
A Security Framework for XML Schemas and Documents for Healthcare

Alberto De la Rosa Algarín,
Steven A. Demurjian

Department of Computer Science and
Engineering

University of Connecticut
Storrs, CT USA

{ada, steve}@engr.uconn.edu

Solomon Berhe
Department of Biomedical Informatics
Columbia University Medical Center

New York, NY USA
slb7002@dbmi.columbia.edu

Jaime A. Pavlich-Mariscal1
Departamento de Ingeniería de

Sistemas
Pontificia Universidad Javeriana

Bogotá, Colombia
jpavlich@javeriana.edu.co

Abstract— The eXtensible Markup Language (XML) has wide
usage in healthcare to facilitate health information exchange
via the Continuity of Care Record (CCR) for storing/managing
patient data, diagnoses, medical notes, tests, scans, etc. Health
IT products like electronic health record (EHR, e.g., GE
Centricity) and personal health record (PHR, e.g., MS Health
Vault) use CCR for data representation. To manage patient
data in CCR, security as governed by HIPAA must be attained
when using XML and its technologies (XACML, XSLT, etc.).
Our objective is to have an XML document (CCR instance)
appear differently to authorized users at different times based
on a user’s role, constraints, separation of duty, delegation of
authority, etc. In this paper, we propose a security framework
that targets XML schemas and documents, in general, and
CCR schemas and documents, in particular with control
capabilities that achieve customizable access to an XML
document’s elements by applying secure software engineering
methodologies and defining new UML XML-focused diagrams
for schemas and permissions. This allows us to generate
XACML policies, and enforce security at the runtime level on
XML instances to insure that correct and required patient data
is securely delivered. In a market of rapidly emerging mobile
healthcare applications to allow patients to manage their own
data (PHRs) and for self-management of chronic diseases, the
need for secure access to information and its authorization and
transmission to providers (and EHRs) will be critical. 1

Keywords- XML schemas; role-based access control;
continuity of care record; security policies and enforcement

I. INTRODUCTION

The eXtensible Markup Language (XML) [23] has
become the de facto standard format for data exchange
across heterogeneous systems, regardless of domain. In the
biomedical informatics domain, XML has become the
language of choice for most important standards, such as the
health language seven (HL7) clinical document architecture
(CDA) [14] for health information exchange (HIE) and the
Continuity of Care Record (CCR) [28] for information
storage of administrative, patient demographics, and clinical
data. In health IT (HIT), CDA and CCR come together in
various systems such as electronic health records (EHR,

1 Also affiliated with: Departamento de Ingeniería de Sistemas y
Computación, Universidad Católica del Norte, Antofagasta, Chile,
jpavlich@ucn.cl

e.g., GE’s Centricity [34]), practice management systems,
personal health records (PHR, e.g., MS Health Vault [35]),
etc. HL7 CDA is used to support HIE among hospitals,
clinics, physician practices, laboratories, etc., with CCR
providing the means to model the data that needs to be
exchanged. The importance of both CDA and CCR has
increased with the passage of the HITECH Act [33] which
provides financial incentives for clinical institutions to
implement EHRs and share electronic patient data with
other organizations using HIE. CCR documents being
exchanged among systems with confidential medical
information must adhere to HIPAA [24] and regulations at
state and federal levels. As a result, this must be addressed
in a broader context, across multiple systems and accessible
to multiple users in routine and emergent situations. We
must expand security from each individual system to a focus
that is more expansive in controlling a CCR document and
its content, particularly for HIE, and in the rapidly emerging
mobile healthcare domain, where patients manage personal
health information and chronic diseases and need to
securely access information and authorize its exchange with
medical providers via EHRs, secure emails, or other means.

The main objective of this paper is to control access to
XML documents to share and exchange information,
providing a means for the security of an XML schema to be
defined that can then be enforced on the individual XML
instances for an application. We are seeking document-
level access control to allow XML instances to appear
differently to authorized users at different times based on
criteria that include, but are not limited to, a user’s role,
time and value constraints on data usage, collaboration for
sharing data, delegation of authority as privileges are passed
among authorized users, etc. In healthcare, such criteria
will be further constrained by access to documents in
emergent situations, collaboration of medical personnel in
patient centered medical homes (PCMH) [37], delegating
authority between providers during off hours (nights and
weekends), etc. In all of these situations, the customizability
of access to the document will be critical, to provide the
ability to limit access to a CCR instance based on role; this
may require security on the knowledge used to encode a
document’s information such as a medical ontology like
SNOMED [37]. Towards this end, this paper proposes a

security framework to define security policies that target
XML schemas and documents, providing a variety of access
control capabilities to achieve customizable access to an
XML document’s elements at an instance level.

