Noy UPON HOD2MLC

Problem Analysis Partial Full Full Full Full Full Full Full

Ontology
Integration

Partial None Partial Full None Partial None Full

Knowledge
Acquisition

Full Full Full Full Full Full None Full

Specifications Full None Partial Partial Partial Partial Full Full

Design Partial Partial Full Full Full Full Full Full

Analysis None None Partial None None None Full Full

Implementation Full None Full Partial Partial Partial Full Full

Testing None None None None None None Full Full

Maintenance /
Documentation

Partial None Partial Partial None None None Full

Model Adopted Evolutionary None None None None Iterative Unified
Process

Agile
Process

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 39

6. CONCLUSION AND ONGOING RESEARCH

This paper has presented our work on a the Hybrid	Ontology	Design	&	Development	Model	with	
Lifecycle,	HOD2MLC which leverages an agile software process in order to design ontologies
at a more abstract and conceptual level, upgrading the ontology creation process from one that
is data intensive to an approach with an emphasis on modeling and design. The work towards
software development process for ontologies has been motivated by our examination of the health
care domain, where many of the HIT systems (EHRs, PHRs, etc.) that need to interoperate have
system specific ontologies that makes information difficult to exchange. This was discussed in
detail with the clinical scenario that was presented in Section 2 that included the evolving role
of ontologies in HIT and health information exchange. In support of this paper, we have lever-
aged our work briefly reviewed in Section 3 that has extended OWL (Saripalle, Demurjian,
Algarín, & Blechner, 2013) with a UML meta-model and associated modeling concepts. Using
this as a basis, in Section 4, we presented HOD2MLC in detail, explaining its overall process
and detailing each of the phases and their inter-relationships. To facilitate the discussion, we
utilized the clinical scenario and the research topics (and associated questions) to be posed by
a clinical researcher, coupled with the associated ontology design that was presented in Sec-
tion 3 based on the scenario. As a result, the discussion is Section 4.3 clearly demonstrates the
process oriented nature of our work in support of creating ontologies at a conceptual or model
level that are reusable. To place our work into its proper perspective, in Section 5, we reviewed
seven other ontology development models and compared and contrasted these efforts to our
own work. In summary, HOD2MLC takes our current work Saripalle, et al. (2013), Saripalle, et
al. (2011) to the next level by casting our extensions as software engineering artifacts, placing
them in a position to be shared by a wide range of stakeholders for ontology definition (domain
conceptualization and vocabulary) that promote a solution that is created, imported, exported
and re-used using different frameworks, tools and techniques.

In terms of related work, we are proceeding in a number of areas. First, we have worked
on extending ontologies with a modeling construct akin to software design patterns, and have
published preliminary results on the work (Saripalle & Demurjian, 2011). We are interested in
seeing if ontology knowledge patterns can be defined akin to software creational design patterns,
but augmented with semantics. These ontology patterns can then be reused at an even higher
level of abstraction, i.e., akin to Model View Controller (MVC), there may be patterns about
symptoms, diagnosis, and treatments that are more abstract and semantically enhanced. Second,
we are working on enhancing the design and development of our OWL Domain Profile (ODP)
framework as presented in Section 3.3 as an extension to Protégé Ontology editor (which can
create/load/save various ontology formats such as Frames, RDF/RDFS, OWL, etc.) and are also
working on a Domain Profile parser algorithm which essentially authenticates and validates the
imposing of the profile entities onto the ontology model concepts. The ODP extension is com-
plaint with Protégé Java framework and we are also planning to define a Java API for accessing
ODP’s from an external Java based application, and on extending the ODP framework UI to
define ontology patterns using the defined ODP concepts. Thirdly, we have also implemented
owl:Attribute extension (Section 3.2) by extending the Protégé Ontology editor to define classes
similar to UML classes. Currently, our focus is to define Ontology Architectural Patterns (OAP)
which governs the overall architectural design and development of the ontology models and
associated ontology-based system. These ontology architectural patterns can be compared to
software structural design patterns which ease the architectural design issues by identifying ef-
ficient ways to realize interactions between involving entities. The research will also include a
tool for implementation of the proposed OAP’s on developed ontology models.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

REFERENCES

Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist, Second Edition: Effective
Modeling in RDFS and OWL. (2nd, Ed.) Morgan Kaufmann.

Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating Biomedical Terminol-
ogy. Journal	Nucleic	Acids	Research, 32(1), 267–270. doi:10.1093/nar/gkh061 PMID:14681409

Boone, K. (2011). The	CDA	book. Springer. doi:10.1007/978-0-85729-336-7

Clancey, W. J. (1985). Heuristic classification. Journal	 in	 Artificial	 Intelligence, 27(3), 289–350.
doi:10.1016/0004-3702(85)90016-5

Craig, L. (2003). Agile	and	Iterative	Development:	A	Manager’s	Guide (1st ed.). Addison-Wesley Professional.

