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Chapter  10

Attaining Semantic Enterprise 
Interoperability through 

Ontology Architectural Patterns

ABSTRACT

Enterprise Interoperability Science Base (EISB) represents the wide range of interoperability tech-
niques that allow the creation of a new enterprise application by utilizing technologies with varied data 
formats and different paradigms. Even if one is able to bridge across these formats and paradigms to 
interoperate a new application, one crucial consideration is the semantic interoperability to insure that 
similar data is reconciled that might be stored differently from a semantic perspective. In support of 
this requirement, usage of ontologies is gaining increasing attention as they capture shareable domain 
knowledge semantics. The design and deployment of an ontology for any system is very specific, created 
in isolation to suit the specific needs with limited reuse in the same domain. The broad proliferation of 
ontologies for different systems, which, while similar in content, are often semantically different, can 
significantly inhibit the information exchange across enterprise systems. This situation is attributed, in 
part, to a lack of a software-engineering-based approach for ontologies; an ontology is often designed 
and built using domain data, while software design involves abstract modeling concepts that promote 
abstraction, reusability, interoperability, etc. The intent in this chapter is to define ontologies by leverag-
ing software design pattern concepts to more effectively design ontologies. To support this, the chapter 
proposes Ontology Architectural Patterns (OAPs), which are higher-level abstract reusable templates 
with well-defined structures and semantics to conceptualize modular ontology models at the domain 
model level. OAP borrows from software design patterns inheriting their key characteristics for sup-
porting enterprise semantic ontology interoperability.
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1. INTRODUCTION

In today’s world, the design, development, and 
deployment of a new enterprise application is no 
longer taking the prior approach of developing the 
application from scratch; rather, the emphasis is 
on the ability to construct a new enterprise ap-
plication through the usage of existing resources 
such as enterprise applications, systems, servers, 
databases, etc., that are brought together to yield a 
system of systems. Enterprise Interoperability Sci-
ence Base (EISB, Popplewell et al., 2012) has been 
promoted in order to address all of the different 
interoperability concerns including data, process, 
knowledge, cloud and Web services, rules, objects, 
APIs, etc. Two related interoperability of issues 
of particular interest are the ability to deal with: 
data in varied formats (e.g., XML, JSON, RDF 
(Allemang & Hendler, 2011), relational database, 
etc.) and the need to resolve semantics among 
enterprise systems of data (e.g., in a geospatial 
application, grid north vs. true north vs. magnetic 
north and these must be resolved if different do 
not use consistent formats). Ontologies have 
emerged to play a pivotal role in the World Wide 
Web (WWW) to promote the Semantic Web (Al-
lemang & Hendler, 2011) by attaching semantics 
to electronically represented information thereby 
assisting users (humans and agents) in various 
ways such as semantic Web agents, semantic 
information extraction, semantic search, etc. Cur-
rently, ontologies are highly employed in the wide 
variety of enterprise applications for knowledge 
representation and reasoning (Baader, McGuin-
ness, Nardi, & Patel-Schneider, 2007), software 
modeling and development (Demurjian, Saripalle, 
& Behre, 2009; Kuhn, 2010; Saripalle, Demurjian, 
& Behre, 2011), semantic information extraction 
(Wimalasuriya & Dou, 2010), biomedical and 
clinical informatics (Smith & Ceusters, 2006), 
databases (Gali, Chen, Claypool, & Uceda-sosa, 
2004), geospatial semantics (Janowicz, Scheider, 
Pehle, & Hart, 2012), etc.

The primary goal of the ontologies is to cap-
ture semantics of a domain and tag the semantic 
concepts to electronically represented information, 
which in turn will ease semantic interoperability 
for enterprise applications to support both data 
and knowledge interoperability in EISB, assum-
ing that the exchanging systems (e.g., computer 
systems, software applications, database records 
etc.) must come to an agreement on domain 
semantics in order to build an enterprise applica-
tion. For example, various ontologies have been 
developed for capturing knowledge semantics 
on various aspects of a given domain for easing 
semantic interoperability issues in enterprise ap-
plications. For instance, in the business domain, 
the semantic Web has influenced various aspects 
of existing implementations such as: Simple 
Object Access Protocol (SOAP) (SOAP, 2007), 
Web Service Description Logic (WSDL) (WSDL, 
2001), Service Oriented Architecture (SOA) (Bell, 
2008), etc. In all of these approaches, the domain 
semantics captured in an ontology are tagged to 
business/service information represented using 
these standards, facilitating semantic compat-
ibility between interacting enterprise services and 
easing knowledge interoperability (Nagarajan, 
Verma, Sheth, Miller, & Lathem, 2006; Burstein 
& McDermott, 2005). Researchers have also de-
signed and implemented OWL-S (OWL-S, 2004), 
a semantic Web enabled Web-service model that 
incorporates all of the aspects of a software Web 
service lifecycle using ontology frameworks. 
For example, in the financial enterprise, lack of 
standard ontologies for capturing the semantics 
related to the financial domain have created a major 
bottleneck for information exchange/integration, 
knowledge extractions, financial reporting, Web 
services, etc., due to semantic ambiguity in the 
represented financial knowledge (Makela, Rom-
mel, Uskonem, & Wan, 2007; Hu, 2010). Cur-
rently, Object Management Group (OMG) has 
taken an initiative to develop Financial Industry 
Business Ontology for capturing semantics related 
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to the financial domain (FIBO, 2012). As another 
example, in the government domain, semantic 
technologies such as linked data, semantic Web, 
ontologies, etc., have become a crucial component 
for achieving integrated e-government services 
(Bettahar, Moulin, & Barthes, 2009). These se-
mantic components have been introduced into 
software architectures, providing semantics to 
electronically augment government information 
and facilitate semantic integration/interoperability 
between the participating government services/
departments (Davis, Harris, Crichton, Shukla, 
& Gibbons, 2008; Fonou-Dombeu & Huisman, 
2011), etc.

However, the success of employing ontologies 
for resolving enterprise semantic interoperability 
is jeopardized due to structural and semantic 
interoperability issues among the domain ontolo-
gies that are used for the systems that support a 
new enterprise application. There are a number 
of key issues to address. First, the individual 
ontologies of each constituent system used by 
a new enterprise application may each organize 
knowledge in different ways to suit their specific 
application and organizational processes, meaning 
that the ontologies across the constituent systems 
are often incompatible and difficult to integrate. 
Second, the ontology development and deploy-
ment process is predominantly instance and con-
struction based, often dictated by the talent and 
expertise of the ontologist rather than using any 
concrete software development process; such an 
approach limits the reuse since ontologies end up 
being very domain centric. For a new enterprise 
application, the existence of consistent ontologies 
of the constituent systems will greatly simplify 
the semantic interoperability. Finally, many exist-
ing ontology representational frameworks lack 
an ability to design solutions that are broader in 
scope; the end result is often narrowed to not just 
a single domain, but to a subset of the domain 
that is very application specific. Thus, the over-
riding issue is that ontologies solely focus on the 

domain knowledge and its usage by constituent 
systems rather than abstracting back from the 
problem to consider the enterprise domain ant its 
appropriate set of ontologies in a more compre-
hensive and general manner. Such an approach 
towards ontologies is in direct conflict with the 
design methodologies in software engineering, 
databases, and Web settings, where the primary 
emphasis is on the modeling techniques that can 
applied to conceptualize the problem in a fashion 
that promotes characteristics such as modularity, 
abstraction and reuse, which implicitly eases 
structural and semantic interoperability issues. 
In this chapter, we leverage our previous work on 
extending the Web Ontology Language (OWL) 
for design and development of ontologies for ap-
plications that is more aligned with the software 
lifecycle and emphasizes a design approach for 
ontologies (Saripalle, Demurjian, & Behre, 2011; 
Saripalle & Demurjian, 2012b).

To provide a context for this chapter, we lever-
age an example in the healthcare domain, where it 
is necessary to construct an enterprise application 
for health information exchange (HIE) that is able 
to pull patient medical information from multiple 
sources in different formats and using alternative 
programming paradigms. An HIE enterprise ap-
plication is constructed by gathering data from: 
electronic health records (EHRs) which reposito-
ries of patient medical records that may exist in 
provider offices, clinics, and hospitals; personal 
health records, (PHRs) that allow patients to 
manage their own health care data; personalized 
medicine health portals (PMHP) which allows 
providers to view their own patients’ genetic 
data against their EHR in order to bridge the 
gap between providers and medical researchers; 
and, other laboratory, diagnostic, pharmaceutical 
systems that involve patient care. Note that an 
HIE enterprise application for many situations 
provides only read information to patient data or 
de-identified data sets. In support of an HIE en-
terprise application, the biomedical field provides 
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a significant variety of high-level XML standards 
including: the Continuity of Care Record (CCR) 
(ASTM, 2003), Continuity of Care Document 
(CCD), the Health Language Seven (HL7) Clinical 
Document Architecture (CDA) (HL7 CDA R2, 
2008), etc. These high-level standards allowed 
medical providers to seamless structure, integrate, 
and share the patient’s medical data with their 
respective propriety systems and collaborating 
environments. For providing enterprise semantic 
interoperability between the constituent systems 
(EHRs, PHRs, etc.), there are numerous standards 
such as: International Classification of Disease 
(ICD-10) (ICD, 2013), Logical Observation 
Identifiers Names and Codes (LOINC) (LOINC, 
2013), Systematized Nomenclature of Medicine 
Clinical Terms (SNOMED-CT) (SNOMED CT, 
2013), Diagnostic and Statistical Manual of Mental 
Disorder (DSM) (DSM, 2012), Unified Medical 
Language System (UMLS) (Bodenreider, 2004), 
etc. The problem that exists in the health care do-
main to hinder enterprise semantic interoperability 
are the inconsistencies in these low-level ontol-
ogy standards, e.g., Psychoses (DSM, 2102) is a 
“Mental Disorder” in ICD and a “Psychotic illness” 
in DSM, while. Spherocytosis (SNOMED CT, 
2013) is a “Diseases of Blood and Blood-Forming 
Organs” in ICD and “Red Blood Cell Shape-
finding” in SNOMED-CT. These differences in 
the health care domain, along with similar cases 
in other enterprise domains, must be reconciled 
to achieve enterprise semantic interoperability.