To accomplish this, we leverage our work in secure
software engineering [1, 2, 16, 17] using the unified
modeling language UML [25], which has had a two-fold
focus. First, in [16, 17], we created new UML diagrams for
RBAC, discretionary access control (DAC), and users,
augmented with a process for secure software engineering
using UML; the approach defines a new UML role slice
diagram from which aspect-oriented enforcement code is
generated. Then, in [1,2], we enhanced the NIST RBAC
[12, 13] standard with collaboration of duty and adaptive
workflow to define security conditions under which users
interact with one another towards a common goal; this work
was applied to healthcare with UML diagrams extended
appropriately. Our objective in this paper is to leverage
both [1, 2] and [16, 17] in order to define a security
framework for XML that: represents an XML schema in
UML via a new XML Schema Diagram; defines security
permissions via a new XML Role Slice Diagram; generates
XACML [26] security policies; and, achieves the
enforcement of security at the runtime level on XML
instances to insure that filtered, correct, and required patient
data is securely delivered. Our proposed framework is
targeted for XML schemas and documents, but will be
applied to healthcare and CCR.

The remainder of this paper is organized into five
sections. Section II presents background information on
NIST RBAC, XML, and the CCR standard. Section III
presents a brief review of concepts from [16, 17] to establish
the context of secure software engineering on UML. Section
IV presents the proposed security framework for XML,
focusing on new UML XML diagrams and the generation of
XACML policies. Section V reviews related work, while
Section VI, offers concluding remarks and ongoing work.

II. BACKGROUND AND MOTIVATION

A. NIST RBAC

In the NIST RBAC [12, 13], permissions are assigned to
roles, which are then assigned to users, shown in Figure 1,
where a user can perform any of permissions assigned to the
role s/he exhibits. NIST RBAC contains four reference
models. RBAC0 allows for policies to be denied at the role
level instead of the individual level. To handle role
hierarchies, RBAC1 allows for parent roles to pass down
common privileges to children roles so that permissions high
in the hierarchy can be inherited by the roles below, and
specific permissions are associated with roles that act as leafs
in the hierarchy. RBAC2 provides definition of constraints,
such as separation of duty (SoD) and cardinality. As an
example, consider the scenario of a group of health care
professionals reading sensitive patient data. The reading of
such data is definitively allowed under certain conditions.
SoD ensures that the authorization role that grants

permissions exists as a different entity to the other roles.
This ensures that roles are not allowed themselves to view
sensitive data they would otherwise have no authorization to.
Mutual exclusion ensures that two or more specific roles
may not be assigned to any particular user, enforced by
restrictions put in place by the cardinality constraint (the
number of users/permissions getting assigned to a particular
role). RBAC3 introduces the concept of sessions that
represent the lifetime of a particular user, role, permission
and their association for a dynamic runtime application.

P
Permissions

R
Roles

U
Users

SOD
CONSTRAINTS

USER
ASSIGNMENT

PERMISSION
ASSIGNMENT

ROLE
HIERARCHY

Cardinality Constraints

UA

RH

PA

Figure 1: NIST RBAC0, RBAC1, and RBAC2.

B. The eXtensible Markup Language (XML)

XML facilitates information exchange across disciplines
and offers a flexible means to collect and transmit data
between different information systems and platforms as a
means of a common, structured language. XML supports
information to be hierarchically structured and tagged, and
the tags themselves can be exploited to capture and
represent the semantics of the information. XML offers the
ability to define standards via XML schemas, which serve
as both the blueprint and validation agents for instances
seeking to comply and be used for information exchange
purposes. The main mechanism behind XML schemas is the
XML Schema Definition (XSD), following the XML
Schema language. As an example, an XML schema can be
composed of multiple xs:complexType, xs:simpleType,
xs:sequence, xs:element, etc, and these can be combined and
nested in any way to form a more encompassing
xs:complexType, a characteristic shared with classes in
UML. With XML schemas, the developer or standard
proposing agency can determine constraints, such as the
minimum or maximum amount of occurrences for an
element (minOccurs, maxOccurs), the data type permitted
for its value, and others. The schemas role is to describe
and define the domain model, including the type-level
characteristics that instances must follow in for validity.

C. Continuity of Care Record

Figure 2 shows a sample of the (a) official CCR schema
[32] and (b) corresponding CCR document [29] that
validates against said schema. CCR documents include
sensitive patient information such as demographical
information, social security number, insurance policy details
and health related information (such as medications,

procedures, psychological notes, etc.). The CCR document
contains all patient information, but not all such information
should be available to all users at all times; this information
must be customized or filtered based on a user’s role and
responsibilities within an organization. For example, a
secretary at a private practice performing financial
operations might only need to see the patient’s
demographics and insurance policy details, whereas the
primary physician may need to access the entire patient’s
information but not the SSN. Some information (e.g.,
pyschiatric notes) are only made available to speficic roles,
One important note is that security policy changes must not
result in updating the XML schemas and instances. As
policies differ across institutions, the security model should
offer mechanisms to handle this, which is one of the main
objectives of our proposed security framework for XML.