Demurjian, S., Saripalle, R., & Behre, S. (2009). An Integrated Ontology Framework for Health Informa-
tion Exchange. Proceedings	of	21st	International	Conference	on	Software	Engineering	and	Knowledge	
Engineering, (pp. 575-580). Boston.

Docherty, M. (2005). Object-Oriented	Analysis	and	Design:	Understanding	System	Development	with	
UML	2.0. Wiley.

Gonzalez-Perez, C., & Henderson-Seller, B. (2006). An Ontology for Sofware Development Methodolo-
gies and Endeavours. In C. Coral, F. Ruiz, & M. Piattini (Eds.), Ontologies	for	Software	Engineering	and	
Software	Technology. Springer. doi:10.1007/3-540-34518-3_4

Grüninger, M., & Fox, M. (1995). Methodology for the Design and Evaluation of Ontologies. Proceeding	
of	Workshop	on	Basic	Ontological	Issues	in	Knowledge	Sharing.

Guizzardi, G. (2010). Theoretical foundations and engineering tools for building ontologies as reference
conceptual models. Semantic	Web, 1, 3–10.

Hartmann, J., Palma, R., & Sure, Y. (2005). OMV– Ontology Metadata Vocabulary for the Semantic Web.
Proceeding	of	International	Workshop	on	Ontology	Patterns	for	the	Semantic	Web.

Kaihong, L., Hogan, W. R., & Crowley, R. S. (2011). Natural Language Processing Methods and Systems
for Biomedical Ontology Learning. Journal	of	Biomedical	 Informatics, 44(1), 163–179. doi:10.1016/j.
jbi.2010.07.006 PMID:20647054

Kalyanpur, M. (2006). Ph.D.	Disseration	-	Debugging	and	Repair	of	OWL	ontologies. University of Maryland.

Konstantinou, N., Spanos, D.-E., & Mitrou, N. (2008). Ontology and Database Mapping: A Survey of
Current Implementations and Future Directions. Journal	of	Web	Engineering, 7(1), 1–24.

Kruchten, P. (2003). Rational	Unified	Process:	An	Introduction. Addison-Wesley Professional.

Kuhn, M. (2010). Modeling vs Encoding for semantic web. Journal	of	Semantic	Web-Interoperability,	
Usability. Applicability, 1(1), 11–15.

Liu, S., Ma, W., Moore, R., Ganesan, V., & Nelson, S. (2005). RxNorm: Prescription for electronic drug
information. IEEE	IT	Professional, 7(5), 17–23. doi:10.1109/MITP.2005.122

Nicola, A., Missikoff, M., & Navigli, R. (2005). A Proposal for a Unified Process for Ontology building:
UPON. Proceeding	 of	 16th	 International	 Conference	 on	 Database	 and	 Expert	 Systems	 Applications.
doi:10.1007/11546924_64

Noy, N., & McGuinness, L. (2001). Ontology	Development	101:	A	Guide	to	Creating	Your	First	Ontology.
Stanford Knowledge Systems Laboratory.

Palmer, S. R., & Felsing, J. M. (2002). A	Practical	Guide	to	Feature-Driven	Development (1st ed.). Pren-
tice Hall.

http://dx.doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/pubmed/14681409
http://dx.doi.org/10.1007/978-0-85729-336-7
http://dx.doi.org/10.1016/0004-3702(85)90016-5
http://dx.doi.org/10.1007/3-540-34518-3_4
http://dx.doi.org/10.1016/j.jbi.2010.07.006
http://dx.doi.org/10.1016/j.jbi.2010.07.006
http://www.ncbi.nlm.nih.gov/pubmed/20647054
http://dx.doi.org/10.1109/MITP.2005.122
http://dx.doi.org/10.1007/11546924_64

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015 41

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL	Query	Language	for	RDF. Retrieved from http://
www.w3.org/TR/rdf-sparql-query

Redmond, T., Smith, M., Drummond, N., & Tudorache, T. (2008). Managing Change: An Ontology Version
Control System. Proceeding	of	5th	International	Workshop	of	OWL	Experiences	and	Engineering	(OWLED).

Rolland, C. (1998). A Comprehensive View of Process Engineering. Proceeding	of	the	10th	International	
Conference	on	Advanced	Information	Systems	Engineering, (pp. 1-24).

Saripalle, R., & Demurjian, S. (2011). Towards a Hybrid Ontology Design and Development Life Cycle.
Proceeding	of	2012	International	Conference	on	Semantic	Web	and	Web	Services, (pp. 45-52). Las Vegas.

