
216

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Attaining Semantic Enterprise
Interoperability through

Ontology Architectural Patterns

ABSTRACT

Enterprise Interoperability Science Base (EISB) represents the wide range of interoperability tech-
niques that allow the creation of a new enterprise application by utilizing technologies with varied data
formats and different paradigms. Even if one is able to bridge across these formats and paradigms to
interoperate a new application, one crucial consideration is the semantic interoperability to insure that
similar data is reconciled that might be stored differently from a semantic perspective. In support of
this requirement, usage of ontologies is gaining increasing attention as they capture shareable domain
knowledge semantics. The design and deployment of an ontology for any system is very specific, created
in isolation to suit the specific needs with limited reuse in the same domain. The broad proliferation of
ontologies for different systems, which, while similar in content, are often semantically different, can
significantly inhibit the information exchange across enterprise systems. This situation is attributed, in
part, to a lack of a software-engineering-based approach for ontologies; an ontology is often designed
and built using domain data, while software design involves abstract modeling concepts that promote
abstraction, reusability, interoperability, etc. The intent in this chapter is to define ontologies by leverag-
ing software design pattern concepts to more effectively design ontologies. To support this, the chapter
proposes Ontology Architectural Patterns (OAPs), which are higher-level abstract reusable templates
with well-defined structures and semantics to conceptualize modular ontology models at the domain
model level. OAP borrows from software design patterns inheriting their key characteristics for sup-
porting enterprise semantic ontology interoperability.

Rishi Kanth Saripalle
University of Connecticut, USA

Steven A. Demurjian
University of Connecticut, USA

DOI: 10.4018/978-1-4666-5142-5.ch010

217

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

1. INTRODUCTION

In today’s world, the design, development, and
deployment of a new enterprise application is no
longer taking the prior approach of developing the
application from scratch; rather, the emphasis is
on the ability to construct a new enterprise ap-
plication through the usage of existing resources
such as enterprise applications, systems, servers,
databases, etc., that are brought together to yield a
system of systems. Enterprise Interoperability Sci-
ence Base (EISB, Popplewell et al., 2012) has been
promoted in order to address all of the different
interoperability concerns including data, process,
knowledge, cloud and Web services, rules, objects,
APIs, etc. Two related interoperability of issues
of particular interest are the ability to deal with:
data in varied formats (e.g., XML, JSON, RDF
(Allemang & Hendler, 2011), relational database,
etc.) and the need to resolve semantics among
enterprise systems of data (e.g., in a geospatial
application, grid north vs. true north vs. magnetic
north and these must be resolved if different do
not use consistent formats). Ontologies have
emerged to play a pivotal role in the World Wide
Web (WWW) to promote the Semantic Web (Al-
lemang & Hendler, 2011) by attaching semantics
to electronically represented information thereby
assisting users (humans and agents) in various
ways such as semantic Web agents, semantic
information extraction, semantic search, etc. Cur-
rently, ontologies are highly employed in the wide
variety of enterprise applications for knowledge
representation and reasoning (Baader, McGuin-
ness, Nardi, & Patel-Schneider, 2007), software
modeling and development (Demurjian, Saripalle,
& Behre, 2009; Kuhn, 2010; Saripalle, Demurjian,
& Behre, 2011), semantic information extraction
(Wimalasuriya & Dou, 2010), biomedical and
clinical informatics (Smith & Ceusters, 2006),
databases (Gali, Chen, Claypool, & Uceda-sosa,
2004), geospatial semantics (Janowicz, Scheider,
Pehle, & Hart, 2012), etc.

The primary goal of the ontologies is to cap-
ture semantics of a domain and tag the semantic
concepts to electronically represented information,
which in turn will ease semantic interoperability
for enterprise applications to support both data
and knowledge interoperability in EISB, assum-
ing that the exchanging systems (e.g., computer
systems, software applications, database records
etc.) must come to an agreement on domain
semantics in order to build an enterprise applica-
tion. For example, various ontologies have been
developed for capturing knowledge semantics
on various aspects of a given domain for easing
semantic interoperability issues in enterprise ap-
plications. For instance, in the business domain,
the semantic Web has influenced various aspects
of existing implementations such as: Simple
Object Access Protocol (SOAP) (SOAP, 2007),
Web Service Description Logic (WSDL) (WSDL,
2001), Service Oriented Architecture (SOA) (Bell,
2008), etc. In all of these approaches, the domain
semantics captured in an ontology are tagged to
business/service information represented using
these standards, facilitating semantic compat-
ibility between interacting enterprise services and
easing knowledge interoperability (Nagarajan,
Verma, Sheth, Miller, & Lathem, 2006; Burstein
& McDermott, 2005). Researchers have also de-
signed and implemented OWL-S (OWL-S, 2004),
a semantic Web enabled Web-service model that
incorporates all of the aspects of a software Web
service lifecycle using ontology frameworks.
For example, in the financial enterprise, lack of
standard ontologies for capturing the semantics
related to the financial domain have created a major
bottleneck for information exchange/integration,
knowledge extractions, financial reporting, Web
services, etc., due to semantic ambiguity in the
represented financial knowledge (Makela, Rom-
mel, Uskonem, & Wan, 2007; Hu, 2010). Cur-
rently, Object Management Group (OMG) has
taken an initiative to develop Financial Industry
Business Ontology for capturing semantics related

218

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

to the financial domain (FIBO, 2012). As another
example, in the government domain, semantic
technologies such as linked data, semantic Web,
ontologies, etc., have become a crucial component
for achieving integrated e-government services
(Bettahar, Moulin, & Barthes, 2009). These se-
mantic components have been introduced into
software architectures, providing semantics to
electronically augment government information
and facilitate semantic integration/interoperability
between the participating government services/
departments (Davis, Harris, Crichton, Shukla,
& Gibbons, 2008; Fonou-Dombeu & Huisman,
2011), etc.

However, the success of employing ontologies
for resolving enterprise semantic interoperability
is jeopardized due to structural and semantic
interoperability issues among the domain ontolo-
gies that are used for the systems that support a
new enterprise application. There are a number
of key issues to address. First, the individual
ontologies of each constituent system used by
a new enterprise application may each organize
knowledge in different ways to suit their specific
application and organizational processes, meaning
that the ontologies across the constituent systems
are often incompatible and difficult to integrate.
Second, the ontology development and deploy-
ment process is predominantly instance and con-
struction based, often dictated by the talent and
expertise of the ontologist rather than using any
concrete software development process; such an
approach limits the reuse since ontologies end up
being very domain centric. For a new enterprise
application, the existence of consistent ontologies
of the constituent systems will greatly simplify
the semantic interoperability. Finally, many exist-
ing ontology representational frameworks lack
an ability to design solutions that are broader in
scope; the end result is often narrowed to not just
a single domain, but to a subset of the domain
that is very application specific. Thus, the over-
riding issue is that ontologies solely focus on the

domain knowledge and its usage by constituent
systems rather than abstracting back from the
problem to consider the enterprise domain ant its
appropriate set of ontologies in a more compre-
hensive and general manner. Such an approach
towards ontologies is in direct conflict with the
design methodologies in software engineering,
databases, and Web settings, where the primary
emphasis is on the modeling techniques that can
applied to conceptualize the problem in a fashion
that promotes characteristics such as modularity,
abstraction and reuse, which implicitly eases
structural and semantic interoperability issues.
In this chapter, we leverage our previous work on
extending the Web Ontology Language (OWL)
for design and development of ontologies for ap-
plications that is more aligned with the software
lifecycle and emphasizes a design approach for
ontologies (Saripalle, Demurjian, & Behre, 2011;
Saripalle & Demurjian, 2012b).