In software engineering, a designer can better 
understand the domain problem and propose a 
plausible solution by developing domain model(s) 
to provide an abstract view of the solution with 
well-defined structure and semantics and are 
developed by considering domain instance data 
as it can influence the design, but not to the point 
that the design gets tied to the domain instances. 
One approach to software domain modeling that 
greatly facilitates reuse are software design pat-

terns (SDP) defined as “a template illustrating 
a reusable solution to a reoccurring problem in 
multiple different situations with similar context” 
(Gamma, Helm, Johnson, & Vlissides, 1994; Free-
man, Robson, Bates, & Sierra, 2004). SDPs can 
influence an enterprise application by allowing 
these generalized templates to be customized for 
a specific domain. For instance, the Model-View-
Controller (MVC) pattern can be used easily in any 
enterprise application that requires: a Model that 
manages the behavior and data of the application; 
a View that manages the UI of the application; 
and, a Controller that interprets the user actions 
and informs the actions to the model and/or the 
view. Based on the domain application, the do-
main models replace the respective MVC compo-
nents. This ability of SDP to divide the complex 
problem into modular manageable sub-problems 
and develop solutions that facilitate modularity, 
reusability, interoperability, etc., has gained them 
a prominent position in the software community; 
our intent is to extend SDPs to support enterprise 
semantic interoperability for ontologies.

In this chapter, the overall goal is to improve 
the design, development, and deployment of on-
tologies with syntactic and semantic integration in 
support of an enterprise application by proposing 
a set of Ontology Architectural Patterns (OAPs) 
which are abstract reusable architectural patterns 
influencing the overall development of semantic 
knowledge involving multiple ontology models 
that ease interoperability issues and promote a 
software engineering approach for ontology de-
velopment. This have been introduced to a limited 
extent in our prior work on semantic patterns 
(Saripalle & Demurjian, 2012a), but this chapter 
dramatically extends that work by leveraging SDP 
concepts to ease structural and semantic interop-
erability issues. In the process, the ontologist is 
encouraged and guided to design and develop 
modular ontology models, reusable in multiple 
domain application settings that share similar con-
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textual requirements. As a result, the ontologist can 
focus on constructing reusable ontology models, 
moving future reconciliation and integration of 
different ontologies for an enterprise application 
from the current labor-intensive instance level to 
a more abstract and conceptual domain model 
level. The OAP extensions are illustrated using 
an HIE enterprise application that brings together 
different systems (EHRs, PHRs, etc.) in support 
access across multiple sources for two types of 
users: medical providers that are interested in 
obtaining a full picture of a patient’s medical data 
collected from varied sources to facilitate clinical 
care; and, researchers that seek to analyze data from 
the HIE Repository that has been de-identified to 
conduct disease related, public health surveillance, 
and other research. HIE is a complex enterprise 
application that must marshal data from multiple 
sources and can be greatly benefited by OAPs to 
model a solution that can resolve and reconcile 
syntactic and semantic differences among the 
ontologies of its constituent systems.

Towards this goal, the reminder of this chapter 
is divided into five sections. Section 2 provides 
additional background and motivation on the 
role of ontologies in the design and development 
process, a review of software design patterns, 
their classification, and usage in the software 
development process, and a brief introduction to 
enterprise interoperability (EI) and the role that 
ontologies can play, particularly in regards to our 
proposed OAPs. Section 3 proposes the developed 
Ontology Architectural Patterns (OAP) which are 
explained in terms of name, motivation, descrip-
tion, context & usage, and application & imple-
mentation; examples in both health care and other 
enterprise domains are provided Section 4 reviews 
related research in ontology patterns and ontology 
frameworks, comparing and contrasting to our 
work presented in Section 3. Section 5 discusses 
the future direction of knowledge development 
for facilitating enterprise interoperability. Finally, 
the last section concludes the chapter.

2. ONTOLOGIES, SOFTWARE 
DESIGN PATTERNS, AND 
ENTERPRISE INTEROPERABILITY

This section provides additional explanation on 
motivation and background for the paper. First, 
Section 2.1 reviews additional motivation on on-
tologies regarding the role that they can plan in 
systems design and development, with an example 
in the health care domain that further motivates the 
need for Ontology Architectural Patterns (OAP). 
Using this as a basis, Section 2.2 briefly examines 
Software Design Patterns (SDP) in terms of their 
inception, categories, and role in the software 
development process. Finally, Section 2.3 intro-
duces the domain of Enterprise Interoperability 
(EI), its concepts and relationship with Sections 
2.1 and 2.2, to place the work of this chapter into 
a proper perspective with EI.

2.1. Role of Ontologies in Systems 
Design and Development

The discussion in Section 1 provided an initial 
motivation for the need and usage of Ontology 
Architectural Patterns (OAP) for enterprise in-
teroperability through a discussion of the status 
of ontologies, design, and modeling approaches of 
knowledge and software engineering and software 
design patterns. This section further clarify the 
motivation to precisely position the work on OAP 
with respect to traditional ontology development 
and its need for a higher level abstract approach 
akin to software design patterns. The end result 
provides a means to more precisely and generally 
define ontologies (and their components) with an 
aim towards potential reusability in a domain (or 
program family).

Current approaches to ontology development 
today are conducted using tools such as Protégé 
(Protege, 2012), Java Ontology Editor (JOE) 
(Java Ontology Editor, 1998), etc. These tools 
allow an ontology developer to work with domain 
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experts with a focus on building an ontology that 
maximizes the domain knowledge by capturing 
the knowledge concepts for a given domain of 
disclosure. This leads to a current ontology de-
velopment practice that is predominantly instance 
and construction based (Kuhn, 2010; Saripalle, 
Demurjian, & Behre, 2011; Saripalle & Demur-
jian, 2012b), totally focused on the application 
and its specific domain and system requirements. 
Such a process is highly influenced by the ontol-
ogy developer’s experience, input from domain 
experts, and based on the actual data that is to be 
modeled within the ontology rather than defining 
a structure for the ontology that is more reusable 
across enterprise systems. As a result, ontologies 
created for different systems of the same domain 
can be quite different. For example, constructing a 
set of ontologies for enterprise application such as 
Amazon would require a very broad set of ontolo-
gies to capture all of its products characteristics 
(books, electronics, household, fashion, etc.), 
while a set for Barnes & Noble may be limited 
much more to books. The two resulting sets of 
ontologies developed for Amazon and Barnes & 
Noble may be difficult to integrate, with human 
intervention need to understand equivalences 
across the two sets, a laborious task with at best 
semi-automatic methodologies and reuse of the 
ontology is obscure. The OAP and an emphasis on 
that ontology design would allow a more general-
ized ontology for “books” to be created that would 
have the potential to be utilized in all enterprise 
applications where book sales are a part of their 
business process.

Second, ontologies cannot be created in a 
vacuum without consideration of concepts that 
may cut across different solutions (different en-
terprise applications) and require sophisticated 
modeling to abstract domain specific materials 
out of the ontology to yield an ontology schema 
(akin to an XML schema) that is reusable across 
multiple enterprise applications of a given domain. 
Further, a single ontology may not suffice for the 
structural and knowledge requirements of the 

enterprise application, but may require multiple 
interacting ontologies to correctly represent the 
required medical knowledge. Continuing with the 
earlier example, there may be an ontology archi-
tectural pattern that can be applied at a higher level 
across the Amazon and Barnes & Noble enterprise 
applications that is able to capture ontology simi-
larities at a higher abstraction level that promotes 
reuse. In the health care domain, there could be 
many enterprise applications that would need to 
utilize the same ontology. For example, a clinical 
researcher trying to identify genes responsible for 
mental disorders might want to have an enterprise 
application to access genomic and clinical (patient) 
databases that would require the integration of the 
Gene Ontology (Ashburne & Lewis, 2002) and the 
Diagnostic and Statistical Manual of Mental Dis-
orders (DSM) to develop a Gene-Mental Disorder 
ontology. Likewise, another enterprise application 
could provide the ability to allow queries to cross 
the International Classification of Diseases (ICD-
10) codes with Logical Observation Identifiers 
Names and Codes (LOINC) ontology to develop 
a Disease-Laboratory Test correlation ontology to 
be used by combining ICD-10 and LOINC with 
de-identified patient data for mining. However, 
the reconciliation process between these ontolo-
gies will be arduous, performed on the instance 
level rather than at a higher-level of abstraction 
that would involve the structure of the ontologies. 
Even, if an expert ontologist develops a mas-
sive single ontology by integrating the required 
multiple ontologies, the large-scale nature of this 
massive ontology (defined and then integrated at 
an instance level) sacrifices fundamental software 
characteristics such as modularity, reusability, ab-
straction, minimal coupling, etc. The integration/
mapping rules between these participating ontolo-
gies are contextually based on an organization 
application goals, meaning that their integration 
may not be easily accomplished if their purposes 
are so diverse as to make it difficult to identify 
linkages and commonalities. We note again that 
the current ontology integration methodologies 
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focus on integrating ontology instances using 
linguistic and statistical techniques that often 
ignore semantics. Such an approach can result 
in a merging that cannot be syntactically and 
semantically verified. This is evident from stud-
ies on the UMLS (Krauthammer, 2002; Kohler, 
2007) and SNOMED-CT (Chiang, Hwang, Yu, 
et al., 2006) medical standards where they have 
been attempts to integrate two ontologies that have 
significantly different nomenclature. This is true 
for many other domains.