Saripalle, R., Demurjian, S., Algarín, A., & Blechner, M. (2013). A Software Modeling Approach to Ontol-
ogy Design via Extensions to ODM and OWL. International	Journal	on	Semantic	Web	and	Information	
Systems, 9(2), 62–97. doi:10.4018/jswis.2013040103

Saripalle, R., Demurjian, S., & Behre, S. (2011). Towards Software Design Process for Ontologies. Pro-
ceeding	of	1st	International	Conference	on	Software	and	Intelligent	Information.

Sunagawa, E., Kozaki, K., Kitamura, Y., & Mizoguchi, R. (2003). An Environment for Distributed Ontol-
ogy Development Based on Dependency Management. Proceeding	of	2nd	International	Semantic	Web	
Conference, (pp. 453-468). doi:10.1007/978-3-540-39718-2_29

Uschold, M. (1998). The Enterprise Ontology. Journal	of	The	Knowledge	Engineering	Review, (pp. 31-89).

Uschold, M., & King, M. (1996). Building Ontologies: Towards a Unified Methodology. Proceeding	of	the	
16th	Annual	Conference	of	the	British	Computer	Society	Specialist	Group	on	Expert	Systems.

ENDNOTES
1 Logical Observation Identifiers Names and Codes, http://loinc.org/
2 International Classification of Diseases, http://www.who.int/classifications/icd/en/
3 A measurement of the amount of oxygen being carried in the blood, normally around 98%
4 Protégé Editor, www.protege.stanford.edu, 2015

http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query
http://dx.doi.org/10.4018/jswis.2013040103
http://dx.doi.org/10.1007/978-3-540-39718-2_29
http://loinc.org/
http://www.who.int/classifications/icd/en/
http://www.protege.stanford.edu

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of Information Technology and Web Engineering, 10(2), 16-42, April-June 2015

Rishi	Kanth	Saripalle	received	his	PhD	in	Computer	Science	&	Engineering	from	University	
of	Connecticut,	under	the	supervision	of	Dr.	Steven	A.	Demurjian.	His	research	interests	are	
primarily	in	biomedical	and	health	informatics	modeling,	tools	and	frameworks,	software	engi-
neering	and	modeling,	ontology	design	and	development,	clinical	data	engineering,	and	secure	
software	engineering.	His	thesis	focused	on	imposing	software	engineering,	modeling	and	life	
cycle	concepts	on	ontologies,	with	the	end	purpose	of	defining	a	software	engineering	based	
approach	 to	 design	and	development	 of	 ontologies	 to	 ease	 semantic	 interoperability	 issues.	
Dr.	Saripalle	has	received	his	Masters	in	Computer	Engineering	from	the	University	of	Mas-
sachusetts,	where	his	research	focused	on	developing	ontological	knowledge	bases	for	aiding	
biomedical	decision	support	system.

S.	A.	Demurjian	is	a	Full	Professor	and	Director	of	Graduate	Studies	in	Computer	Science	&	
Engineering	at	the	University	of	Connecticut,	and	co-Director	of	the	Biomedical	Informatics	
Division.	His	research	interests	include	secure-software	engineering,	security	for	biomedical	
applications,	and	security-web	architectures.	Dr.	Demurjian	has	over	150	archival	publications,	
in	the	following	categories:	1	book,	2	edited	collections,	54	journal	articles	and	book	chapters,	
and	98	refereed	conference	articles.

M.	Blechner	is	an	Assistant	Professor	of	Pathology	and	Laboratory	Medicine	and	Director	of	
Pathology	Informatics	and	Transfusion	Medicine	and	a	faculty	member	of	the	Biomedical	In-
formatics	Division	at	the	University	of	Connecticut	Health	Center.	His	major	research	interests	
are	in	medical	knowledge	representation	and	ontologies	and	their	use	in	intelligent	 tutoring	
systems.	Other	areas	of	research	interest	and	expertise	are	in	computerized	decision	support	for	
laboratory	medicine,	data	warehousing	and	optimization	of	clinical	laboratory	data	for	research	
and	patient	safety	initiatives.

Thomas	Agresta	is	the	Director	of	Medical	Informatics	for	Family	Medicine,	Director	Clinical	
Informatics	for	the	Center	for	Quantitative	Medicine	and	Section	Leader	in	Informatics	for	the	
Connecticut	 Institute	 for	Primary	Care	Innovation	at	 the	University	of	Connecticut.	He	 is	a	
seasoned	Family	Physician	educator,	administrator,	researcher	and	innovator	with	a	history	of	
bringing	together	multidisciplinary	teams	to	focus	on	developing	novel	methods	for	creating,	
using	and	evaluating	technology	in	both	clinical	and	teaching	settings.	He	has	a	bachelors	in	
Biomedical	Engineering	from	Stevens	Institute	of	Technology,	a	medical	degree	from	New	Jersey	
Medical	School	and	a	masters	in	Biomedical	Informatics	from	Oregon	Health	Sciences	University.