To provide a context for this chapter, we lever-
age an example in the healthcare domain, where it
is necessary to construct an enterprise application
for health information exchange (HIE) that is able
to pull patient medical information from multiple
sources in different formats and using alternative
programming paradigms. An HIE enterprise ap-
plication is constructed by gathering data from:
electronic health records (EHRs) which reposito-
ries of patient medical records that may exist in
provider offices, clinics, and hospitals; personal
health records, (PHRs) that allow patients to
manage their own health care data; personalized
medicine health portals (PMHP) which allows
providers to view their own patients’ genetic
data against their EHR in order to bridge the
gap between providers and medical researchers;
and, other laboratory, diagnostic, pharmaceutical
systems that involve patient care. Note that an
HIE enterprise application for many situations
provides only read information to patient data or
de-identified data sets. In support of an HIE en-
terprise application, the biomedical field provides

219

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

a significant variety of high-level XML standards
including: the Continuity of Care Record (CCR)
(ASTM, 2003), Continuity of Care Document
(CCD), the Health Language Seven (HL7) Clinical
Document Architecture (CDA) (HL7 CDA R2,
2008), etc. These high-level standards allowed
medical providers to seamless structure, integrate,
and share the patient’s medical data with their
respective propriety systems and collaborating
environments. For providing enterprise semantic
interoperability between the constituent systems
(EHRs, PHRs, etc.), there are numerous standards
such as: International Classification of Disease
(ICD-10) (ICD, 2013), Logical Observation
Identifiers Names and Codes (LOINC) (LOINC,
2013), Systematized Nomenclature of Medicine
Clinical Terms (SNOMED-CT) (SNOMED CT,
2013), Diagnostic and Statistical Manual of Mental
Disorder (DSM) (DSM, 2012), Unified Medical
Language System (UMLS) (Bodenreider, 2004),
etc. The problem that exists in the health care do-
main to hinder enterprise semantic interoperability
are the inconsistencies in these low-level ontol-
ogy standards, e.g., Psychoses (DSM, 2102) is a
“Mental Disorder” in ICD and a “Psychotic illness”
in DSM, while. Spherocytosis (SNOMED CT,
2013) is a “Diseases of Blood and Blood-Forming
Organs” in ICD and “Red Blood Cell Shape-
finding” in SNOMED-CT. These differences in
the health care domain, along with similar cases
in other enterprise domains, must be reconciled
to achieve enterprise semantic interoperability.

In software engineering, a designer can better
understand the domain problem and propose a
plausible solution by developing domain model(s)
to provide an abstract view of the solution with
well-defined structure and semantics and are
developed by considering domain instance data
as it can influence the design, but not to the point
that the design gets tied to the domain instances.
One approach to software domain modeling that
greatly facilitates reuse are software design pat-

terns (SDP) defined as “a template illustrating
a reusable solution to a reoccurring problem in
multiple different situations with similar context”
(Gamma, Helm, Johnson, & Vlissides, 1994; Free-
man, Robson, Bates, & Sierra, 2004). SDPs can
influence an enterprise application by allowing
these generalized templates to be customized for
a specific domain. For instance, the Model-View-
Controller (MVC) pattern can be used easily in any
enterprise application that requires: a Model that
manages the behavior and data of the application;
a View that manages the UI of the application;
and, a Controller that interprets the user actions
and informs the actions to the model and/or the
view. Based on the domain application, the do-
main models replace the respective MVC compo-
nents. This ability of SDP to divide the complex
problem into modular manageable sub-problems
and develop solutions that facilitate modularity,
reusability, interoperability, etc., has gained them
a prominent position in the software community;
our intent is to extend SDPs to support enterprise
semantic interoperability for ontologies.

In this chapter, the overall goal is to improve
the design, development, and deployment of on-
tologies with syntactic and semantic integration in
support of an enterprise application by proposing
a set of Ontology Architectural Patterns (OAPs)
which are abstract reusable architectural patterns
influencing the overall development of semantic
knowledge involving multiple ontology models
that ease interoperability issues and promote a
software engineering approach for ontology de-
velopment. This have been introduced to a limited
extent in our prior work on semantic patterns
(Saripalle & Demurjian, 2012a), but this chapter
dramatically extends that work by leveraging SDP
concepts to ease structural and semantic interop-
erability issues. In the process, the ontologist is
encouraged and guided to design and develop
modular ontology models, reusable in multiple
domain application settings that share similar con-

220

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

textual requirements. As a result, the ontologist can
focus on constructing reusable ontology models,
moving future reconciliation and integration of
different ontologies for an enterprise application
from the current labor-intensive instance level to
a more abstract and conceptual domain model
level. The OAP extensions are illustrated using
an HIE enterprise application that brings together
different systems (EHRs, PHRs, etc.) in support
access across multiple sources for two types of
users: medical providers that are interested in
obtaining a full picture of a patient’s medical data
collected from varied sources to facilitate clinical
care; and, researchers that seek to analyze data from
the HIE Repository that has been de-identified to
conduct disease related, public health surveillance,
and other research. HIE is a complex enterprise
application that must marshal data from multiple
sources and can be greatly benefited by OAPs to
model a solution that can resolve and reconcile
syntactic and semantic differences among the
ontologies of its constituent systems.

Towards this goal, the reminder of this chapter
is divided into five sections. Section 2 provides
additional background and motivation on the
role of ontologies in the design and development
process, a review of software design patterns,
their classification, and usage in the software
development process, and a brief introduction to
enterprise interoperability (EI) and the role that
ontologies can play, particularly in regards to our
proposed OAPs. Section 3 proposes the developed
Ontology Architectural Patterns (OAP) which are
explained in terms of name, motivation, descrip-
tion, context & usage, and application & imple-
mentation; examples in both health care and other
enterprise domains are provided Section 4 reviews
related research in ontology patterns and ontology
frameworks, comparing and contrasting to our
work presented in Section 3. Section 5 discusses
the future direction of knowledge development
for facilitating enterprise interoperability. Finally,
the last section concludes the chapter.

2. ONTOLOGIES, SOFTWARE
DESIGN PATTERNS, AND
ENTERPRISE INTEROPERABILITY

This section provides additional explanation on
motivation and background for the paper. First,
Section 2.1 reviews additional motivation on on-
tologies regarding the role that they can plan in
systems design and development, with an example
in the health care domain that further motivates the
need for Ontology Architectural Patterns (OAP).
Using this as a basis, Section 2.2 briefly examines
Software Design Patterns (SDP) in terms of their
inception, categories, and role in the software
development process. Finally, Section 2.3 intro-
duces the domain of Enterprise Interoperability
(EI), its concepts and relationship with Sections
2.1 and 2.2, to place the work of this chapter into
a proper perspective with EI.

2.1. Role of Ontologies in Systems
Design and Development

The discussion in Section 1 provided an initial
motivation for the need and usage of Ontology
Architectural Patterns (OAP) for enterprise in-
teroperability through a discussion of the status
of ontologies, design, and modeling approaches of
knowledge and software engineering and software
design patterns. This section further clarify the
motivation to precisely position the work on OAP
with respect to traditional ontology development
and its need for a higher level abstract approach
akin to software design patterns. The end result
provides a means to more precisely and generally
define ontologies (and their components) with an
aim towards potential reusability in a domain (or
program family).