Finally, while the existing medical ontolo-
gies previously discussed have an overwhelming 
knowledge overlap among them, the way that each 
ontology deals with that knowledge can be quite 
different. Further, since these ontologies have often 
been built in isolation (e.g., by different standard 
committees and other organizations), having an 
ontologist that can understand all of them is unre-
alistic. For example, if there are one or two features 
a newly developed ontology needs that are not in 
the standard, the solution to develop yet another 
ontology occurs, often replicating information 
from multiple ontologies and having a vocabulary 
that may be in conflict with other standards the 
“same” information (semantically). Thus, the 

existing ontologies, the newly development ontolo-
gies, and any future customized ontologies have 
to be constantly monitored and integrated with 
one another in order to remain consistent. This is 
a monumental task in any enterprise application, 
further compounding the structural and semantic 
interoperability issues with ontologies. Imagine 
the difficulty it would be to get the organizations 
(and their enterprise applications) for Amazon, 
Barnes & Noble, eBay, etc., to all work towards 
a common shared ontology. Obtaining agreement 
from such a large number of stakeholders will be 
difficult to achieve in practice. Figure 1 supports 
this argument by illustrating the domain knowl-
edge overlap between medical ontologies. Notice 
in Figure 1 that the OMIM and Gene Ontologies 
have overlapping knowledge on Gene domain. 
In addition ICD and DSM have a knowledge 
overlap on the domain of Mental Disorders, with 
SNOMED-CT and ICD having a major knowledge 
overlap on multiple domains such as Disease, 
Symptom, Procedure, etc. Further, SNOMED-
CT, ICD and OMIM have a knowledge overlap 
on domain of Disease. More significantly, UMLS 
is attempting to encompass all of the standards 
under one umbrella via its own theory and model 

Figure 1. Domain knowledge overlap between various standard medical ontologies
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for achieving its goal, but fails to provide modular 
domain models for respective domains which can 
reused independent of the domain application. 
Thus, failing to reuse existing knowledge sources 
and developing new ontologies for targeting the 
same domain knowledge leads to chaotic structural 
and semantic interoperability issues.

2.2. Software Design Patterns

In software engineering, Software Design Patterns 
(SDP) arose when developers noticed that they 
were using the same software structure in terms 
of classes, interfaces, and interactions in multiple 
settings, tweaking them to handle difference in 
domain data. SDPs expand the concept of generics 
(used to capture a lower level component like a 
stack that can be instantiated for any data type) to 
a higher-level pattern that captures the generalized 
structure, semantics, direction and usage at of a set 
of classes, interfaces, and their interactions that 
represents a major component of a system. As a 
result, SDPs are adaptable to work in varied set-
tings for enterprise applications that have similar 
design requirements or behavioral characteristics. 
The primary components of a SDP are: context 
that explains when the design pattern is applicable 
by defining environment parameters and the us-
age of the pattern itself; problem that illustrates 
the kind of problems the pattern can applied to; 
and, solution to explain the way to use the pattern 
as a viable software engineering solution to the 
encountered domain problem. Apart from these 
components, a design pattern also may have the 
following essential elements: name of the pattern; 
examples to illustrate the application of the pattern 
to a multiple domain specific problems; rationale 
for the logic explanation of the pattern and its 
application; related patterns that have the same 
or varying categories or types; and known uses 
for successful industrial usecase scenarios. SDPs 
have gained importance since they are generalized 
artifacts from multiple solutions they are domain 
independent making them interoperable between 

heterogeneous domain application problems. The 
use of SDPs in Web-based solutions are founda-
tional regardless of the implementation platform.

SDPs are classified into three broad categories 
that are based on the functionality, interactions, 
and purpose of the SDP (Freeman, Robson, Bates, 
& Sierra, 2004). The first category, the Creational 
SDP, deals with a software entity’s (mostly classes) 
creation in a manner suitable to the given appli-
cation context. Sample creational SDPs include: 
the Abstract Factory Pattern that provides a way 
to encapsulate a group of individual factories 
that have a common theme without specifying 
their actual classes; the Factory Method pattern 
that defines the interface for creating an object, 
but allows subclasses to decide which class to 
instantiate; and, the Builder Pattern that separates 
the concerns of construction of a complex object 
from its representation,. The second category, the 
Behavioral SDP, is used to identify the common 
communication patterns between objects. Sample 
behavioral SDPs include: the Chain of Responsi-
bility Pattern consisting of a source of command 
objects and a series of processing objects where 
each processing object contains logic that defines 
the types of command objects that it can handle; 
the Command Pattern in which an object is used 
to represent and encapsulate all of the informa-
tion needed to call a method at a later time; and, 
the Observer Pattern where an object, called the 
subject, maintains a list of its dependents, called 
observers, and notifies them automatically of 
any state changes, usually by calling one of their 
methods. The third category, Structural SDP, 
provides a simple way to realize relationships 
between multiple entities. Sample structural SDPs 
include: the Adapter Pattern that allows classes to 
work together that normally could not because of 
incompatible interfaces; the Bridge Pattern that 
decouples an abstraction from its implementation 
so that the two can vary independently; and, the 
Composite Pattern which describes that a group 
of objects are to be treated in the same way as 
a single instance of an object, with the intent to 
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compose objects into a tree structure to represent 
part-whole hierarchies. SDPs play a significant 
role in enterprise applications; our intent is 
to expand this concept to include knowledge 
modeling which will allow the specification of 
ontology architectural patterns (OAP) that can 
play a major role in achieving enterprise semantic 
interoperability.

2.3. Enterprise Interoperability (EI)

Enterprise Interoperability (EI) (Charalabidis, 
Goncalves, & Popplewell, 2010; Jardim-Gon-
calves, Grilo, Agostinho et al., 2013) is defined

… as a field of activity with the aim to improve 
the manner in which enterprises, by means of 
information and communications technologies, 
interoperate with other enterprises, organizations, 
or with other business units, in order to conduct 
their business (Popplewell et al., 2012). 

The reality is that new enterprise applications 
are built today by the cobbling together of func-
tionality from multiple sources (via APIs, Web 
services, cloud services, JSON calls, etc.) and 
their interoperation requires addressing different 
facets associated with enterprise development. The 
overriding object of EI is to support the ability 
of enterprises to communicate and interact seam-
lessly. The term Enterprise can be defined as “an 
organization that provides open/paid services to 
clients” (Charalabidis, Goncalves, & Popplewell, 
2010) and Interoperability can be defined as

…the ability of two or more systems or components 
to exchange information and to use the information 
that has been exchanged (Popplewell et al., 2012). 

EI as a generalized concept, subsumes other 
interoperability issues from differing perspec-
tives, detailed in ESIB Report (Popplewell et al., 
2012): Data Interoperability, Process Interoper-
ability, Knowledge Interoperability, Services 

Interoperability, Rules Interoperability, Objects 
Interoperability, Software Interoperability, Cul-
tural Interoperability, Social Networks Interoper-
ability, Electronic Identity Interoperability, Cloud 
Interoperability, and Ecosystems Interoperability. 
These noted interoperability issues are interweaved 
with one another at a conceptual level. For ex-
ample, there is a strong dependency between 
Data and Knowledge Interoperability, Process 
and Knowledge Interoperability, and Process and 
Service Interoperability, to name a few. When one 
addresses the issues for a given interoperability, 
there is a corresponding ripple effect on other 
interoperability issues.

The proposed ontology architectural patterns 
(OAP) in this chapter has the primary goal to 
solve semantic interoperability among domain 
ontologies and is primarily targeting Knowledge 
Interoperability and is closely related to Data 
Interoperability. Hence, providing a software-
engineering-based solution to semantic interop-
erability among ontologies has an impact on the 
Knowledge and Data Interoperabilities of EI. Addi-
tionally, in support of OAP, we leverage the related 
works of Gangemi’s (Gangemi, 2005; Gangemi 
& Presutti, 2009) proposed Conceptual Ontol-
ogy Design Pattern (CODeP), Clarks’s (Clark, 
Thompson, & Porter, 2004) abstract Knowledge 
Patterns (see Section 4) for designing more effec-
tive ontology models at a high abstraction level 
via ontology semantic patterns. For example, 
multiple enterprise systems can employ a Time-
Indexed Participation CODeP for defining their 
own open-source/proprietary ontology model 
for online services, where: Object in the CODeP 
pattern can represent physical items, online Web 
services, person/semantic agent, etc.; Event can be 
cast as service orders, automated triggers, internal 
events, etc.; and, Time Interval can represent a 
time frame. Even though the service ontology 
model(s) and respective implementation vary 
between the enterprises, the ontology models that 
are utilized refer to the same semantic pattern 
(including the semantic context). This results in 
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reusing the patterns concepts (classes, attributes 
and associations) and application context thereby 
easing Knowledge Interoperability when enter-
prises need to collaborate.

3. ONTOLOGY ARCHITECTURAL 
PATTERNS (OAP)

The emergence of the eXtensible markup language 
(XML) as a near defacto standard for information 
representation and exchange has had a significant 
impact on the ontology and enterprise interoper-
ability research and development areas. XML 
dominates standards in computing and other fields, 
in addition to all of the aforementioned healthcare 
standards (HL7 CDA, CCR, etc.) there are many 
other standards that have the potential to impact 
enterprise applications including: HR-XML 
(HR-XML, 2013) for personnel and developers 
to have a common terminology for all aspects of 
human resources; the Oasis Open Office XML 
(Brauer & Schubert, 2013) document format for 
representing documents, presentations, etc., more 
easily; a wide variety of standards for libraries 
(LOC, 2012) such as the METS standard for 
tracking metadata on objects in digital collec-
tions; the Oasis LegalXML (LegalXML, 2008) 
standard for the electronic exchange of legal data 
and documents; and so on. In addition, ontolo-
gies can capture and attach semantic knowledge 
to represented information thereby aiding users 
(humans and agents) in knowledge engineering 
and representation, domain modeling, database 
and object-oriented analysis, natural language 
processing, biomedical and clinical informatics, 
etc. These efforts are supported by a wide variety 
of knowledge representation frameworks such as 
Resource Description Framework (RDF) (Powers, 
2003), Web Ontology Language (OWL) (OWL 
Guide, 2004; Lacy, 2005), KIF (Genesereth, 1991), 
DAML+OIL (Horrocks, 2002), etc. Clearly, all of 
these standards and frameworks are available for 

a wide range of enterprise applications, and will 
be more and more important over time.