<xs:schema xmlns="urn:astm-org:CCR" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ccr="urn:astm-org:CCR" targetNamespace="urn:astm-org:CCR"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:import namespace="http://www.w3.org/2000/09/xmldsig#"

schemaLocation="xmldsig-core-schema.xsd" />
<xs:element name="ContinuityOfCareRecord">

<xs:complexType>
<xs:sequence>

<xs:element name="CCRDocumentObjectID" type="xs:string" />
<xs:element name="Language" type="CodedDescriptionType" />
<xs:element name="Version" type="xs:string" />
<xs:element name="DateTime" type="DateTimeType" />
<xs:element name="Patient" maxOccurs="2">
<xs:complexType>

<xs:sequence>
<xs:element name="ActorID" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="From">
<xs:complexType>

<xs:sequence>
<xs:element name="ActorLink" type="ActorReferenceType"

maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>

…

Figure 2: Continuity of Care Record.

(b). XML Instance

(a). XML Schema

<ContinuityOfCareRecord xmlns='urn:astm-org:CCR'>
<CCRDocumentObjectID>Doc</CCRDocumentObjectID>
<Language><Text>English</Text></Language>
<Version>V1.0</Version>
<DateTime><ExactDateTime>2008</ExactDateTime></DateTime>
<Patient><ActorID>Patient</ActorID></Patient>
<Body>
<Problems>

<Problem>
<DateTime>

<Type>
<Text>Start date</Text>

</Type>
<ExactDateTime>2007-04-04T07:00:00Z</ExactDateTime>

</DateTime>
<DateTime>

<Type>
<Text>Stop date</Text>

</Type>
<ExactDateTime>2008-07-20T07:00:00Z</ExactDateTime>

</DateTime>
<Description>

<Code>
<Value>346.80</Value>
<CodingSystem>ICD9</CodingSystem>
<Version>2004</Version>

</Code>
…

III. SECURE SOFTWARE ENGINEERING WITH UML

This section reviews prior work on UML diagrams for
secure software engineering [16, 17] to elevate security to a
first class citizen handled early in the software development
process, and use extend this work to support XML-based
security. UML provides multiple diagrams that can be

leveraged to visually model domain requirements, but there
is a lack of integrating security specifications for RBAC,
DAC and MAC in the design phase [16, 17]. For this reason,
the UML meta-model was extended with new UML security
diagrams in Figure 3: User Diagram to grant a user
permission to role(s); Delegation Diagram to define DAC
characteristics during the design phase; Role Slice Diagram
for the assignment or permissions (methods) to role; MAC
Extension to define sensitivity levels (unclassified,
confidential, secret and top secret) and their assignments to a
user’s clearance and an object’s classification; and the
Secure Subsystem Diagram (SSD) to identify the portions of
the software application APIs that needs to be protected.

S
e

c
u

re
 S

u
b

s
ys

te
m

(S
u

b
s

e
t

o
f

M
a

in
 D

e
s

ig
n

) Role-Slice
Diagram

Mandatory
Access Control

Extensions

Delegation
Diagram

User Diagram

Dependencies between Security Model Diagrams and Their Features

MAC Extensions may Optionally be Included in Each Security Diagram

Security Model Changes Reflected in Secure Subsystem (and vice versa)

Figure 3: UML Extensions for Access Control.

For the proposed XML security framework in Section

IV, we employ the UML class diagram, the SSD, and the
Role Slice Diagram (RSD). For instance, in a health care
domain, the Secure Subsystem Diagram would represent the
allowed access to portions of the Virtual Chart Application
(VCA) that provides a common API across multiple EHRs
connected via HIE, but not the entire API. SSD contains the
set of classes and methods that are a subset of publically
available ones to be protected through access control. The
SSD is a specialized UML package, marked with the UML
stereotype <<SecureSubsystem>> which contains a subset of
the API classes each with a further a subset of the their
methods. For example, Figure 4 illustrates the set of
read/write operations that can be performed against the EHR
(a subset of VCA API). Placing them into the SSD specifies
that access to all of their methods must be controlled.
In order to limit access to the methods in Figure 4, the SSD
extension to UML is utilized. As mentioned before, RBAC1

supports permission role authorization and a role hierarchy.
The work in [16, 17] has each role represented by a
specialized UML package marked using the <<RoleSlice>>
UML stereotype as given in Figure 5. Each such package is
only allowed to contain UML classes. To increase the
customizability of the permission role assignment, each
method in the RSD contains is specialized: with: <<neg>>
stereotype which specifies that this particular method cannot

be accessed by the role, effectively turning off the methods
from the parent and all it child roles; and, <<pos>>
stereotype which specifies that this particular method is
allowed to be accessed by the role. This assignment of
negative and positive permissions to a particular role attains
permission role authorization in RBAC. To further increase
the role management, the role inheritance is supported by
defining specialized relationships among role slice packages.
The <<RoleInheritance>> UML stereotype specifies that the
child role slice package inherits all positive methods from
the parent role slice package. The example in Figure 5
illustrates Provider, Nurse, and Physician roles. The Provider
Role has a set of methods authorized to many stakeholders.
A Physician role is authorized to have read and write access
to the entire EHR of the patient through the VCA. A Nurse
role inherits all of the positive permissions from a base role
except those for billing and appointment histories.

Figure 4: Secure Subsystem Diagram.