Current approaches to ontology development
today are conducted using tools such as Protégé
(Protege, 2012), Java Ontology Editor (JOE)
(Java Ontology Editor, 1998), etc. These tools
allow an ontology developer to work with domain

221

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

experts with a focus on building an ontology that
maximizes the domain knowledge by capturing
the knowledge concepts for a given domain of
disclosure. This leads to a current ontology de-
velopment practice that is predominantly instance
and construction based (Kuhn, 2010; Saripalle,
Demurjian, & Behre, 2011; Saripalle & Demur-
jian, 2012b), totally focused on the application
and its specific domain and system requirements.
Such a process is highly influenced by the ontol-
ogy developer’s experience, input from domain
experts, and based on the actual data that is to be
modeled within the ontology rather than defining
a structure for the ontology that is more reusable
across enterprise systems. As a result, ontologies
created for different systems of the same domain
can be quite different. For example, constructing a
set of ontologies for enterprise application such as
Amazon would require a very broad set of ontolo-
gies to capture all of its products characteristics
(books, electronics, household, fashion, etc.),
while a set for Barnes & Noble may be limited
much more to books. The two resulting sets of
ontologies developed for Amazon and Barnes &
Noble may be difficult to integrate, with human
intervention need to understand equivalences
across the two sets, a laborious task with at best
semi-automatic methodologies and reuse of the
ontology is obscure. The OAP and an emphasis on
that ontology design would allow a more general-
ized ontology for “books” to be created that would
have the potential to be utilized in all enterprise
applications where book sales are a part of their
business process.

Second, ontologies cannot be created in a
vacuum without consideration of concepts that
may cut across different solutions (different en-
terprise applications) and require sophisticated
modeling to abstract domain specific materials
out of the ontology to yield an ontology schema
(akin to an XML schema) that is reusable across
multiple enterprise applications of a given domain.
Further, a single ontology may not suffice for the
structural and knowledge requirements of the

enterprise application, but may require multiple
interacting ontologies to correctly represent the
required medical knowledge. Continuing with the
earlier example, there may be an ontology archi-
tectural pattern that can be applied at a higher level
across the Amazon and Barnes & Noble enterprise
applications that is able to capture ontology simi-
larities at a higher abstraction level that promotes
reuse. In the health care domain, there could be
many enterprise applications that would need to
utilize the same ontology. For example, a clinical
researcher trying to identify genes responsible for
mental disorders might want to have an enterprise
application to access genomic and clinical (patient)
databases that would require the integration of the
Gene Ontology (Ashburne & Lewis, 2002) and the
Diagnostic and Statistical Manual of Mental Dis-
orders (DSM) to develop a Gene-Mental Disorder
ontology. Likewise, another enterprise application
could provide the ability to allow queries to cross
the International Classification of Diseases (ICD-
10) codes with Logical Observation Identifiers
Names and Codes (LOINC) ontology to develop
a Disease-Laboratory Test correlation ontology to
be used by combining ICD-10 and LOINC with
de-identified patient data for mining. However,
the reconciliation process between these ontolo-
gies will be arduous, performed on the instance
level rather than at a higher-level of abstraction
that would involve the structure of the ontologies.
Even, if an expert ontologist develops a mas-
sive single ontology by integrating the required
multiple ontologies, the large-scale nature of this
massive ontology (defined and then integrated at
an instance level) sacrifices fundamental software
characteristics such as modularity, reusability, ab-
straction, minimal coupling, etc. The integration/
mapping rules between these participating ontolo-
gies are contextually based on an organization
application goals, meaning that their integration
may not be easily accomplished if their purposes
are so diverse as to make it difficult to identify
linkages and commonalities. We note again that
the current ontology integration methodologies

222

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

focus on integrating ontology instances using
linguistic and statistical techniques that often
ignore semantics. Such an approach can result
in a merging that cannot be syntactically and
semantically verified. This is evident from stud-
ies on the UMLS (Krauthammer, 2002; Kohler,
2007) and SNOMED-CT (Chiang, Hwang, Yu,
et al., 2006) medical standards where they have
been attempts to integrate two ontologies that have
significantly different nomenclature. This is true
for many other domains.

Finally, while the existing medical ontolo-
gies previously discussed have an overwhelming
knowledge overlap among them, the way that each
ontology deals with that knowledge can be quite
different. Further, since these ontologies have often
been built in isolation (e.g., by different standard
committees and other organizations), having an
ontologist that can understand all of them is unre-
alistic. For example, if there are one or two features
a newly developed ontology needs that are not in
the standard, the solution to develop yet another
ontology occurs, often replicating information
from multiple ontologies and having a vocabulary
that may be in conflict with other standards the
“same” information (semantically). Thus, the

existing ontologies, the newly development ontolo-
gies, and any future customized ontologies have
to be constantly monitored and integrated with
one another in order to remain consistent. This is
a monumental task in any enterprise application,
further compounding the structural and semantic
interoperability issues with ontologies. Imagine
the difficulty it would be to get the organizations
(and their enterprise applications) for Amazon,
Barnes & Noble, eBay, etc., to all work towards
a common shared ontology. Obtaining agreement
from such a large number of stakeholders will be
difficult to achieve in practice. Figure 1 supports
this argument by illustrating the domain knowl-
edge overlap between medical ontologies. Notice
in Figure 1 that the OMIM and Gene Ontologies
have overlapping knowledge on Gene domain.
In addition ICD and DSM have a knowledge
overlap on the domain of Mental Disorders, with
SNOMED-CT and ICD having a major knowledge
overlap on multiple domains such as Disease,
Symptom, Procedure, etc. Further, SNOMED-
CT, ICD and OMIM have a knowledge overlap
on domain of Disease. More significantly, UMLS
is attempting to encompass all of the standards
under one umbrella via its own theory and model

Figure 1. Domain knowledge overlap between various standard medical ontologies

223

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

for achieving its goal, but fails to provide modular
domain models for respective domains which can
reused independent of the domain application.
Thus, failing to reuse existing knowledge sources
and developing new ontologies for targeting the
same domain knowledge leads to chaotic structural
and semantic interoperability issues.

2.2. Software Design Patterns

In software engineering, Software Design Patterns
(SDP) arose when developers noticed that they
were using the same software structure in terms
of classes, interfaces, and interactions in multiple
settings, tweaking them to handle difference in
domain data. SDPs expand the concept of generics
(used to capture a lower level component like a
stack that can be instantiated for any data type) to
a higher-level pattern that captures the generalized
structure, semantics, direction and usage at of a set
of classes, interfaces, and their interactions that
represents a major component of a system. As a
result, SDPs are adaptable to work in varied set-
tings for enterprise applications that have similar
design requirements or behavioral characteristics.
The primary components of a SDP are: context
that explains when the design pattern is applicable
by defining environment parameters and the us-
age of the pattern itself; problem that illustrates
the kind of problems the pattern can applied to;
and, solution to explain the way to use the pattern
as a viable software engineering solution to the
encountered domain problem. Apart from these
components, a design pattern also may have the
following essential elements: name of the pattern;
examples to illustrate the application of the pattern
to a multiple domain specific problems; rationale
for the logic explanation of the pattern and its
application; related patterns that have the same
or varying categories or types; and known uses
for successful industrial usecase scenarios. SDPs
have gained importance since they are generalized
artifacts from multiple solutions they are domain
independent making them interoperable between

heterogeneous domain application problems. The
use of SDPs in Web-based solutions are founda-
tional regardless of the implementation platform.