In this section, the work on ontologies as 
discussed in Section 2.1 and issues related to 
enterprise interoperability in Section 2.3 provides 
a strong justification to extend and apply software 
design pattern concepts so that they are suitable for 
ontology design. Specifically, this section details 
our developed Ontology Architectural Patterns 
(OAP) defined as abstract reusable architectural 
patterns that can assist the domain designer to de-
fine reusable modular ontology models at a higher 
abstraction level in order to support enterprise 
interoperability. The primary aim of developing 
OAP is twofold. First, OAP as a modeling construct 
eases the ontology architectural design process 
by providing the ability to define a more general 
solution for a domain application that attains re-
quired domain knowledge. Second, these OAPs 
promote development of modular domain ontol-
ogy models encouraging knowledge abstraction, 
minimizing coupling, facilitating reuse, etc., which 
has the end result of easing interoperability issues 
between ontologies thereby facilitating enterprise 
interoperability of data and knowledge. In order 
to achieve these goals, we have developed three 
OAPs. The Linear Ontology Architectural Pattern 
(LOAP) is presented in Section 3.1 and represents 
a linear/parallel architectural arrangement of mul-
tiple ontology models for achieving the required 
knowledge goal in a manner where the captured 
knowledge is accessible in an ordered manner. 
Then, in Section 3.2, the Centralized Ontology 
Architectural Pattern (COAP) is explained, defin-
ing a global ontology model (higher-level abstrac-
tion) under which multiple component ontology 
models interact akin to a centralized hub. Lastly, 
in Section 3.3, the Layered Ontology Architectural 
Pattern (LaOAP) in defined to support a layered 
arrangement of the components organized from 
the innermost to outermost layer as: the Ontol-
ogy Conceptual Model (innermost layer) within 
the Axiom and Rule for the Model within the 



226

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Mapping of the Model within the Terminology 
(vocabulary) of the Model within the Query and 
Web Services (outmost layer).

To standardize the discussion in the remainder 
of this section, the presentation follows a consistent 
ordering for each Ontology Architectural Patterns 
(OAP) expressed with: the Pattern Name which 
identifies the OAP by name; the Pattern Motiva-
tion which is utilized to more fully motivate the 
need of the proposed pattern and the influence of 
various SDP, ontologies, and their frameworks 
from other domains; the Pattern Description 
which explains the operational and functional 
interactions of each pattern; the Pattern Context 
& Usage which represents the contextual require-
ments for applying the pattern and its usage in 
an enterprise application; and, the Pattern Ap-
plication & Implementation which illustrates an 
instantiation of the pattern and its realization in 
an enterprise application. Throughout the discus-
sion, we provide examples using the domains of 
biomedical informatics, e-commerce, e-services, 
e-government etc.; again, we note that these pat-
terns are general and can be applied to any domain.

3.1. Linear Ontology 
Architectural Pattern

Pattern Name: Linear Ontology Architectural 
Pattern (LOAP).

Pattern Motivation: The Linear Ontology Ar-
chitectural Pattern (LOAP) is primarily 
motivated and influenced by the Pipe & 
Filter and Chain of Responsibility SDPs that 
are categorized under structural SDPs as 
defined in Section 2.2. The primary goal of 
these patterns is to divide the large complex 
problem into smaller modular problems and 
develop generic reusable solutions. The Pipe 
& Filter SDP as shown in Figure 2a has two 
primary components: Filter which holds the 
logical modules (e.g., file readers, boot load-
ers, memory units, etc.) that accept the given 
input(s), processes them, and generates an 
output; and, Pipe which interconnects two or 
more Filters (i.e., the output of one Filter is 
fed in as input to another Filter). For example, 
compliers might utilize Pipe & Filter SDP 
where the complex problem of compiling 

Figure 2. The Pipe & Filter SDP and its implementation
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a program is divided into smaller problem 
modules such as Lexical Analysis, Parsing, 
Semantic Analysis, and Code Generator. 
These modular components are connected 
and executed accordingly to obtain the final 
output that is machine executable code as 
shown in Figure 2b.

Similarly, the Chain of Responsibility SDP, as 
shown in Figure 3a, also has two primary com-
ponents: Logical Handlers, which are generally 
governed by a superior interface (Handler Inter-
face) to manage the application logic; and, the 
Relationship that handles the interactions between 
the participating Logical Handlers.

For example, as shown in Figure 3b. when a 
patient arrives at the clinic practice there may be 
several steps: nurse or medical assistant brings 
the patient to a room, reviews the medications, 
measures BP, pulse, temperature, etc., and notes 
on the purpose of the patient’s visit; physician 
visits the patient, makes an assessment, and comes 
up with a treatment plan that may be a diagnosis 

(e.g., has strep throat take Augmentin) or require 
further evaluation (blood work and/or x-rays); the 
nurse or medical assistant may return to answer 
any follow-up questions and to provide appropri-
ate prescriptions or other treatment instructions. 
In the example, all of the individuals involved in 
this process take up their responsibility (acting as 
Logical Handlers) and communicate (Relation-
ship) the information to the next individual (nurse 
review→ physician assessment→ medical assis-
tant/nurse action) to finally arrive at the outcome 
(successful treatment of the patient). The main 
difference between Chain of Responsibility and 
Pipe & Filer is for the latter to allow cyclical con-
nections and bi-directional flow.

Pattern Description: The Linear Ontology 
Architectural Pattern (LOAP) as shown in 
Figure 4 is an architectural arrangement 
of ontology models (Ontology1, Onotol-
ogy2,…, OntologyN) which are connected 
(Link1, Link2,…,LinkN) in a sequential 
and/or in parallel order for achieving the 

Figure 3. Chain of Responsibility SDP and its implementation
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desired knowledge goal. The LOAP is 
developed by combining Pipe & Filter and 
Chain of Responsibility SDPs, where the 
ontology models (Ontology1, Onotology2,…
,OntologyN) are aligned to Filters (Filter1, 
Filter2, …,FilterN, Figure 2a) and Logical 
Handlers (Logical Handler1,…,Logical Han-
dlerN, Figure 3a), and the connecting links 
(Link1, Link2,…,LinkN) correspond to Pipes 
(Pipe1, …,PipeN, Figure 2a) and Relations 
(Figure 3a). The output is primarily a query 
result performed on the multiple ontology 
models based on the inputs (initial inputs or 
previous ontological outputs). The connec-
tions (Link1, Link2, …LinkN) between the 
ontology models are generally unidirectional 
but can also be a loop within an ontology 
model or between ontology models, where 
the data flows from the previous ontology 
model (Ontology1) to the next ontology 
model (Ontology2) and so on until the final 
output is generated. The initial input is given 
to Ontology1, then the output of Ontology1 is 
fed as input to Ontology2 through Link1 and 
the chain continues as the result is finally 
obtained at OntologyN to generate an output. 
One step with LOAP can also generate in-
termediate results from an entire other OAP 
(i.e., for some M, OntologyM). The desired 
knowledge goal is achieved by developing 
modular reusable ontology models to ease 
semantic interoperability issues during the 
ontology models integration/reconciliation 
process.

Pattern Context and Usage: The LOAP pattern 
is applicable to any enterprise domain ap-
plication where the required domain knowl-
edge is obtained by connecting multiple 
source ontology models or a single large 
ontology has to be divided into multiple 
modular ontology models that will then be 
connected in sequential/parallel fashion. The 
ability to separate a larger ontology into 
different logical component ontologies has 
an advantage in an enterprise interoperabil-
ity context to allow the separation of various 
data and knowledge components. The links 
(Link1, Link2,...., LinkN in Figure 4) between 
the ontology models is primarily program-
matic consisting of the software logic that 
is written using languages such as Java, C++, 
etc., or semantic where the link semantics 
are captured in another ontology model. By 
designing and connecting reusable ontology 
models for capturing the required domain 
knowledge, the LOAP and its component 
ontology models are reusable in multiple 
enterprise application settings.

As an example, recall Figure 3 for the treat-
ment of a patient in multiple steps. Underlying this 
process is the need to organize the information 
that is used into different ontology models that 
would be utilized in different steps of Figure 3. 
By analyzing the treatment process, an ontolo-
gist can design a Triage LOAP (pattern name) as 
shown in Figure 5a that has three Ontology Models 
(Diagnosis, Anatomy, and Test) with associated 

Figure 4. Linear Ontology Architectural Pattern (LOAP)
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links (LinkDisease-Anatomy and LinkDisease-Test). In Figure 
5a, the Diagnosis Ontology model captures the 
knowledge on various Disease, Symptom, and In-
jury models, an Anatomy Ontology model captures 
the domain knowledge of the human body, and 
a Test Ontology model captures the knowledge 
on blood tests, imaging tests, cardiac tests, etc. 
Figure 5b expands each of the Ontology model 
blocks of Figure 5a demonstrating that within 
each step resides a significant ontology (that may 

also be an OAP). By modularizing the domain 
knowledge into multiple ontology models, the 
domain ontology models have the potential to be 
reusable in different enterprise applications, e.g., 
the Disease and Symptom Ontology models may 
only be needed for one enterprise application, with 
the Anatomy model used by another application.

Similarly, in the domain of e-government, there 
is constant need to exchange information between 
various departments such as public administration 

Figure 5. Instance of a triage LOAP
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services, immigration services, tax department, 
immigration law bureau, etc. The ontology de-
signer for the e-government domain can modular-
ize the needed ontology models for maximizing 
the reuse of semantic knowledge among the gov-
ernment services. For example, a Public Service 
Ontology model captures the semantics (e.g., 
codes, description, definitions, eligibility, etc.) of 
the government public services, an Immigration 
Ontology model captures the semantics (e.g., 
types of visas, statuses of visa, etc.) of the govern-
ment immigration domain, a Tax Ontology 
model captures knowledge about the tax codes of 
the government, and an Immigration Law Ontol-
ogy model captures sematic knowledge about 
various laws involving immigration. Thus, based 
on the required knowledge goal, the e-government 
ontology models can be interconnected or linked 
(e.g., LinkTax-Immigration, LinkService-Immigration, Lin-
kImmigration-Law, etc.) with one another similar to 
Figure 5a. Once the ontologies is developed for 
the e-government domain, subsets can then be 
applied to other enterprise applications for that 
domain.