VirtualChartApplication
<<SecureSubsystem>>

readElectronicHealthlRecord

+ getMedicalHistory()
+ getAllergyHistory()
+ getMedicationHistory()
+ getBillingHistory()
+ getAppointmentHistory()
+ getFamilyHistory()
+ getMedicationHistory()
+ getDemographics
+ getTestHistory()
+ getVaccinationHistory()
+ getClinicalNotesHistory()

writeElectronicHealthlRecord

+ setMedicalHistory()
+ setAllergyHistory()
+ setMedicationHistory()
+ setBillingHistory()
+ setAppointmentHistory()
+ setFamilyHistory()
+ setMedicationHistory()
+ setDemographics
+ setTestHistory()
+ setVaccinationHistory()
+ setClinicalNotesHistory()

Figure 5: Role Slice Diagram.

readElectronicMedicalRecord

<<pos>> +getMedicalHistory()
<<pos>> + getAllergyHistory()
<<pos>> + getMedicationHistory()
<<pos>> + getBillingHistory()
<<pos>> + getAppointmentHistory()
<<pos>> + getFamilyHistory()
<<pos>> + getMedicationHistory()
<<pos>> + getDemographics
<<pos>> + getTestHistory()
<<pos>> + getVaccinationHistory()
<<pos>> + getClinicalNotesHistory()

Physician
<<RoleSlice>>

writeElectronicMedicalRecord

<<pos>> + setMedicalHistory()
<<pos>> + setAllergyHistory()
<<pos>> + setFamilyHistory()
<<pos>> + setDemographics
<<pos>> + setTestHistory()
<<pos>> + setVaccinationHistory()
<<pos>> + setClinicalNotesHistory()

Nurse
<<RoleSlice>>

writeElectronicMedicalRecord

<<pos>> + setBillingHistory()
<<pos>> + setAppointmentHistory()

Provider
<<RoleSlice>>

writeElectronicMedicalRecord

<<pos>> + getMedicationHistory()

<<RoleInheritance>>

IV. PROPOSED SECURITY FRAMEWORK FOR XML

In this section, we present the proposed security
framework for XML schemas. The general approach is to
have a set of XML schemas corresponding to an application
(upper right in Figure 6), which will be instantiated for the
executing application (bottom right of Figure 6). From a
security perspective, our intent is to insure that when users
attempt to access the instances, that access will be
customized and filtered based on their defined user role and
associated security privileges (bottom left of Figure 6). In a
healthcare setting, a secretary may only have access to
patient demographics, a nurse only able to write portions of
the data, a physician more broader access. Our approach to
secure software engineering (see Section III again) is to
insure that these different views of the schemas are applied
to the users executing their respective desktop and mobile
HIT applications against their authorized instances
(patients). To achieve this approach, Section IV.A, presents
a new UML class diagram called a XML Schema Class
Diagram (XSCD) to transition an XML schema into a UML
like diagram and notation. This adds a degree of software
engineering to the XML design process. We also define a
new UML XML Role Slice Diagram (XRSD) that extends
Figure 5 and allows permissions to be defined against XML
schema elements in the XSCD. Then, Section IV.B
explores the transition of these XSCDs into a corresponding
security policy to automatically generate XACML for
enforcement of the XML schema at the instance level; the
XCSD in combination with XRSD allows an XACML
policy to be defined. This may necessitate the interception
of various XMLs tools in order to allow the security check
to occur; e.g., using XSLT must only return instances that
are allowed and which portions are allowed for a user
playing a given role based on defined permissions.

XACML Policy
Mapping

XML Schema
Class

DiagramsXML Role Slice
Diagram

Roles

Role Hierarchy

Access Control Policies

Constraints

XML1

Instance 1

XML2

Instance 1

XML3

Instance 1

XML4

Instance 1

XML3

Instance 2

XML1

Instance 3

XML1

Instance 2

Original XML Instances

XML
schema

2
XML

schema
3

XML
schema

4

XML
schema

5XML
schema

1

XML schemas

XACML Policy -
Schema 1

XACML Policy Acts on the
filtered XML instances

Permissions

Figure 6: Overview of XML Security Framework.

XML1 Filtered
Instance 1

XML1 Filtered
Instance 2

XML1 Filtered
Instance 3

Software Application Level

A. New UML Schema Class and Role Slice Diagrams

In this section, we present a new UML XML Schema
Class Diagram (XSCD) that contains architecture, structure
characteristics, and constraints. The set of all XML schemas
for a given application are converted into a corresponding set
of XSCDs. The intent is to provide a degree of software
engineering to the XML design process; rather than just
haphazardly building schemas and deploying instances, the
creation of an XML schema should be placed into the UML
context alongside other diagrams (class, use case, sequence,
activity, etc.) that all have the potential to impact the content
of a XML diagram for an application. Included in this work
is an utilization of the concepts of the RSD from [16, 17] to
extend and define a new XML Role Slice Diagram (XRSD)
which has the ability to add permissions to the various
elements of the XSCD, i.e., read, write, no read, no write, or
any combination of these, such as read/write, read/no write,
etc. The original RSD in Figure 5 focused on <<pos>> and
<<neg>> permissions on methods, while XRSDs will
emphasize the data aspects that are the focus of an XML
schema as modeled in XSCD. In the literature, approaches
to translate a defined XML schema into a UML diagram [3,
4, 9, 19, 21] that each provides varying levels of support for
model groups, elements, attributes, and identity constraints
[4], depending on the approach utilized (e. g., the UML meta
model or UML profile, a combination of the two, etc.).