SDPs are classified into three broad categories
that are based on the functionality, interactions,
and purpose of the SDP (Freeman, Robson, Bates,
& Sierra, 2004). The first category, the Creational
SDP, deals with a software entity’s (mostly classes)
creation in a manner suitable to the given appli-
cation context. Sample creational SDPs include:
the Abstract Factory Pattern that provides a way
to encapsulate a group of individual factories
that have a common theme without specifying
their actual classes; the Factory Method pattern
that defines the interface for creating an object,
but allows subclasses to decide which class to
instantiate; and, the Builder Pattern that separates
the concerns of construction of a complex object
from its representation,. The second category, the
Behavioral SDP, is used to identify the common
communication patterns between objects. Sample
behavioral SDPs include: the Chain of Responsi-
bility Pattern consisting of a source of command
objects and a series of processing objects where
each processing object contains logic that defines
the types of command objects that it can handle;
the Command Pattern in which an object is used
to represent and encapsulate all of the informa-
tion needed to call a method at a later time; and,
the Observer Pattern where an object, called the
subject, maintains a list of its dependents, called
observers, and notifies them automatically of
any state changes, usually by calling one of their
methods. The third category, Structural SDP,
provides a simple way to realize relationships
between multiple entities. Sample structural SDPs
include: the Adapter Pattern that allows classes to
work together that normally could not because of
incompatible interfaces; the Bridge Pattern that
decouples an abstraction from its implementation
so that the two can vary independently; and, the
Composite Pattern which describes that a group
of objects are to be treated in the same way as
a single instance of an object, with the intent to

224

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

compose objects into a tree structure to represent
part-whole hierarchies. SDPs play a significant
role in enterprise applications; our intent is
to expand this concept to include knowledge
modeling which will allow the specification of
ontology architectural patterns (OAP) that can
play a major role in achieving enterprise semantic
interoperability.

2.3. Enterprise Interoperability (EI)

Enterprise Interoperability (EI) (Charalabidis,
Goncalves, & Popplewell, 2010; Jardim-Gon-
calves, Grilo, Agostinho et al., 2013) is defined

… as a field of activity with the aim to improve
the manner in which enterprises, by means of
information and communications technologies,
interoperate with other enterprises, organizations,
or with other business units, in order to conduct
their business (Popplewell et al., 2012).

The reality is that new enterprise applications
are built today by the cobbling together of func-
tionality from multiple sources (via APIs, Web
services, cloud services, JSON calls, etc.) and
their interoperation requires addressing different
facets associated with enterprise development. The
overriding object of EI is to support the ability
of enterprises to communicate and interact seam-
lessly. The term Enterprise can be defined as “an
organization that provides open/paid services to
clients” (Charalabidis, Goncalves, & Popplewell,
2010) and Interoperability can be defined as

…the ability of two or more systems or components
to exchange information and to use the information
that has been exchanged (Popplewell et al., 2012).

EI as a generalized concept, subsumes other
interoperability issues from differing perspec-
tives, detailed in ESIB Report (Popplewell et al.,
2012): Data Interoperability, Process Interoper-
ability, Knowledge Interoperability, Services

Interoperability, Rules Interoperability, Objects
Interoperability, Software Interoperability, Cul-
tural Interoperability, Social Networks Interoper-
ability, Electronic Identity Interoperability, Cloud
Interoperability, and Ecosystems Interoperability.
These noted interoperability issues are interweaved
with one another at a conceptual level. For ex-
ample, there is a strong dependency between
Data and Knowledge Interoperability, Process
and Knowledge Interoperability, and Process and
Service Interoperability, to name a few. When one
addresses the issues for a given interoperability,
there is a corresponding ripple effect on other
interoperability issues.

The proposed ontology architectural patterns
(OAP) in this chapter has the primary goal to
solve semantic interoperability among domain
ontologies and is primarily targeting Knowledge
Interoperability and is closely related to Data
Interoperability. Hence, providing a software-
engineering-based solution to semantic interop-
erability among ontologies has an impact on the
Knowledge and Data Interoperabilities of EI. Addi-
tionally, in support of OAP, we leverage the related
works of Gangemi’s (Gangemi, 2005; Gangemi
& Presutti, 2009) proposed Conceptual Ontol-
ogy Design Pattern (CODeP), Clarks’s (Clark,
Thompson, & Porter, 2004) abstract Knowledge
Patterns (see Section 4) for designing more effec-
tive ontology models at a high abstraction level
via ontology semantic patterns. For example,
multiple enterprise systems can employ a Time-
Indexed Participation CODeP for defining their
own open-source/proprietary ontology model
for online services, where: Object in the CODeP
pattern can represent physical items, online Web
services, person/semantic agent, etc.; Event can be
cast as service orders, automated triggers, internal
events, etc.; and, Time Interval can represent a
time frame. Even though the service ontology
model(s) and respective implementation vary
between the enterprises, the ontology models that
are utilized refer to the same semantic pattern
(including the semantic context). This results in

225

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

reusing the patterns concepts (classes, attributes
and associations) and application context thereby
easing Knowledge Interoperability when enter-
prises need to collaborate.

3. ONTOLOGY ARCHITECTURAL
PATTERNS (OAP)

The emergence of the eXtensible markup language
(XML) as a near defacto standard for information
representation and exchange has had a significant
impact on the ontology and enterprise interoper-
ability research and development areas. XML
dominates standards in computing and other fields,
in addition to all of the aforementioned healthcare
standards (HL7 CDA, CCR, etc.) there are many
other standards that have the potential to impact
enterprise applications including: HR-XML
(HR-XML, 2013) for personnel and developers
to have a common terminology for all aspects of
human resources; the Oasis Open Office XML
(Brauer & Schubert, 2013) document format for
representing documents, presentations, etc., more
easily; a wide variety of standards for libraries
(LOC, 2012) such as the METS standard for
tracking metadata on objects in digital collec-
tions; the Oasis LegalXML (LegalXML, 2008)
standard for the electronic exchange of legal data
and documents; and so on. In addition, ontolo-
gies can capture and attach semantic knowledge
to represented information thereby aiding users
(humans and agents) in knowledge engineering
and representation, domain modeling, database
and object-oriented analysis, natural language
processing, biomedical and clinical informatics,
etc. These efforts are supported by a wide variety
of knowledge representation frameworks such as
Resource Description Framework (RDF) (Powers,
2003), Web Ontology Language (OWL) (OWL
Guide, 2004; Lacy, 2005), KIF (Genesereth, 1991),
DAML+OIL (Horrocks, 2002), etc. Clearly, all of
these standards and frameworks are available for

a wide range of enterprise applications, and will
be more and more important over time.

In this section, the work on ontologies as
discussed in Section 2.1 and issues related to
enterprise interoperability in Section 2.3 provides
a strong justification to extend and apply software
design pattern concepts so that they are suitable for
ontology design. Specifically, this section details
our developed Ontology Architectural Patterns
(OAP) defined as abstract reusable architectural
patterns that can assist the domain designer to de-
fine reusable modular ontology models at a higher
abstraction level in order to support enterprise
interoperability. The primary aim of developing
OAP is twofold. First, OAP as a modeling construct
eases the ontology architectural design process
by providing the ability to define a more general
solution for a domain application that attains re-
quired domain knowledge. Second, these OAPs
promote development of modular domain ontol-
ogy models encouraging knowledge abstraction,
minimizing coupling, facilitating reuse, etc., which
has the end result of easing interoperability issues
between ontologies thereby facilitating enterprise
interoperability of data and knowledge. In order
to achieve these goals, we have developed three
OAPs. The Linear Ontology Architectural Pattern
(LOAP) is presented in Section 3.1 and represents
a linear/parallel architectural arrangement of mul-
tiple ontology models for achieving the required
knowledge goal in a manner where the captured
knowledge is accessible in an ordered manner.
Then, in Section 3.2, the Centralized Ontology
Architectural Pattern (COAP) is explained, defin-
ing a global ontology model (higher-level abstrac-
tion) under which multiple component ontology
models interact akin to a centralized hub. Lastly,
in Section 3.3, the Layered Ontology Architectural
Pattern (LaOAP) in defined to support a layered
arrangement of the components organized from
the innermost to outermost layer as: the Ontol-
ogy Conceptual Model (innermost layer) within
the Axiom and Rule for the Model within the

226

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Mapping of the Model within the Terminology
(vocabulary) of the Model within the Query and
Web Services (outmost layer).