Pattern Application and Implementation: The 
Triage LOAP in Figure 5 can be realized 
as shown in Figure 6 using a combination 
of: the OWL Framework (Lacy, 2005) for 
defining the three ontology models; the 
Protégé Ontology Editor (Protege, 2012) for 
building OWL based ontology models; the 
SPARQL (Lacy, 2005) query language to 
interrogate the Triage LOAP and its ontol-
ogy models; and, Java for UI and program 
logic. The implementation of Figure 6 for 
an enterprise application as shown in Figure 
7 adopts a three-layered approach where: 
Layer 1 holds the Java based UI for the user 
to enter the inputs, Layer 2 holds the logic 
of the application implemented using Java 
and SPARQL, and Layer 3 holds the actual 
OWL ontology instances for each model. 
The layered approach allows each layer to 

be independent and reusable from the other 
layers. The flow of the Triage LOAP (Figure 
5) and its implementation (Figure 6) begins 
when the user (e.g., nurse, physician assis-
tant, etc.) types in symptoms such as fever, 
cold, and fatigue (Layer 1) that are read using 
a Java program (Layer 2) and then fed into 
the SPARQL query engine (Layer 2). Next, 
the SPARQL engine feeds the user inputs 
to the Diagnosis Ontology Model whose 
outputs are given as inputs to both the Test 
and Anatomy Ontology Models.

The query performed on the Diagnosis Ontol-
ogy model (LOAP_Diagnosis.owl, Figure 6a) by 
the SPARQL engine is shown in Figure 8a, which 
queries the model for known diseases for the 
given input symptoms. The links LinkDisease-Test 
between the Diagnosis and Test Ontology Models 
(Figure 6) are implemented as a SPARQL query 
as shown in Figure 8b, which queries the Test 
Ontology Model (LOAP_Test.owl, Figure 6b) 
based on the Diagnosis Ontology Model outputs 
(d1, d2,…., dn). The LinkDisease-Anatomy between the 
Diagnosis and Anatomy Ontology Models (Figure 
6) is also implemented as a SPARQL query as 
shown in Figure 8c, which queries the Anatomy 
Ontology Model (LOAP_Anatomy.owl, Figure 
6c) based on the Diagnosis Ontology Model 
outputs (d1, d2,…., dn).

3.2. Centralized Ontology 
Architectural Pattern

Pattern Name: Centralized Ontology Architec-
tural Pattern (COAP).

Pattern Motivation: The Centralized Ontology 
Architectural Pattern (COAP) is influenced 
by the Façade SDP, the Local As View (LAV) 
methodology (Lenzerini, 2002), and the 
MAFRA framework (Maedche, Motik, Silva, 
& Volz, 2002). The Façade SDP provides a 
unified higher-level global interface/system 
developed from a set of complex heteroge-
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Figure 6. OWL implementation of triage LOAP shown in Figure 5

Figure 7. Layered implementation of triage LOAP shown in Figure 5

Figure 8. The SPARQL queries representing the Diagnosis Ontology Model query, LinkDisease-Anatomy, and 
LinkDisease-Test between the ontology models as show in Figure 6
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neous source interfaces/subsystems making 
these local sources easier to utilize for the 
clients. As shown in Figure 9a, the Façade 
SDP abstracts common features or functional 
implementation from multiple complex 
subsystems (SS1, SS2… SSN) and provides 
a unified simple global system (Façade) to 
access these complex subsystems for mul-
tiple clients, thus hiding the complexity of 
the subsystems. For example, the compiler 
example from the Pipe & Filter in Figure 2 
can also be implemented using Façade as 
shown in Figure 9b, where the clients will 
call the simplified complier’s functionality 
(function call - compile) which in turn per-
forms the complex process of invoking other 
subsystems such as Lexical Analysis, Parser, 
SemanticAnalysis and codeGenerator in an 
appropriately defined order.

The LAV methodology is a data integration 
approach where a set of local schemas (LS1, LS2, 
LS3… LSN) are expressed as database views (V1, 
V2…VN) over a global schema (GS) as shown in 
Figure 10a. The mapping between the global 
schema and each local schema is expressed by 
associating the concepts in the local schemas as 
a view VN over the global schema. For example, 
in Figure 10b, the global schema is defined as 
Global Disease Schema (GS) (id, Name, serveri-
tyLevel, medName) which captures various dis-
eases in terms of their unique identifier, com-
monly referred name, disease severity level, and 
medication name which acts as a treatment for 
this disease. The data for this global schema is 
obtained from the two local schemas and their 
respective views: a local schema LS1, Local Dis-
ease Schema1 (LDS1) (id, commonName, severi-
tyLevel), captures diseases in terms of identifier, 

Figure 9. Facade software design pattern and its implementation
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commonly referred name, and disease severity 
level, respectively, and, its view VLDS1 is defined 
as a mapping (represented as ~) between 
LDS1(commonName, severityLevel) ~ GS(name, 
severityLevel). The second local schema LDS2, 
Local Disease Schema2 (LDS2)(id, name, med-
Name), captures the medications for respective 
diseases in terms of identifier, disease name, and 
medication name, respectively, and its view VLDS2 
is defined as mapping between LDS2(name, med-
Name) ~ GS(name, medName).

The MApping FRAmework (MAFRA) pro-
vides a conceptual framework for building seman-
tic mappings between heterogeneous ontology 
models using semantics bridges as shown in the 
Figure 11a. A semantic bridge is a construct that 
allows the connections to have different meanings 
based on the needed interactions of the models. 
The mapping framework provides various types 
of semantic bridges such as RelationBridge, 
ConceptBridge, AttributeBridge, etc. For example, 
consider Local Disease Model (LDM) and the 
Global Disease Model (GM) in Figure 11b. The 
semantically equivalent concepts between these 

models are mapped using attributeBridge i.e., 
LDM (id) ~ GM(id), and as LDM(commonName) 
~ GM(Name) as shown in the Figure 11b; as a 
result, we are able to represent this higher level 
dependencies among different ontologies.

Pattern Description: The Centralized Ontology 
Architectural Pattern (COAP) as shown in 
Figure 12 consists of a Global Ontology 
Model (OG), multiple local source ontology 
models (LO1, LO2, LO3,……, LON), and the 
respective mappings (OM1, OM2,....,OMN) 
between local ontology models and the 
global ontology (OG). Conceptually, the 
COAP in Figure 12 can be aligned as: the 
Global Ontology Model (OG) (similar to a 
Façade in Figure 9a), a global schema in 
Figure 10a, or an Ontology (O1) in Figure 
11a; the local source ontology models (LO1, 
LO2, LO3,……, LON) can be local subsys-
tems in Figure 9a, a local schemas from 
Figure 10a, or ontologies (O2,…,ON) in 
Figure 11a; and, the mappings (OM1, 
OM2,....,OMN) are similar to function calls 

Figure 10. The LAV methodology and its implementation
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between subsystems in Figure 9a, views 
(V1,..,VN) in Figure 10a, or semantic bridg-
es in Figure 11a. The queries are generally 
performed on the Global Ontology Model 
(OG) of COAP and the local sources are 
extracted using the mappings (OM1, OM2, 
…,OMN) which are primarily semantic in 
nature, i.e., the mappings are mostly seman-
tic queries similar to views in Figure 11b or 
semantic mappings in Figure 14. The 
global ontology model acts as a centralized 
reference model for mapping the local source 
ontology models which can also be traversed 
using the mapping to the global ontology 
model, thus eliminating the semantic in-
teroperability issues between heterogeneous 

local ontology models. An enterprise ap-
plication can use the Global Ontology 
Model supplemented by zero or more Local 
Ontology Models based on its needs.

Pattern Context and Usage: The COAP pattern 
is applicable where an enterprise application 
has an existing ontology acting as a global 
ontology and other ontology models (from 
potentially different enterprise applications) 
are to be integrated/mapped with the global 
ontology, or a single knowledge ontology 
model has to be built from existing multiple 
ontology models. An ideal example of the 
COAP is the Unified Medical Language 
System (UMLS) (Bodenreider, 2004) knowl-
edge system developed and maintained by 

Figure 11. The MAFRA framework and its implementation

Figure 12. Centralized Ontology Architectural Pattern
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National Institute of Health (NIH) which has 
two primary tools: UMLS Semantic Network 
(UMLS-SN) and UMLS Metathesaurus 
(UMLS-Meta). The UMLS-Meta holds the 
medical vocabulary obtained by aggregating 
existing medical standard ontologies such as 
ICD, DSM, OMIM, SNOMED-CT, etc., and 
also providing the mappings between these 
aggregated ontologies. As shown in Figure 
13, the UMLS-Meta (UMLS Metathesaurus) 
can be viewed as a global ontology model 
(OG, Figure 12), obtaining its medical vo-
cabulary from various local source ontologies 
such as ICD Codes,, SNOMED-CT, NCBI, 
LOINC, etc., which are local ontology mod-
els (LO1, LO2,…,LON, Figure 12).

Using the mappings (OM1, OM2,…,OMN) and 
the global ontology model (OG) as the reference, 
the semantic mappings (implicit mappings) be-
tween the local source ontology models can be 
deduced. The semantic interoperability issues 
among the ontologies are eased by employing the 
defined mappings (OM1, OM2, …, OMN) and the 
implicit mapping.