In our approach, the new UML XML Schema Class
Diagram (XSCD), shown in Figure 7, is an artifact that holds
all of the characteristics of the XML schema, including
structure, data type constraints, and value constraints. While
the process of the way that the XSCD is built from the
original XML schema is out of the scope of this paper, we
explain briefly using the CCR schema. Recall that XML
schemas are characterized by a hierarchical structure with
data type constraints. Another possibility of XML schemas
is referencing other XML schemas that provide another layer
of structure and constraints. We specify two issues to
address when designing the modeling capabilities of XSCD:
XML schema references must be supported, and the XML
structure and constraints must be maintained.

Figure 7: Proposed UML Schema Class Diagram.

<<complexType>>
StructuredProductType

<<element>>
Product

<<complexType>>
<<sequence>>

<<type>>’CodedDescriptionType’

<<element>>
ProductName

<<type>>’CodedDescriptionType’
<<constraint>>minOccurs=0

<<element>>
BrandName

<<constraint>>minOccurs=0
<<constraint>>maxOccurs=-1

<<element>>
Strength

<<extension>>’CCRCodedDataObjectType’

<<complexType>>
<<complexContent>>

<<sequence>>

<<type>>’xs:integer’
<<constraint>>minOccurs=0

<<element>>
StrengthSequencePosition

<<type>>’CodedDescriptionType’
<<constraint>>minOccurs=0

<<element>>
VariableStrengthModifier

<<extension>>’MeasureType’

To handle the hierarchical nature of XML schemas, for
XSCD in Figure 7, we represent each xs:complexType in the
schema as a UML class with their respective UML
stereotype. If an xs:element is a descendant of another
schema concept, then this relation is represented as an
equivalent class – subclass relation in the class diagram. This
holds true for xs:sequence, xs:simpleType, etc. XML
schema extensions (xs:extension) are represented as
associations between classes in Figure 7. We represent
data-type cardinality requirements (minOccurs, maxOccurs)
and other XML constraints with a generic <<constraint>>
stereotype assigned to the attribute. The xs:element type is
respectively represented with a <<type>> stereotype. Figure
7 presents the way that the XSCD for the CCR’s schema
xs:complexType ‘StructuredProductType’ would look after
the transformation process (note that the figure does not
include all children nodes from the CCR due to of space
limitations). This XSCD implementation allows for
customized access control policies to be generated for the
respective concepts of the XML schema.

The next step in the process is to apply security policies
to the XSCD (top left of Figure 6) that are consistent with
[16, 17] where <<pos>> and <<neg>> permissions were
used to limit methods at the API level. Correspondingly, for
XSCD, we utilize the RSD (see Figure 5) to define a new
XML Role Slice Diagram, XRSD (see Figure 8) that is
capable of applying access control policies or permissions
on the attributes of the XSCD, akin to applying such
policies to the private or public data of a class. Figure 8 has
two XRSDs, Physician and Nurse, that augment their
counterparts in Figure 5 as extended role slices
(<<RoleSlice>>). To accomplish this, we also extend the
list of stereotypes to represent allowance or denial of access.

Figure 8: XML Role Slice Diagrams.

Physician
<<RoleSlice>>

<<r/w>><<element>>Product

<<r/w>>
<<element>>
ProductName

<<r/w>>
<<element>>
BrandName

<<r/w>>
<<element>>

Strength

<<r/w>>
<<element>>

StrengthSequencePosition

<<r/w>>
<<element>>

VariableStrengthModifier

Nurse
<<RoleSlice>>

<<r>><<element>>Product

<<r>>
<<element>>
ProductName

<<r>>
<<element>>
BrandName

<<r>>
<<element>>

Strength

<<r>>
<<element>>

StrengthSequencePosition

<<r>>
<<element>>

VariableStrengthModifier

The nature of XML documents warrants the
implementation of read, no read, write, and no write
permissions. These permissions would have their respective
stereotypes, <<r>> (read), <<nr>> (no read), <<w>>
(write), and <<nw>> (no write). Figure 8 defines Physician
and Nurse XRSDs that indicate the required permissions
against the XSCD in Figure 7. Note that the CCR
complexType ‘StructuredProductType’ element Product
(see Figure 7) is defining the ability for a role to have read
and write permissions (Physician) (represented by a
combined stereotype <<r/w>>) and for a role with only read
permissions (Nurse) (represented by the stereotype <<r>>).
While a Physician role might be able to get all of the
information regarding a drug and be able to create new
instances following the CCR schema, a Nurse role might
only need to read the drug details and not be allowed to
create new records. In this case, for the Physician role, all
elements have read/write permission; while in the case of
the Nurse role, elements only have a read permission
(though in practice, a nurse would have limited writes to
record vital signs, patient notes, etc.).