To standardize the discussion in the remainder
of this section, the presentation follows a consistent
ordering for each Ontology Architectural Patterns
(OAP) expressed with: the Pattern Name which
identifies the OAP by name; the Pattern Motiva-
tion which is utilized to more fully motivate the
need of the proposed pattern and the influence of
various SDP, ontologies, and their frameworks
from other domains; the Pattern Description
which explains the operational and functional
interactions of each pattern; the Pattern Context
& Usage which represents the contextual require-
ments for applying the pattern and its usage in
an enterprise application; and, the Pattern Ap-
plication & Implementation which illustrates an
instantiation of the pattern and its realization in
an enterprise application. Throughout the discus-
sion, we provide examples using the domains of
biomedical informatics, e-commerce, e-services,
e-government etc.; again, we note that these pat-
terns are general and can be applied to any domain.

3.1. Linear Ontology
Architectural Pattern

Pattern Name: Linear Ontology Architectural
Pattern (LOAP).

Pattern Motivation: The Linear Ontology Ar-
chitectural Pattern (LOAP) is primarily
motivated and influenced by the Pipe &
Filter and Chain of Responsibility SDPs that
are categorized under structural SDPs as
defined in Section 2.2. The primary goal of
these patterns is to divide the large complex
problem into smaller modular problems and
develop generic reusable solutions. The Pipe
& Filter SDP as shown in Figure 2a has two
primary components: Filter which holds the
logical modules (e.g., file readers, boot load-
ers, memory units, etc.) that accept the given
input(s), processes them, and generates an
output; and, Pipe which interconnects two or
more Filters (i.e., the output of one Filter is
fed in as input to another Filter). For example,
compliers might utilize Pipe & Filter SDP
where the complex problem of compiling

Figure 2. The Pipe & Filter SDP and its implementation

227

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

a program is divided into smaller problem
modules such as Lexical Analysis, Parsing,
Semantic Analysis, and Code Generator.
These modular components are connected
and executed accordingly to obtain the final
output that is machine executable code as
shown in Figure 2b.

Similarly, the Chain of Responsibility SDP, as
shown in Figure 3a, also has two primary com-
ponents: Logical Handlers, which are generally
governed by a superior interface (Handler Inter-
face) to manage the application logic; and, the
Relationship that handles the interactions between
the participating Logical Handlers.

For example, as shown in Figure 3b. when a
patient arrives at the clinic practice there may be
several steps: nurse or medical assistant brings
the patient to a room, reviews the medications,
measures BP, pulse, temperature, etc., and notes
on the purpose of the patient’s visit; physician
visits the patient, makes an assessment, and comes
up with a treatment plan that may be a diagnosis

(e.g., has strep throat take Augmentin) or require
further evaluation (blood work and/or x-rays); the
nurse or medical assistant may return to answer
any follow-up questions and to provide appropri-
ate prescriptions or other treatment instructions.
In the example, all of the individuals involved in
this process take up their responsibility (acting as
Logical Handlers) and communicate (Relation-
ship) the information to the next individual (nurse
review→ physician assessment→ medical assis-
tant/nurse action) to finally arrive at the outcome
(successful treatment of the patient). The main
difference between Chain of Responsibility and
Pipe & Filer is for the latter to allow cyclical con-
nections and bi-directional flow.

Pattern Description: The Linear Ontology
Architectural Pattern (LOAP) as shown in
Figure 4 is an architectural arrangement
of ontology models (Ontology1, Onotol-
ogy2,…, OntologyN) which are connected
(Link1, Link2,…,LinkN) in a sequential
and/or in parallel order for achieving the

Figure 3. Chain of Responsibility SDP and its implementation

228

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

desired knowledge goal. The LOAP is
developed by combining Pipe & Filter and
Chain of Responsibility SDPs, where the
ontology models (Ontology1, Onotology2,…
,OntologyN) are aligned to Filters (Filter1,
Filter2, …,FilterN, Figure 2a) and Logical
Handlers (Logical Handler1,…,Logical Han-
dlerN, Figure 3a), and the connecting links
(Link1, Link2,…,LinkN) correspond to Pipes
(Pipe1, …,PipeN, Figure 2a) and Relations
(Figure 3a). The output is primarily a query
result performed on the multiple ontology
models based on the inputs (initial inputs or
previous ontological outputs). The connec-
tions (Link1, Link2, …LinkN) between the
ontology models are generally unidirectional
but can also be a loop within an ontology
model or between ontology models, where
the data flows from the previous ontology
model (Ontology1) to the next ontology
model (Ontology2) and so on until the final
output is generated. The initial input is given
to Ontology1, then the output of Ontology1 is
fed as input to Ontology2 through Link1 and
the chain continues as the result is finally
obtained at OntologyN to generate an output.
One step with LOAP can also generate in-
termediate results from an entire other OAP
(i.e., for some M, OntologyM). The desired
knowledge goal is achieved by developing
modular reusable ontology models to ease
semantic interoperability issues during the
ontology models integration/reconciliation
process.

Pattern Context and Usage: The LOAP pattern
is applicable to any enterprise domain ap-
plication where the required domain knowl-
edge is obtained by connecting multiple
source ontology models or a single large
ontology has to be divided into multiple
modular ontology models that will then be
connected in sequential/parallel fashion. The
ability to separate a larger ontology into
different logical component ontologies has
an advantage in an enterprise interoperabil-
ity context to allow the separation of various
data and knowledge components. The links
(Link1, Link2,...., LinkN in Figure 4) between
the ontology models is primarily program-
matic consisting of the software logic that
is written using languages such as Java, C++,
etc., or semantic where the link semantics
are captured in another ontology model. By
designing and connecting reusable ontology
models for capturing the required domain
knowledge, the LOAP and its component
ontology models are reusable in multiple
enterprise application settings.

As an example, recall Figure 3 for the treat-
ment of a patient in multiple steps. Underlying this
process is the need to organize the information
that is used into different ontology models that
would be utilized in different steps of Figure 3.
By analyzing the treatment process, an ontolo-
gist can design a Triage LOAP (pattern name) as
shown in Figure 5a that has three Ontology Models
(Diagnosis, Anatomy, and Test) with associated

Figure 4. Linear Ontology Architectural Pattern (LOAP)

229

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

links (LinkDisease-Anatomy and LinkDisease-Test). In Figure
5a, the Diagnosis Ontology model captures the
knowledge on various Disease, Symptom, and In-
jury models, an Anatomy Ontology model captures
the domain knowledge of the human body, and
a Test Ontology model captures the knowledge
on blood tests, imaging tests, cardiac tests, etc.
Figure 5b expands each of the Ontology model
blocks of Figure 5a demonstrating that within
each step resides a significant ontology (that may

also be an OAP). By modularizing the domain
knowledge into multiple ontology models, the
domain ontology models have the potential to be
reusable in different enterprise applications, e.g.,
the Disease and Symptom Ontology models may
only be needed for one enterprise application, with
the Anatomy model used by another application.