Another enterprise domain that could use 
COAP is e-commerce. While each e-commerce 
enterprise is unique from the perspective of its busi-
ness model, sales strategies, software architecture, 
data management, user experience, etc., in total, 
a majority of them may overlap on the types of 
the merchandize/services offered (e.g., electron-
ics, apparel, tools, books, materials, music, could 

space, streaming music, etc.). However, each enter-
prise system may structure the semantic knowledge 
about the merchandize/services offered differently, 
as it’s primarily influenced by the interests of the 
enterprise and talent of the ontology developer. 
For example, an e-commerce service (ES1, e.g., 
Amazon, Barnes & Noble, eBay, etc.) may have an 
ontology model(s) (OE1) capturing the semantics 
knowledge about the merchandize/services of-
fered by the enterprise system. Similarly, other 
e-commerce services (ES2, ES3, ES4,.…….,ESN) 
will have their own ontology models (OE1, OE2, 
OE3 …….,OEN) capturing the semantic knowledge 
of their merchandize/services offered. When two 
enterprises, say ES1 and ES2, need to collaborate/
merge, the semantic knowledge in the ontology 
models (OES1 and OES2) has to be mapped to one 
another to ease the semantic interoperability issues 
(both Knowledge and Data). However, individual 
one-to-one mappings between different ESs are 
not a feasible solution, since it would require a 
custom bi-direction exchange in varied formats. 
For providing a more scalable and feasible 
solution, the enterprises need to collaborate to 
define a global ontology model (OEG) and map 
their respective local ontology models (OE1, OE2, 
OE3 …….,OEN) to the global ontology model. Thus, 
when multiple enterprises need to collaborate/
merge, they can use the OEG ontology model as a 
reference to ease semantic interoperability issues. 
The global ontology model OEG will also act as a 
foundational platform for new enterprise systems 
and to interact with existing systems.

Figure 13. Unified Medical Language System as instance of COAP
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Pattern Application and Implementation: The 
NIH has provided open access to the UMLS 
system as previously discussed and shown in 
Figure 14 through a Web browser for online 
services and a Java Swing based UI supported 
with MySQL and Oracle database scripts for 
standalone applications as show in Figure 
14. The sample database query diagrams 
between the UMLS-Meta schemas are shown 
in Figure 15, where the user can query: the 
MRCONO table for a common name for a 
given Concept Unique Identifier (CUI) for 
identifying medical concepts) as shown 
in Figure 15a; the MRCONO and MRSTY 

tables for finding all of the semantic types 
(UMLS-SN) for a given CUI as shown in 
Figure 15a; the MRCONO and MRDEF for 
obtaining the definition of a CUI as shown in 
Figure 15a; and, the MRCON and MRREL 
tables for obtaining all of the relationships 
a given concept is participating in using the 
Source Concept Unique Identifier (SCUI) 
that uniquely identifies the source of the 
medical concept as shown in Figure 15b. The 
UMLS acts as a global reference ontology 
model that can be utilized to obtain medical 
semantics and the system provides mappings 
between integrated local ontologies.

Figure 14. Unified Medical Language System as instance of COAP and its implementation

Figure 15. Sample database query diagrams for querying UMLS for a given CUI and SCUI
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3.3. Layered Ontology Architectural 
Pattern

Pattern Name: Layered Ontology Architectural 
Pattern (LaOAP)

Pattern Motivation: The Layered Ontology 
Architectural Pattern (LaOAP) focuses on 
the underlying conceptual models for data-
bases, software, and development in order 
to structure the ontology and its compo-
nents in a layered manner. To motivate, we 
use a health care example in Figures 16a, 
16b, and 16c, and an e-commerce/cloud 
example in Figures 16d, 16e, and 16f. First, 
if we start with databases, where an Entity 
Relationship Diagram (ERD) (Chen, 1976) 
is employed for modeling entities with re-
spective attributes and associations limited 
by constraints (cardinality, primary key, 
etc.) on attributes and association in order 
to achieve the desired database behavior. As 
shown in Figure 16a, the entities Disease and 
Symptom are described using attributes id 
and name, and are connected using the has 
Symptom association with a many-to-many 
constraint. Similarly, in Figure 16d, the enti-
ties Customer (described with attributes cId 
and cEmail), CloudSpace (described using 
attributes location and space) and ContentAl-
lowed (an enumeration) are connected with 
hasCloudSpace, and cloudAllows associa-
tions respectively with a many-to-many con-
straint imposed on them. The ERD models 
in Figure 16a and 16d can be modeled from 
an object-oriented perspective using UML 
Class Diagrams as shown in Figure 16b and 
16e, respectively, where Disease, Symptom, 
Customer, CloudSpace, and ContentAllowed 
are all classes; id, cId, space (type Integer), 
and Name, Location (type String) are all at-
tributes; and, they are all connected using the 
associations hasSymptom, hasCloudSpace, 
and cloudAllows. The OWL framework 

allows developers to add complex axioms 
such as disjoint, subset, union, not, etc., 
on the modeling elements themselves to 
further constrain and control behavior and 
data values. As shown in Figure 16c and 16f, 
Disease, Symptom, Customer, CloudSpace, 
and ContentAllowed are OWL Classes that 
are connected using the links hasSymptom, 
hasCloudSpace, and cloudAllows that are 
of type OWL objectProperty (equivalent to 
an association in UML), with an additional 
constraint stating that the pairs of classes 
Disease and Symptom and Customer and 
CloudSpace are disjoint. The OWL frame-
work also allows experts to define Semantic 
Web Rules and Fuzzy Logic on the defined 
concepts. The ability of ERD, UML, and 
OWL to model from differing perspectives 
or layers can be employed to define an OAP 
that takes advantage of the layering of con-
ceptual models, akin to ISO layers.

Pattern Description: The Layered Ontology 
Architectural Pattern (LaOAP) organizes 
various participating modules in the ontol-
ogy in a layered fashion that separates the 
ontology from a functional perspective as 
shown in Figure 17a. The LaOAP pattern 
has five layers where the heart of the pat-
tern is the Conceptual Model Layer. This 
layer holds the ontology conceptual model 
capturing the structure and semantics of the 
intended domain. The second layer is the 
Axiom & Rule Layer that captures the rules 
and constraints for semantically interpreting 
the ontology conceptual model entities. The 
third layer is the Mapping Layer that captures 
any semantic mapping between the current 
ontology model and any other target ontology 
models. The fourth layer is the Terminology 
Layer that contains the vocabulary for the 
ontology model captured in the Conceptual 
Model Layer and adhering to the rules of the 
Axiom & Rule Layer. Finally, the fifth layer 
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is the Query and Web Service Layer that 
allows users to query the conceptual model 
for its terminology or Web service API for 
serving Web-based requests.

For illustrating the five layers of the LaOAP 
pattern, consider the conceptual model for a health 
care application developed in OWL (Figure 16c 
and 16f) as shown in the Figure 17b. From the 
bottom up in Figure 17b, the Conceptual Model 
Layer holds the domain model (Disease Ontol-
ogy Model) with classes (Disease, Symptom, 
etc.), associations (hasSymptom, hasMedication, 
etc.), and attributes (id, commonName, etc.). 
The Axiom & Rule Layer holds the first-order 
descriptive axioms for domain model entities such 
as the disjointness between Disease and Symp-
tom classes. These axioms are defined in a new 
workspace by importing the ontology model from 
the Conceptual Model Layer to provide limited 
coupling between these two participating layers. 
The ontology designer can exploit this limited 
coupling to define multiple set of Axioms & 
Rules on the same ontology conceptual model. 
Continuing upward in Figure 17b, the Mapping 
Layer holds any mappings that are relevant and/or 
have been loaded to the current ontology model 
imported from Conceptual Model Layer. The at-
tribute semantic bridge defined in the MAFRA 
framework (Figure 11) is utilized for illustrating 
an attribute equivalent mapping between the cur-
rent Disease entity attribute id (Figure 16c) and 
the Disease entity attribute uid from a different 
conceptual Disease model. The Terminology Layer 
captures all of the instance data of the ontology 
model such as Heart Attack (instance of Disease 
class), Fever (instance of Symptom class), etc. 
Finally, at the top of Figure 17b, the Query & Web 
Service Layer has the domain model query logic 
(example OWL SPARQL queries, see Figure 9) 
for interrogating the Disease Ontology Model. In 
LaOAP, the outer layer may use the content defined 
in the inclusive inner layers. For example, the 
Axioms and Rules Layer will use the conceptual 

model defined in Conceptual Model Layer; the 
Terminology Layer and the Query & Web service 
Layer imports the Conceptual Model Layer and 
import Axiom and Rules Layer. The Conceptual 
Model Layer is required to define this pattern and 
all of the other layers are optional.

Pattern Context and Usage: The LaOAP can be 
used when an ontology developer requires 
minimal coupling between various partici-
pating ontological modules (Figure 17a), 
maximizing their reuse especially for the 
core ontology model in the Conceptual 
Model Layer. The intent is that the layers of 
functionality build upon one another from 
the Conceptual Model Layer to the Query 
& Web Service Layer. For instance, as shown 
in Figure 18, the UMLS-Meta schema can 
be reused by multiple health care institutions 
(Hospital1, Hospital2, …,HospitalN) in order 
to develop customized sets of mapping and 
axioms specific to their enterprise applica-
tion on top of the shared UMLS-Meta 
model. LaOAP allows maximum reuse of 
the core conceptual model of the ontology, 
thereby mitigating interoperability issues.

Pattern Application and Implementation: The 
implementation of LaOAP employing OWL 
(see Figures 16c and 16f again) to represent 
the ontology is shown in Figure 19. Starting 
from the bottom of Figure 19, the Concep-
tual Model Layer holds the domain model 
(classes Disease, Symptom, CloudSpace, 
etc.), associations (hasSymptom, hasCloud-
Space, etc.), and attributes (id, common-
Name, spaceAllocated, etc.). The Axiom & 
Rule Layer holds the first-order descriptive 
axioms for model entities such as the dis-
jointness between Disease and Symptom, 
the spaceAllocated attribute has an integer 
range, etc. These axioms are defined in a 
new workspace by importing the ontology 
model from the Conceptual Model Layer to 
provide limited coupling between these two 
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participating layers. The ontology designer 
can exploit this limited coupling to define 
multiple sets of Axioms & Rules on the same 
ontology conceptual model. For example, 
one business enterprise can define a range 
for the space attribute (CloudSpace class) 
between 2GB – 10GB, while another can 
define a different range between 5GB – 9GB. 