B. XACML Polices from XSCD and XRSD

The work of [16, 17] presented a formal enforcement
framework that could automatically translate SSDs and
RSDs into aspect-oriented enforcement code. We leverage
this concept by automatically generating security policies in
XACML that use the XSCDs (Figure 7) and their associated
XRSDs (Figure 8). To achieve this objective, we utilize the
XACML specification 3.0, which offers a mechanism to
implement vital parts of our proposed framework. Figure 9
illustrates the overall architecture to generate XACML
policies from the XSCDs and XRSDs to be applied on XML
schemas and associated instances at runtime. This includes
the Policy Retrieval Point which is in charge of housing the
security policies) of the XACML architecture that is used
for enforcing security policies. The components of this
architecture include: the Policy Enforcement Point (PEP),
which acts as the bridge between a request and the Policy
Decision Point (PDP); PDP which evaluates the request and
provides a response according to the policies in place; and,
Policy Access Point (PAP) to write and manage policies;
which can invoke attributes, values, and subject information
from the Policy Information Point (PIP). In order to produce
XACML security policies, a mapping of the access control
reflected in the XRSDs for the XSCDs is used and applied
so that the permissions in the XRSDs are captured by
XACML policies. This makes it possible to derive a security
policy that could not only act on the software application
level, but more importantly at the document-level.

These security policies generated from XSCDs and their
XRSDs must be able to control the way that XSLT and
other query tools (e.g., XPath [38], XQuery [39], etc.)
handle the reading/querying of the XML schema and
instances (lower left of Figure 6). Since the expressions
from XPath act in the same way as of those for a relational

database’s queries, the XACML policy can target the
expressions, allowing or denying access. We recall that the
instances utilized at this point are modified depending on
the XACML schemas themselves, filtered depending on the
role of the user and usage context. As per the previous
example (physician role and nurse role, with their respective
permissions), the physician and nurse could perform the
XPath expression /StructuredProductType/@Product to
obtain the entire set of Product attributes from
StructuredProductType of the respective XML instance.
This is possible since their roles permit them to ‘see’ the
structure of the schema as well as permissions of reading
obtained from the XRSDs. If another role, such as
MedicalOrderly does not have sufficient permissions and
tries to execute the previous XPath expression, both a
denied access (per XACML access control) and invalid call
(per the filtered XML instance) would be the result.

Figure 9: Generated XACML Policies.

1

3

2

4

XRSD’s

XRSD → XACML
Policy Generator

XACML Policy –
Schema 1

XACML Policy –
Schema 2

XACML Policy –
Schema 3

XACML Policy –
Schema 4

PRP

PAP

PDP

PEP

PIP

XACML Architecture

Update, insertion and deletion operations are not yet

supported by XPath or XQuery (there are proposals as a
non-normative extension to XPath [38] and utility updates
to XQuery [39]). Thus, writing back to XML instances is
handled as a method call from the original software design.
In these cases, security can be applied by using our
framework by treating such operations as API methods, and
applying security as [16, 17]. For example, there would be a
write of the entire patient XML instance that would only
success if the fields modified were allowable permissions
for the user playing a particular role. Figure 10 shows an
example XACML policy that illustrates the Physician and
Nurse roles, with the MedicalOrderly role, handling reading
permissions with a target to the schema elements.

V. RELATED WORK

Access control enforcement in XML has two typical
approaches. First, the enforcement can be done as query
rewrites, where these are generated depending on the access
control policy. Second, the enforcement can be embedded
into the XML schema and documents to provide different
views based on the policies in place. This section presents
related work in both approaches as compared to our own.

The work of [10] presents an access control system that
embeds the definition and enforcement of the security
policies in the structure of the XML documents in order to
provide customizable security. The security details can also
be embedded in the XML DTD, providing a level of

generalization for documents that share the same DTD. This
is similar to our work in that security policies act in both a
descriptive level of the XML instances and target the XML
instances, but differ in two ways. First, the work targets
XML DTD’s, which have been replaced by XML schemas.
Second, the security policies are embedded into both the
DTD and the instance. When policies experience a change,
the cost of updating the XML instances is huge.

Another effort [11] details a model that tries to combine
the two discussed methodologies to provide security to
XML datasets. The XML schema is extended with three
security attributes: access, condition and dirty. Any changes
done to the security policy must be updated in the XML
schema, and therefore on any XML instance constructed
from the schema. This is similar to our work in that it
ultimately targets security in XML document instances via
XACML policies, but our work differs by also taking into
consideration XML document writing (XPath’s design only
allow it to perform reading queries to the XML instance).