Similarly, in the domain of e-government, there
is constant need to exchange information between
various departments such as public administration

Figure 5. Instance of a triage LOAP

230

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

services, immigration services, tax department,
immigration law bureau, etc. The ontology de-
signer for the e-government domain can modular-
ize the needed ontology models for maximizing
the reuse of semantic knowledge among the gov-
ernment services. For example, a Public Service
Ontology model captures the semantics (e.g.,
codes, description, definitions, eligibility, etc.) of
the government public services, an Immigration
Ontology model captures the semantics (e.g.,
types of visas, statuses of visa, etc.) of the govern-
ment immigration domain, a Tax Ontology
model captures knowledge about the tax codes of
the government, and an Immigration Law Ontol-
ogy model captures sematic knowledge about
various laws involving immigration. Thus, based
on the required knowledge goal, the e-government
ontology models can be interconnected or linked
(e.g., LinkTax-Immigration, LinkService-Immigration, Lin-
kImmigration-Law, etc.) with one another similar to
Figure 5a. Once the ontologies is developed for
the e-government domain, subsets can then be
applied to other enterprise applications for that
domain.

Pattern Application and Implementation: The
Triage LOAP in Figure 5 can be realized
as shown in Figure 6 using a combination
of: the OWL Framework (Lacy, 2005) for
defining the three ontology models; the
Protégé Ontology Editor (Protege, 2012) for
building OWL based ontology models; the
SPARQL (Lacy, 2005) query language to
interrogate the Triage LOAP and its ontol-
ogy models; and, Java for UI and program
logic. The implementation of Figure 6 for
an enterprise application as shown in Figure
7 adopts a three-layered approach where:
Layer 1 holds the Java based UI for the user
to enter the inputs, Layer 2 holds the logic
of the application implemented using Java
and SPARQL, and Layer 3 holds the actual
OWL ontology instances for each model.
The layered approach allows each layer to

be independent and reusable from the other
layers. The flow of the Triage LOAP (Figure
5) and its implementation (Figure 6) begins
when the user (e.g., nurse, physician assis-
tant, etc.) types in symptoms such as fever,
cold, and fatigue (Layer 1) that are read using
a Java program (Layer 2) and then fed into
the SPARQL query engine (Layer 2). Next,
the SPARQL engine feeds the user inputs
to the Diagnosis Ontology Model whose
outputs are given as inputs to both the Test
and Anatomy Ontology Models.

The query performed on the Diagnosis Ontol-
ogy model (LOAP_Diagnosis.owl, Figure 6a) by
the SPARQL engine is shown in Figure 8a, which
queries the model for known diseases for the
given input symptoms. The links LinkDisease-Test
between the Diagnosis and Test Ontology Models
(Figure 6) are implemented as a SPARQL query
as shown in Figure 8b, which queries the Test
Ontology Model (LOAP_Test.owl, Figure 6b)
based on the Diagnosis Ontology Model outputs
(d1, d2,…., dn). The LinkDisease-Anatomy between the
Diagnosis and Anatomy Ontology Models (Figure
6) is also implemented as a SPARQL query as
shown in Figure 8c, which queries the Anatomy
Ontology Model (LOAP_Anatomy.owl, Figure
6c) based on the Diagnosis Ontology Model
outputs (d1, d2,…., dn).

3.2. Centralized Ontology
Architectural Pattern

Pattern Name: Centralized Ontology Architec-
tural Pattern (COAP).

Pattern Motivation: The Centralized Ontology
Architectural Pattern (COAP) is influenced
by the Façade SDP, the Local As View (LAV)
methodology (Lenzerini, 2002), and the
MAFRA framework (Maedche, Motik, Silva,
& Volz, 2002). The Façade SDP provides a
unified higher-level global interface/system
developed from a set of complex heteroge-

231

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Figure 6. OWL implementation of triage LOAP shown in Figure 5

Figure 7. Layered implementation of triage LOAP shown in Figure 5

Figure 8. The SPARQL queries representing the Diagnosis Ontology Model query, LinkDisease-Anatomy, and
LinkDisease-Test between the ontology models as show in Figure 6

232

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

neous source interfaces/subsystems making
these local sources easier to utilize for the
clients. As shown in Figure 9a, the Façade
SDP abstracts common features or functional
implementation from multiple complex
subsystems (SS1, SS2… SSN) and provides
a unified simple global system (Façade) to
access these complex subsystems for mul-
tiple clients, thus hiding the complexity of
the subsystems. For example, the compiler
example from the Pipe & Filter in Figure 2
can also be implemented using Façade as
shown in Figure 9b, where the clients will
call the simplified complier’s functionality
(function call - compile) which in turn per-
forms the complex process of invoking other
subsystems such as Lexical Analysis, Parser,
SemanticAnalysis and codeGenerator in an
appropriately defined order.

The LAV methodology is a data integration
approach where a set of local schemas (LS1, LS2,
LS3… LSN) are expressed as database views (V1,
V2…VN) over a global schema (GS) as shown in
Figure 10a. The mapping between the global
schema and each local schema is expressed by
associating the concepts in the local schemas as
a view VN over the global schema. For example,
in Figure 10b, the global schema is defined as
Global Disease Schema (GS) (id, Name, serveri-
tyLevel, medName) which captures various dis-
eases in terms of their unique identifier, com-
monly referred name, disease severity level, and
medication name which acts as a treatment for
this disease. The data for this global schema is
obtained from the two local schemas and their
respective views: a local schema LS1, Local Dis-
ease Schema1 (LDS1) (id, commonName, severi-
tyLevel), captures diseases in terms of identifier,

Figure 9. Facade software design pattern and its implementation

233

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

commonly referred name, and disease severity
level, respectively, and, its view VLDS1 is defined
as a mapping (represented as ~) between
LDS1(commonName, severityLevel) ~ GS(name,
severityLevel). The second local schema LDS2,
Local Disease Schema2 (LDS2)(id, name, med-
Name), captures the medications for respective
diseases in terms of identifier, disease name, and
medication name, respectively, and its view VLDS2
is defined as mapping between LDS2(name, med-
Name) ~ GS(name, medName).

The MApping FRAmework (MAFRA) pro-
vides a conceptual framework for building seman-
tic mappings between heterogeneous ontology
models using semantics bridges as shown in the
Figure 11a. A semantic bridge is a construct that
allows the connections to have different meanings
based on the needed interactions of the models.
The mapping framework provides various types
of semantic bridges such as RelationBridge,
ConceptBridge, AttributeBridge, etc. For example,
consider Local Disease Model (LDM) and the
Global Disease Model (GM) in Figure 11b. The
semantically equivalent concepts between these

models are mapped using attributeBridge i.e.,
LDM (id) ~ GM(id), and as LDM(commonName)
~ GM(Name) as shown in the Figure 11b; as a
result, we are able to represent this higher level
dependencies among different ontologies.

Pattern Description: The Centralized Ontology
Architectural Pattern (COAP) as shown in
Figure 12 consists of a Global Ontology
Model (OG), multiple local source ontology
models (LO1, LO2, LO3,……, LON), and the
respective mappings (OM1, OM2,....,OMN)
between local ontology models and the
global ontology (OG). Conceptually, the
COAP in Figure 12 can be aligned as: the
Global Ontology Model (OG) (similar to a
Façade in Figure 9a), a global schema in
Figure 10a, or an Ontology (O1) in Figure
11a; the local source ontology models (LO1,
LO2, LO3,……, LON) can be local subsys-
tems in Figure 9a, a local schemas from
Figure 10a, or ontologies (O2,…,ON) in
Figure 11a; and, the mappings (OM1,
OM2,....,OMN) are similar to function calls

Figure 10. The LAV methodology and its implementation

234

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

between subsystems in Figure 9a, views
(V1,..,VN) in Figure 10a, or semantic bridg-
es in Figure 11a. The queries are generally
performed on the Global Ontology Model
(OG) of COAP and the local sources are
extracted using the mappings (OM1, OM2,
…,OMN) which are primarily semantic in
nature, i.e., the mappings are mostly seman-
tic queries similar to views in Figure 11b or
semantic mappings in Figure 14. The
global ontology model acts as a centralized
reference model for mapping the local source
ontology models which can also be traversed
using the mapping to the global ontology
model, thus eliminating the semantic in-
teroperability issues between heterogeneous

local ontology models. An enterprise ap-
plication can use the Global Ontology
Model supplemented by zero or more Local
Ontology Models based on its needs.