Note that both enterprises use the same 
ontology model, but can customize that from 
a constraint perspective.

Similarly, the enterprise can define various 
accepted values to ContentAllowed based on 
the business goals. The Mapping Layer holds 
any mappings that are relevant and/or have been 

Figure 16. Domain models using ERD, UML and OWL
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loaded to the current ontology model imported 
from Conceptual Model Layer. The attribute 
bridge defined in the MAFRA framework (Figure 
10) is used for illustrating an attribute equivalent 
mapping between the current Disease entity 
(Figure 16c) and the Illness entity from a differ-
ent conceptual model. The Terminology Layer 

captures all of the instance data of the ontology 
model such as Asthma (instance of Disease class), 
High Fever (instance of Symptom class), Heart 
Attack (instance of Disease class), 50GB (value 
of space attribute), etc. The ontology model and 
Axiom & Rules are imported into Terminology 
Layer to define the required domain vocabulary. 

Figure 17. Layered Ontology Architectural Pattern and its implementation

Figure 18. Illustrating LaOAP using UMLS-Metathesaurus (UMLS-Meta)
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Finally, at the top of Figure 19, the Query & Web 
Service Layer can hold SPARQL query logic for 
interrogating the OWL conceptual model in the 
Conceptual Model Layer.

4. RELATED WORK

The work in this chapter has been influenced by 
a number of efforts and has ties to other work in 
ontology frameworks. First, in knowledge engi-
neering, ontologies play a pivotal role in providing 
semantics to data, converting information into 
knowledge for a specific domain. To date, research-
ers have taken an approach to ontology patterns that 

implements different aspects of software design 
patterns (SDPs) in the domain of ontologies. The 
work of (Gangemi, 2005; Gangemi & Presutti, 
2009) has defined Ontology Patterns (OP) and 
classified them into six categories: Structural OP, 
Correspondence OP, Content OP, Reasoning OP, 
Presentation OP, and Lexico-Syntactic OP. The 
Structural OP is equivalent to the structural SDP 
and further divided into Logical OP to handle 
the problem of expressivity and Architectural OP 
to affect the overall shape of the ontology either 
internally or externally. The Correspondence OP 
encompasses the Reengineering OP and provides 
a designer with a solution to the problem of 
transforming the ontology conceptual model. The 

Figure 19. Implementation of LaOAP using OWL
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Mapping OP refers to the possible semantic rela-
tions between mappable ontology model elements. 
Content OPs have gained priority as they solve 
knowledge design problems in terms of domain 
classes and properties, similar to Creational and 
Behavioral SDP. Our OAPs presented in this 
chapter can be positioned within the classifica-
tion the six categories in (Gangemi, 2005) by 
placing the developed OAPs (LOAP, COAP and 
LaOAP) under Architectural OP, as they influ-
ence the architectural design of the ontology for 
an enterprise application. Our approach operates 
at a slightly higher level than their work which is 
more closely aligned to SDPs.

Second, the work on Ontology Patterns 
(Gangemi, 2005; Gangemi & Presutti, 2009) 
has proposed the Conceptual Ontology Design 
Pattern (CODeP) categorized as a Content OP 
to capture a generalized use case scenario acting 
as a template to solve domain knowledge design 
issues and offering a number of different patterns 
that target varied capabilities. For example, Time 
Indexed Participation is a CODeP that represents 
time indexing for the relation between persons and 
roles they play. The Role Task Pattern is also a 
CODeP representing temporary roles that objects 
can play, and the tasks that events/actions that are 
allowed to execute. The Participation Pattern is a 
CODeP extracted from the DOLCE ontology that 
illustrates participation relation between objects 
and events. The CODeP are knowledge-level 
abstractions that primarily influence the design 
of the ontology content and can be employed by 
OAPs to define ontology knowledge for the par-
ticipating ontology models (Ontology1, Figure 4; 
Global Ontology, Figure 12 and Layered Ontology, 
Figure 18). Similarly, both the paradigms CODeP 
and OAP provide abstractions at different levels, 
i.e., the former provides knowledge abstraction 
and the latter provide architectural abstraction.

Third, the work of (Clark, Thompson, & Porter, 
2004) has proposed the concept of knowledge pat-
terns defined as a semantic structure representing 
reoccurring patterns similar to SDP, but morph-

ing the knowledge pattern entities onto domain 
classes instead of instantiating them. For example, 
a simple distribution knowledge patterns consists 
of a Producer P, a Switch mechanism S, and a 
Consumer C that are connected. This knowledge 
pattern is applicable to any domain model, e.g., 
P can represent a battery, generator, etc., S can 
be a common electrical switch, and C can be any 
electrical device such as light, heater, computer, 
etc. There is a close association among our LOAP 
and their knowledge pattern, since they are both 
similar to Pipes & Filters and Chain of Respon-
sibility SDPs. However, their knowledge pattern 
primarily targets ontological concepts similar to 
CODeP for a domain across multiple enterprise 
applications that follows a similar knowledge 
structure.

Fourth, our work on a framework for ontologies 
has proposed extensions to the OWL framework 
to provide additional modeling features and 
introduce the concept of an ontology schema to 
evolve OWL to align to the UML meta-model 
(Saripalle, Demurjian, & Behre, 2011) with an 
associated software engineering process (Saripalle 
& Demurjian, 2012a) that elevates ontologies to 
be more design-oriented as opposed to instance 
based, allowing ontologies to be reused in an 
enterprise setting. As a foundation for the Ontol-
ogy Architectural Patterns (OAP) in this chapter, 
our work (Saripalle & Demurjian, 2012) has 
introduced a Semantic Design Pattern defined 
as a modular domain knowledge pattern at the 
meta-model level which can be referenced while 
developing concrete domain models. The work 
in this chapter significantly extends the semantic 
design pattern concept to Ontology Architectural 
Patterns, promoting a design process for ontolo-
gies that has a much higher abstraction level than 
existing ontology frameworks.

Finally, there are a number of efforts underway 
in ontology frameworks related to Enterprise ap-
plications, where our work on OAP can be utilized 
to augment their approaches. The Enterprise 
Ontology (Uschold, 1995) project provides an 
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approach to model ontologies at the enterprise 
level, and is part of a larger Enterprise Project 
(Uschold, 1998) that is aimed at supporting a 
framework to collaboratively model enterprise 
applications. Our work in this chapter dovetails 
with this effort by providing the means to define 
OAPs within their framework to have a higher-
level modeling (OAP) not currently supported by 
their work. Another effort, the Toronto Virtual 
Enterprise (TOVE) project (Gruninger & Fox, 
1995) is an enterprise model that is able to gener-
ate common sense enterprise data models that has 
the ability to deduce answers to common sense 
queries regarding the enterprise. Our work on 
OAP in this chapter can augment TOVE and EO 
enterprise projects by promoting a higher-level 
abstract design process for ontologies (source of 
enterprise application knowledge for the projects) 
that supports knowledge reusability through ontol-
ogy modeling coupled with architectural concepts. 
Additionally, the concept of OAP can easily be 
integrated into TOVE’s project lifecycle model to 
tackle any interoperability issues. For the field of 
Ontology Based Information Extraction (OBIE) 
(Maynard, Yankova, Kourakis, & Kokossis, 2005; 
Saggion, Funk, Maynard, & Bontcheva, 2007; 
Wimalasuriya & Dou, 2010), the construction 
of an application for an enterprise domain heav-
ily relies on ontology models that capture the 
required domain knowledge using information 
and knowledge extracted from unstructured and 
semi-structured sources (e.g., Web, texts, data 
streams, etc.). Our work on OAP can provide 
OBIE with the ability to model knowledge at 
a higher level of abstraction, providing another 
means to organize the needed knowledge into an 
ontology via a pattern. Similarly, in enterprise data 
warehousing architecture (Blechner, Saripalle, & 
Demurjian, 2012), ontologies play a key role of 
attaching semantics to the stored data for: provid-
ing meaning to information, support querying of 
the stored data using the shared standard concept 
semantics, and providing the ability to present the 
stored information as human readable knowledge 

through semantic definition. We envision that 
our OAP architectural pattern framework will 
assist ontology designers to make better ontology 
architectural decisions in the initial phases of the 
ontology life cycle process that will influence the 
usage of the ontology models in multiple enter-
prise application setting, thus primarily targeting 
enterprise interoperability.

5. FUTURE RESEARCH DIRECTIONS

Over the span of the last 30 years, the computing 
field has evolved to be more domain independent 
and device agnostic trending towards the develop-
ment of software, database, and Web applications 
that are easily modified and evolved as require-
ments change over time. There have been many ex-
amples in computing where industry and academia 
have come together towards generalized solutions. 
The 1980s provided a transition from procedural 
to object-oriented languages (objective-C, Eiffel, 
GNU C++, AT&T C++, etc.). Standards eventu-
ally coalesced C++ into a single solution. During 
the same time, there was a wide (and confusing) 
collection of object-oriented design models with 
different (and often conflicting) concepts and 
terminology that were eventually unified into 
UML. The Object Management Group (OMG) 
took control of the standard, which included a 
UML meta-model and the ability to generate an 
XML instance of a UML design with both the 
content of the design and the positioning of the 
graphical objects in each UML diagram that was 
easily ported. There was a similar convergence in 
the database community, first on standardizing 
the Structure Query Language (SQL) and later in 
the use of XML and XMI to export/import both a 
database schema and the tuples themselves from 
one database system to another. In the late 1990s, 
Java came on the scene to revolutionize program-
ming (write once, run anywhere), and today its 
dominance throughout computing and our daily 
lives is significant particular in regards to mobile 
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devices. This history serves as a strong justification 
as to why there needs to be improvements in the 
ontology development process towards a design-
oriented approach where reuse can be facilitated 
and interoperability can be achieved.