<?xml version=“1.0” encoding=“UTF-8”?>
<Policy>

<Description>EMR Read Access Control Policy</Description>
<Target>
<Rule RuleId=“urn:oasis:names:tc:xacml:3.0:ruleexample:simpleRule1”

Effect=“Permit”>
<Description> Any subject with role “Physician” or “Nurse” can read

<<StructuredProductType>> and subsequent elements.</Description>
<Target>

<AnyOf>
<AllOf>

<Match
MatchId=“urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match”>
<AttributeValue

DataType=“CCR:schema:StructuredProductType”>StructuredProductType
</AttributeValue>
<AttributeDesignator MustBePresent=“false”

Category=“urn:oasis:names:tc:xacml:role-category:access:role”
AttributeId=“urn:oasis:names:tc:xacml:role:role-id”

DataType=“urn:oasis:names:tc:xacml:data-type:rfc822Name”/>
</Match>

</AllOf>
</AnyOf>

</Target>
</Rule>

<Rule RuleId=“urn:oasis:names:tc:xacml:3.0:ruleexample:simpleRule1”
Effect=“Deny”>

<Description>Any subject with role “MedicalOrderly” cannot read
<<StructuredProductType>> and subsequent elements.</Description>

<Target>
<AnyOf>

<AllOf>
<Match
MatchId=“urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match”>
<AttributeValue

DataType=“CCR:schema:StructuredProductType”>StructuredProductType
</AttributeValue>
<AttributeDesignator MustBePresent=“false”

Category=“urn:oasis:names:tc:xacml:role-category:access:role”
AttributeId=“urn:oasis:names:tc:xacml:role:role-id”

DataType=“urn:oasis:names:tc:xacml:data-type:rfc822Name”/>
</Match>

</AllOf>
</AnyOf>

</Target>
</Rule>

</Policy>

Figure 10: Example XACML Policies for Reading Permissions.
The encryption of different sections of an XML

document with different encryption keys is presented in [5].
These keys are then distributed to the specific users based
on the access control policies in place. Special focus is
given content-based access control, and users are granted or
denied access based on their credentials (not roles, as in our
approach). This makes it difficult to handle policies such as

role-delegation, time and value constraints, unless they are
handled at the application level.

Efforts by [6, 7] present Author-X, a Java-based system
for DAC in XML documents, and provides customizable
protection to the documents with positive and negative
authorizations. Author-X employs a policy base DTD
document that prunes an XML instance based on the
security policies (similar to our approach), but focuses on
discretionary access control (different to our approach of
RBAC and its extensions and its lack of XML schemas).

Another example of embedding access control policies
into the XML DTD and instances is proposed by [8, 22] via
a usage control model allows for a more custom control than
the more commonly used access control models. By
embedding security into documents, changes to security
have broad impact on instances. When security policies
change, the cost of re-securing all created instances is
directly proportional to the amount of instances.

Work by [18] presents a distributed access control model
for collaborative environments where XML documents are
used. The proposed framework utilizes a cryptographic
methodology, employing a key management scheme to
enforce security policies (much different to our secure
software engineering approach). The framework also
supports delegation of access control decisions via the use of
a lazy rekeying protocol. Ultimately, this approach only
handles the reading of XML instances, and does not handle
the writing permissions, unlike our approach.

VI. CONCLUSION AND ONGOING WORK

XML is a dominant player in data and information
exchange, playing a pivotal role in health care via HL7 and
CCR standards. Given the diverse set of stakeholders in
healthcare, there is a need to provide customized and
controllable access to XML instances on confidential patient
information to allow different users different views of
authorized instances at different times. To address this
problem, we have proposed a security framework for XML
schemas and documents with a number of unique features
and characteristics. To underline the proposed framework,
we make use of our research in secure software engineering
with UML [1, 2, 16, 17] that introduces new UML diagrams
for RBAC, DAC, MAC, and collaboration (see Section III).
Using this work as a basis, we include the XML schema
definition as part of the secure software engineering process
and have proposed a UML XML Schema Class Diagram,
XSCD to capture data/information exchange requirements,
and a UML XML Role Slice Diagram, XSRD, to capture
permissions against the XSCD (see Section IV.A). With
these in hand, we demonstrate the ability to generate
XACML security policies for XSCD and its security XRSD,
providing the ability for different instances to appear
different to authorized users at different times (see Section
IV.B), which is achieved by intercepting XML tools.

By tackling the information security problem with a
software engineering approach, the proposed framework

creates a relation between secure software and secure data.
We present a duality from our previous research (securing
API methods) to the research presented here (securing
elements in XML schemas). We take this generalization to
present that the data utilized in a software system can be
secured in a similar manner as the system itself, and it can
be done at the design phase of the software engineering
process.

Our ongoing work includes the formalization of the UML
Schema Class Diagram, so that schemas such as those that
reference other schemas are also handled. This includes
extending the framework to handle access control
constraints such as role delegation and collaboration of duty
extensions to RBAC [1, 2]. We have also begun
prototyping efforts for the proposed framework in two
directions: we are modifying mobile apps for medication
management to filter CCR instances from MS Health Vault
based on role; and, we are exploring extensions to handle
the non-normative additions to XPath and XQuery that
support XML instance modification methods (update,
insertion, deletion), that verifies for security assurance and
policy consistency. Larger scoped worked includes the
ability of having an integrated UML and XML secure
software engineering process, and the extension of our
proposed framework to other knowledge encoding
structures, such as ontologies (more specifically, those
represented in OWL [31]), since CCR data in EHRs is
highly tied to medical ontologies.