Pattern Context and Usage: The COAP pattern
is applicable where an enterprise application
has an existing ontology acting as a global
ontology and other ontology models (from
potentially different enterprise applications)
are to be integrated/mapped with the global
ontology, or a single knowledge ontology
model has to be built from existing multiple
ontology models. An ideal example of the
COAP is the Unified Medical Language
System (UMLS) (Bodenreider, 2004) knowl-
edge system developed and maintained by

Figure 11. The MAFRA framework and its implementation

Figure 12. Centralized Ontology Architectural Pattern

235

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

National Institute of Health (NIH) which has
two primary tools: UMLS Semantic Network
(UMLS-SN) and UMLS Metathesaurus
(UMLS-Meta). The UMLS-Meta holds the
medical vocabulary obtained by aggregating
existing medical standard ontologies such as
ICD, DSM, OMIM, SNOMED-CT, etc., and
also providing the mappings between these
aggregated ontologies. As shown in Figure
13, the UMLS-Meta (UMLS Metathesaurus)
can be viewed as a global ontology model
(OG, Figure 12), obtaining its medical vo-
cabulary from various local source ontologies
such as ICD Codes,, SNOMED-CT, NCBI,
LOINC, etc., which are local ontology mod-
els (LO1, LO2,…,LON, Figure 12).

Using the mappings (OM1, OM2,…,OMN) and
the global ontology model (OG) as the reference,
the semantic mappings (implicit mappings) be-
tween the local source ontology models can be
deduced. The semantic interoperability issues
among the ontologies are eased by employing the
defined mappings (OM1, OM2, …, OMN) and the
implicit mapping.

Another enterprise domain that could use
COAP is e-commerce. While each e-commerce
enterprise is unique from the perspective of its busi-
ness model, sales strategies, software architecture,
data management, user experience, etc., in total,
a majority of them may overlap on the types of
the merchandize/services offered (e.g., electron-
ics, apparel, tools, books, materials, music, could

space, streaming music, etc.). However, each enter-
prise system may structure the semantic knowledge
about the merchandize/services offered differently,
as it’s primarily influenced by the interests of the
enterprise and talent of the ontology developer.
For example, an e-commerce service (ES1, e.g.,
Amazon, Barnes & Noble, eBay, etc.) may have an
ontology model(s) (OE1) capturing the semantics
knowledge about the merchandize/services of-
fered by the enterprise system. Similarly, other
e-commerce services (ES2, ES3, ES4,.…….,ESN)
will have their own ontology models (OE1, OE2,
OE3 …….,OEN) capturing the semantic knowledge
of their merchandize/services offered. When two
enterprises, say ES1 and ES2, need to collaborate/
merge, the semantic knowledge in the ontology
models (OES1 and OES2) has to be mapped to one
another to ease the semantic interoperability issues
(both Knowledge and Data). However, individual
one-to-one mappings between different ESs are
not a feasible solution, since it would require a
custom bi-direction exchange in varied formats.
For providing a more scalable and feasible
solution, the enterprises need to collaborate to
define a global ontology model (OEG) and map
their respective local ontology models (OE1, OE2,
OE3 …….,OEN) to the global ontology model. Thus,
when multiple enterprises need to collaborate/
merge, they can use the OEG ontology model as a
reference to ease semantic interoperability issues.
The global ontology model OEG will also act as a
foundational platform for new enterprise systems
and to interact with existing systems.

Figure 13. Unified Medical Language System as instance of COAP

236

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Pattern Application and Implementation: The
NIH has provided open access to the UMLS
system as previously discussed and shown in
Figure 14 through a Web browser for online
services and a Java Swing based UI supported
with MySQL and Oracle database scripts for
standalone applications as show in Figure
14. The sample database query diagrams
between the UMLS-Meta schemas are shown
in Figure 15, where the user can query: the
MRCONO table for a common name for a
given Concept Unique Identifier (CUI) for
identifying medical concepts) as shown
in Figure 15a; the MRCONO and MRSTY

tables for finding all of the semantic types
(UMLS-SN) for a given CUI as shown in
Figure 15a; the MRCONO and MRDEF for
obtaining the definition of a CUI as shown in
Figure 15a; and, the MRCON and MRREL
tables for obtaining all of the relationships
a given concept is participating in using the
Source Concept Unique Identifier (SCUI)
that uniquely identifies the source of the
medical concept as shown in Figure 15b. The
UMLS acts as a global reference ontology
model that can be utilized to obtain medical
semantics and the system provides mappings
between integrated local ontologies.

Figure 14. Unified Medical Language System as instance of COAP and its implementation

Figure 15. Sample database query diagrams for querying UMLS for a given CUI and SCUI

237

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

3.3. Layered Ontology Architectural
Pattern

Pattern Name: Layered Ontology Architectural
Pattern (LaOAP)

Pattern Motivation: The Layered Ontology
Architectural Pattern (LaOAP) focuses on
the underlying conceptual models for data-
bases, software, and development in order
to structure the ontology and its compo-
nents in a layered manner. To motivate, we
use a health care example in Figures 16a,
16b, and 16c, and an e-commerce/cloud
example in Figures 16d, 16e, and 16f. First,
if we start with databases, where an Entity
Relationship Diagram (ERD) (Chen, 1976)
is employed for modeling entities with re-
spective attributes and associations limited
by constraints (cardinality, primary key,
etc.) on attributes and association in order
to achieve the desired database behavior. As
shown in Figure 16a, the entities Disease and
Symptom are described using attributes id
and name, and are connected using the has
Symptom association with a many-to-many
constraint. Similarly, in Figure 16d, the enti-
ties Customer (described with attributes cId
and cEmail), CloudSpace (described using
attributes location and space) and ContentAl-
lowed (an enumeration) are connected with
hasCloudSpace, and cloudAllows associa-
tions respectively with a many-to-many con-
straint imposed on them. The ERD models
in Figure 16a and 16d can be modeled from
an object-oriented perspective using UML
Class Diagrams as shown in Figure 16b and
16e, respectively, where Disease, Symptom,
Customer, CloudSpace, and ContentAllowed
are all classes; id, cId, space (type Integer),
and Name, Location (type String) are all at-
tributes; and, they are all connected using the
associations hasSymptom, hasCloudSpace,
and cloudAllows. The OWL framework

allows developers to add complex axioms
such as disjoint, subset, union, not, etc.,
on the modeling elements themselves to
further constrain and control behavior and
data values. As shown in Figure 16c and 16f,
Disease, Symptom, Customer, CloudSpace,
and ContentAllowed are OWL Classes that
are connected using the links hasSymptom,
hasCloudSpace, and cloudAllows that are
of type OWL objectProperty (equivalent to
an association in UML), with an additional
constraint stating that the pairs of classes
Disease and Symptom and Customer and
CloudSpace are disjoint. The OWL frame-
work also allows experts to define Semantic
Web Rules and Fuzzy Logic on the defined
concepts. The ability of ERD, UML, and
OWL to model from differing perspectives
or layers can be employed to define an OAP
that takes advantage of the layering of con-
ceptual models, akin to ISO layers.