In order to ease structural and semantic in-
teroperability issues among knowledge sources, 
we need to analyze and implement the lessons 
learned from software engineering, program-
ming languages, and computing. First, there is 
definitely a lack of commitment and agreement 
by knowledge developers and domain experts 
towards a common knowledge source. This is 
evident in the health care domain as shown in 
Figure 1 and for many other domains such as 
e-commerce, digital collections (METS), hu-
man resource applications (HR-UML), legal 
applications (LegalUML), document exchange 
(Open Office XML), where multiple standards 
are developed for providing semantic knowledge 
on the same domain with minimal knowledge re-
use. We need to strive towards a formal standard 
for knowledge sources, primarily ontologies, as 
they are currently the key source of knowledge 
semantics. This process encompasses the devel-
opment of standard knowledge models and, most 
importantly, employing up-to-date technologies 
such as UML 2.0, RDF, OWL, etc. For example, 
many existing medical standards are implemented 
using outdated technologies such as XML DTDs, 
KIF, Frames, Semantic Networks, etc.; the future 
will require knowledge representation frameworks 
to demonstrate the same evolution as UML tools 
and databases towards a common context.

Second, even with the existence of multiple 
standard models for a given domain, there would 
still be disagreement on the semantics on the ele-
ments defined in the standard. For example, the 
health care domain has various representational 
standards such as CCD, CCR, HL7 CDA for patient 
data and ontologies with similar domain interests 
such as SNOWMED-CT, LOINC, ICD, DSM, etc. 
However, these standards lack the agreement on 
semantics of the defined concepts; CCD and CCR 

store the same information in different ways and 
as a result infer different semantic relationships 
among the information that comprises a patient’s 
medical record. Further, it is nearly impossible 
to take data form one vendor’s EHR to another 
vendor’s EHR since data formats and ontologies 
are all proprietary. We need to understand the 
existing standards from both structural and se-
mantic perspectives, and define an agreed standard 
meta-model for enterprise domains with sound 
structure and semantics that can be utilized in a 
unification process. The structure and semantics 
for this meta-model can be defined based on exist-
ing domain model standards supplemented with 
additional concepts. This developed meta-model 
will then act as a standard framework for devel-
oping multiple standard models. For example, 
the UML meta-model provides a UML Profile 
feature which is a generic lightweight extension 
mechanism allowing developers to tailor the UML 
metamodel to domain specific requirements. 
The extension allows refining the standard UML 
semantics according to user requirements in a 
strictly additive manner without contradicting the 
defined metamodel semantics. The OMG employs 
this feature to define profiles (Fuentes-Fernández 
& Vallecillo-Moreno, 2004) in various domains 
such as Service oriented architecture Modeling 
Language (SoAML), Distributed Data Systems 
(DDS), Advanced and Integrated Telecommunica-
tion Services (TelcoML), etc. These UML Profiles 
based on the UML metamodel act as a domain 
specific standard metamodel with well-defined 
concepts from respective domains for develop-
ing multiple domain models. Thus, developing a 
generic or domain specific metamodel for domains 
such as e-commerce, human resources, legal 
field, medicine, finance, business, biology etc., 
will ease interoperability issues as the structure 
and semantics defined in the metamodel are well 
agreed among the domain experts.

Third, we need to encourage domain experts 
to develop and standardize knowledge patterns 
which can be referred to while developing knowl-
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edge models for specific domains. When multiple 
knowledge models refer to the same knowledge 
pattern, the semantics of the defined model can 
easily be understood, closing the gap for any se-
mantic misinterpretations. As a result, knowledge 
patterns supplement ontology patterns and strive 
towards a process that emphasizes design rather 
than development. For example, the well-defined 
Task-Role CODeP proposed by Gangemi in Figure 
20 in Section 4 can be referenced for developing 
any domain applications involving tasks (such 
as financial transactions, prescription writing, 
changes to Web services, etc.), roles (such as 
manager, physician, developer, etc.), object (such 
as currency, patient, software code), etc. Similarly, 
the domain experts need to develop, document, 
maintain, and share domain knowledge patterns 
for easing semantic interoperation.

CONCLUSION

This chapter has addressed a serious disconnect 
between ontologies for enterprise applications 
that are primarily focused on encoding the 
captured domain knowledge concepts and their 
respective relationships at the instance level and 
software-engineering-based approaches focused 
on developing domain models which provide 
abstract view of the solution employing software 
design patterns. The current approach chosen by 
ontologists focuses on the development of specific 
instance-level ontologies to capture knowledge 
requirements of specific domain application but 
with the side effect of causing potential structural 
and semantic interoperability conflicts when one 
attempts to integrate two or more ontologies from 
different contexts. For two or more enterprise ap-
plication that need to share data and knowledge 
via their respective ontologies, this is a significant 
roadblock to facilitate interoperation. There is a 
clear need to support Enterprise Interoperability 
(EI) particularly in regards to the interoperation 
of data and knowledge across multiple enterprise 

applications. The major premise of this chapter is 
that there needs to be an upgrade from an ontol-
ogy development process to one that is focused on 
abstraction and the leveraging of design models 
(UML and ER) and approaches (SDPs). Through 
this enhanced design and modeling process, 
ontologies will be able to be more clearly and 
abstractly defined with the potential for reuse 
in multiple settings. The work of this chapter 
applied and extended the concept of SDPs in 
order to propose a set of Ontology Architectural 
Patterns (OAPs) that would provide ontologists 
with a significant abstraction capability to be 
able to more effectively design ontologies that 
can promote enterprise interoperability in terms 
of both data and knowledge.

Towards this objective, Section 2 presented 
background and motivation on the different ways 
that ontologies can be exploited in the design and 
development process, reviewed software design 
patterns, and provided a context for the work of 
this chapter by exploring enterprise interoper-
ability (EI) with a particular emphasis on data 
and knowledge integration via ontologies. Using 
this as basis, in Section 3, we presented three 
Ontology Architectural Patterns (OAPs): the 
Linear Ontology Architectural Pattern (LOAP) 
in Section 3.1 for modeling the linear/parallel 
architectural arrangement of ontology models for 
achieving the required knowledge goal; the Cen-
tralized Ontology Architectural Pattern (COAP) 
in Section 3.2 which supported the definition of 
a centralized ontology model and its interactions 
with multiple local/other ontology models; and, the 
Layered Ontology Architectural Pattern (LaOAP) 
in Section 3.3 that defined a layered architectural 
arrangement of participating modules in the ontol-
ogy model. The discussed OAPs applied concepts 
from structural and architectural software design 
patterns in order to define the three OAPs that allow 
ontologies to be both modeled and related to one 
another at a higher conceptual level. As a result, 
OAPs promote the design of domain knowledge 
semantics into a modular concept that can then 
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yield reusable ontology models for enterprise ap-
plications to more effectively address structural 
and semantic enterprise interoperability. To place 
our work into its proper perspective, Section 4 
explored related work in ontology patterns and 
ontology frameworks, comparing their efforts to 
our OAPs thereby demonstrating the inclusion 
of our OAPs in practice. Section 5 focused on 
future directions by first providing a discussion of 
the history of programming languages, software 
models, and databases, and that the standards 
have shaped their evolution over time. This in 
turn serves as a basis for discussing improvements 
in regards to ontology design and development 
to work towards a knowledge representation 
framework that operates in a more abstract per-
spective through the proposal of OAPs. While the 
chapter demonstrated the developed OAP in the 
health care domain, the work is more general in 
nature and applicable to interoperability issues 
among ontologies for, any enterprise domain. 
This argument was supported by providing ad-
ditional and complementary examples of LOAP, 
COAP, and LaOAP for e-government, e-services, 
and e-commerce domains. If we can continue to 
move the ontology process to embrace a more 
conceptual and design level perspective, there 
is great potential to allow ontologies to be more 
easily integrated leading to an ability to share 
information across a domain.
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KEY TERMS AND DEFINITIONS

Continuity of Care Record (CCR): A docu-
ment standard for health information typically 
used for representing data in Personal Health 
Records (PHR).

Electronic Health Record (EHR): An elec-
tronic health record contains all related health 
information, from medications to procedures, and 
is managed by the institution in which it is stored 
(e.g. hospital, private practice, clinic, etc.).

Enterprise Interoperability (EI): A field of 
activity with the aim to improve the manner in 
which enterprises, by means of information and 
communications technologies, interoperate with 
other enterprises, organizations, or with other 
business units, in order to conduct their business.

eXtensible Markup Language (XML): 
A structured language utilized for information 
exchange, standards and information validation 
via the use of schemas. Its extensibility allows 
developers and experts to design and implement 
common standards for the use across systems 
and domains.

Health Information Exchange (HIE): The 
ability to share information among health informa-
tion technology systems by linking information 
for the same patient across multiple repositories 
to provide a complete health care view.

Health Language Seven Clinical Document 
Architecture (HL7 CDA): HL7 CDA is an 
XML-based markup standard intended to specify 
the encoding, structure and semantics of clinical 
documents for exchange.

Interoperability: The ability of diverse sys-
tems and organizations to work in a collaborative 
environment.
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Resource Description Framework (RDF): 
RDF is as a metadata data model which is used 
for conceptual description or modeling of informa-
tion that is implemented in web resources, using a 
variety of syntax notations and data serialization 
formats.

Software Design Patterns (SDPs): SDPs are 
general reusable solution to a reoccurring problem 
in multiple different situations with similar context 
without involving any application specific objects.

SPARQL Protocol and RDF Query Lan-
guage (SPARQL): SPARQL is an RDF query 
language that will be able to retrieve and manipu-
late data stored in RDF/OWL format. SPARQL 
allows for a query to consist of triple patterns, 
conjunctions, disjunctions, and optional patterns.

Systematized Nomenclature of Medicine 
Clinical Terms (SNOMED-CT): an organized 
computer processable collection of medical terms 
providing codes, terms, synonyms and definitions 
covering domains such as diseases, findings, pro-
cedures, microorganisms, substances, etc.

Unified Medical Language System (UMLS): 
UMLS is defined as a compendium of multiple 
standard medical vocabularies such as ICD, 
LOINC, SNOMED-CT, etc., and provides a map-
ping structure between the integrated standards.

Web Ontology Language (OWL): The Web 
Ontology Language is a knowledge representation 
languages for defining ontologies.