REFERENCES
[1] S. Berhe, et al., “Secure, obligated and coordinated collaboration in

health care for the patient-centered medical home,” in AMIA Annual
Symposium Proceedings, vol. 2010. American Medical Informatics
Association, 2010, p. 36.

[2] S. Berhe, et al., “Leveraging uml for security engineering and
enforcement in a collaboration on duty and adaptive workflow model
that extends nist rbac,” Data and Applications Security and Privacy
XXV, pp. 293–300, 2011.

[3] M. Bernauer, et al., “Representing xml schema in uml - an uml profile
for xml schema,” Citeseer, Tech. Rep., 2003.

[4] M. Bernauer, et al., “Representing xml schema in uml – a comparison
of approaches,” Web Engineering, pp. 767–769, 2004.

[5] E. Bertino et al., “Secure and selective dissemination of xml
documents,” ACM Transactions on Information and System Security
(TISSEC), vol. 5, no. 3, pp. 290–331, 2002.

[6] E. Bertino, et al., “Protection and administration of xml data sources,”
Data & Knowledge Engineering, vol. 43, no. 3, pp. 237–260, 2002.

[7] E. Bertino, et al., “Access control for xml documents and data,”
Information Security Technical Report, vol. 9, no. 3, pp. 19–34, 2004.

[8] J. Cao, et al., “Towards secure xml document with usage control,”
Web Technologies Research and Development-APWeb 2005, pp.
296–307, 2005.

[9] D. Carlson, “Uml profile for xml schema,” 2008.

[10] E. Damiani, et al., “Design and implementation of an access control
processor for xml documents,” Computer Networks, vol. 33, no. 1,
pp. 59–75, 2000.

[11] E. Damiani, et al., “A general approach to securely querying xml,”
Computer Standards & Interfaces, vol. 30, no. 6, pp. 379–389, 2008.

[12] D. Ferraiolo, et al.. CISM, “Role-based access control (rbac),” in
Proc. of 15th NIST-NSA National Computer Security Conference,
1992.

[13] D. Ferraiolo, et al., “Proposed nist standard for role-based access
control,” ACM Transactions on Information and System Security
(TISSEC), vol. 4, no. 3, pp. 224–274, 2001.

[14] R. Dolin, et al., “Hl7 clinical document architecture, release 2,”
Journal of the American Medical Informatics Association, vol. 13, no.
1, pp. 30–39, 2006.

[15] D. Kibbe, et al., “The continuity of care record.” American family
physician, vol. 70, no. 7, pp.1220–1222, 2004.

[16] J. Pavlich-Mariscal, et al., “A framework of composable access
control definition, enforcement and assurance,” in Chilean Computer
Science Society, 2008. SCCC’08. International Conference of the.
IEEE, 2008, pp. 13–22.

[17] J. Pavlich-Mariscal, et al., “A framework for security assurance of
access control enforcement code,” Computers & Security, vol. 29, no.
7, pp. 770–784, 2010.

[18] M. Rahaman, et al., “Distributed access control for xml document
centric collaborations,” in Enterprise Distributed Object Computing
Conference, 2008. EDOC’08. 12th International IEEE. IEEE, 2008,
pp. 267–276.

[19] N. Routledge, et al., “Uml and xml schema,” in Australian Computer
Science Communications, vol. 24, no. 2. Australian Computer
Society, Inc., 2002, pp.157–166.

[20] R. Sandhu et al., “Access control: principle and practice,”
Communications Magazine, IEEE, vol. 32, no. 9, pp. 40–48, 1994.

[21] D. Skogan, “Uml as a schema language for xml based data
interchange,” in Proceedings of the 2nd International Conference on
The Unified Modeling Language (UML’99). Citeseer, 1999.

[22] L. Sun et al., “Dtd level authorization in xml documents with usage
control,” International Journal of Computer Science and Network
Security, vol. 6, no. 11, pp. 244–250, 2006.

[23] [Online]. Available: http://www.w3.org/XML/

[24] [Online]. Available: http://www.hhs.gov/ocr/privacy/

[25] [Online]. Available: http://www.uml.org/

[26] [Online]. Available: http://docs.oasis-open.org/xacml/

[27] [Online]. Available: http://www.w3.org/XML/Schema

[28] [Online]. Available: www.astm.org/Standards/E2369.htm

[29] [Online]. Available: http://goo.gl/G5wTR

[30] [Online]. Available: http://www.omg.org/spec/XMI/2.4.1/

[31] [Online]. Available: http://www.w3.org/TR/owl-features/

[32] [Online]. Available: http://goo.gl/FmGSp

[33] [Online]. Available: http://healthit.hhs.gov/programs

[34] [Online]. Available: http://centricitypractice.gehealthcare.com/

[35] [Online]. Available: http://www.microsoft.com/en-us/healthvault/

[36] [Online]. Available: http://www.ncqa.org/tabid/631/default.aspx

[37] [Online]. Available: http://www.ihtsdo.org/snomed-ct/

[38] [Online]. Available:

http://www.w3.org/TR/2002/WD-xpath20-20020430/

[39] [Online]. Available: http://www.w3.org/TR/xquery-update-10/