Pattern Description: The Layered Ontology
Architectural Pattern (LaOAP) organizes
various participating modules in the ontol-
ogy in a layered fashion that separates the
ontology from a functional perspective as
shown in Figure 17a. The LaOAP pattern
has five layers where the heart of the pat-
tern is the Conceptual Model Layer. This
layer holds the ontology conceptual model
capturing the structure and semantics of the
intended domain. The second layer is the
Axiom & Rule Layer that captures the rules
and constraints for semantically interpreting
the ontology conceptual model entities. The
third layer is the Mapping Layer that captures
any semantic mapping between the current
ontology model and any other target ontology
models. The fourth layer is the Terminology
Layer that contains the vocabulary for the
ontology model captured in the Conceptual
Model Layer and adhering to the rules of the
Axiom & Rule Layer. Finally, the fifth layer

238

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

is the Query and Web Service Layer that
allows users to query the conceptual model
for its terminology or Web service API for
serving Web-based requests.

For illustrating the five layers of the LaOAP
pattern, consider the conceptual model for a health
care application developed in OWL (Figure 16c
and 16f) as shown in the Figure 17b. From the
bottom up in Figure 17b, the Conceptual Model
Layer holds the domain model (Disease Ontol-
ogy Model) with classes (Disease, Symptom,
etc.), associations (hasSymptom, hasMedication,
etc.), and attributes (id, commonName, etc.).
The Axiom & Rule Layer holds the first-order
descriptive axioms for domain model entities such
as the disjointness between Disease and Symp-
tom classes. These axioms are defined in a new
workspace by importing the ontology model from
the Conceptual Model Layer to provide limited
coupling between these two participating layers.
The ontology designer can exploit this limited
coupling to define multiple set of Axioms &
Rules on the same ontology conceptual model.
Continuing upward in Figure 17b, the Mapping
Layer holds any mappings that are relevant and/or
have been loaded to the current ontology model
imported from Conceptual Model Layer. The at-
tribute semantic bridge defined in the MAFRA
framework (Figure 11) is utilized for illustrating
an attribute equivalent mapping between the cur-
rent Disease entity attribute id (Figure 16c) and
the Disease entity attribute uid from a different
conceptual Disease model. The Terminology Layer
captures all of the instance data of the ontology
model such as Heart Attack (instance of Disease
class), Fever (instance of Symptom class), etc.
Finally, at the top of Figure 17b, the Query & Web
Service Layer has the domain model query logic
(example OWL SPARQL queries, see Figure 9)
for interrogating the Disease Ontology Model. In
LaOAP, the outer layer may use the content defined
in the inclusive inner layers. For example, the
Axioms and Rules Layer will use the conceptual

model defined in Conceptual Model Layer; the
Terminology Layer and the Query & Web service
Layer imports the Conceptual Model Layer and
import Axiom and Rules Layer. The Conceptual
Model Layer is required to define this pattern and
all of the other layers are optional.

Pattern Context and Usage: The LaOAP can be
used when an ontology developer requires
minimal coupling between various partici-
pating ontological modules (Figure 17a),
maximizing their reuse especially for the
core ontology model in the Conceptual
Model Layer. The intent is that the layers of
functionality build upon one another from
the Conceptual Model Layer to the Query
& Web Service Layer. For instance, as shown
in Figure 18, the UMLS-Meta schema can
be reused by multiple health care institutions
(Hospital1, Hospital2, …,HospitalN) in order
to develop customized sets of mapping and
axioms specific to their enterprise applica-
tion on top of the shared UMLS-Meta
model. LaOAP allows maximum reuse of
the core conceptual model of the ontology,
thereby mitigating interoperability issues.

Pattern Application and Implementation: The
implementation of LaOAP employing OWL
(see Figures 16c and 16f again) to represent
the ontology is shown in Figure 19. Starting
from the bottom of Figure 19, the Concep-
tual Model Layer holds the domain model
(classes Disease, Symptom, CloudSpace,
etc.), associations (hasSymptom, hasCloud-
Space, etc.), and attributes (id, common-
Name, spaceAllocated, etc.). The Axiom &
Rule Layer holds the first-order descriptive
axioms for model entities such as the dis-
jointness between Disease and Symptom,
the spaceAllocated attribute has an integer
range, etc. These axioms are defined in a
new workspace by importing the ontology
model from the Conceptual Model Layer to
provide limited coupling between these two

239

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

participating layers. The ontology designer
can exploit this limited coupling to define
multiple sets of Axioms & Rules on the same
ontology conceptual model. For example,
one business enterprise can define a range
for the space attribute (CloudSpace class)
between 2GB – 10GB, while another can
define a different range between 5GB – 9GB.

Note that both enterprises use the same
ontology model, but can customize that from
a constraint perspective.

Similarly, the enterprise can define various
accepted values to ContentAllowed based on
the business goals. The Mapping Layer holds
any mappings that are relevant and/or have been

Figure 16. Domain models using ERD, UML and OWL

240

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

loaded to the current ontology model imported
from Conceptual Model Layer. The attribute
bridge defined in the MAFRA framework (Figure
10) is used for illustrating an attribute equivalent
mapping between the current Disease entity
(Figure 16c) and the Illness entity from a differ-
ent conceptual model. The Terminology Layer

captures all of the instance data of the ontology
model such as Asthma (instance of Disease class),
High Fever (instance of Symptom class), Heart
Attack (instance of Disease class), 50GB (value
of space attribute), etc. The ontology model and
Axiom & Rules are imported into Terminology
Layer to define the required domain vocabulary.

Figure 17. Layered Ontology Architectural Pattern and its implementation

Figure 18. Illustrating LaOAP using UMLS-Metathesaurus (UMLS-Meta)

241

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Finally, at the top of Figure 19, the Query & Web
Service Layer can hold SPARQL query logic for
interrogating the OWL conceptual model in the
Conceptual Model Layer.

4. RELATED WORK

The work in this chapter has been influenced by
a number of efforts and has ties to other work in
ontology frameworks. First, in knowledge engi-
neering, ontologies play a pivotal role in providing
semantics to data, converting information into
knowledge for a specific domain. To date, research-
ers have taken an approach to ontology patterns that

implements different aspects of software design
patterns (SDPs) in the domain of ontologies. The
work of (Gangemi, 2005; Gangemi & Presutti,
2009) has defined Ontology Patterns (OP) and
classified them into six categories: Structural OP,
Correspondence OP, Content OP, Reasoning OP,
Presentation OP, and Lexico-Syntactic OP. The
Structural OP is equivalent to the structural SDP
and further divided into Logical OP to handle
the problem of expressivity and Architectural OP
to affect the overall shape of the ontology either
internally or externally. The Correspondence OP
encompasses the Reengineering OP and provides
a designer with a solution to the problem of
transforming the ontology conceptual model. The

Figure 19. Implementation of LaOAP using OWL

242

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Mapping OP refers to the possible semantic rela-
tions between mappable ontology model elements.
Content OPs have gained priority as they solve
knowledge design problems in terms of domain
classes and properties, similar to Creational and
Behavioral SDP. Our OAPs presented in this
chapter can be positioned within the classifica-
tion the six categories in (Gangemi, 2005) by
placing the developed OAPs (LOAP, COAP and
LaOAP) under Architectural OP, as they influ-
ence the architectural design of the ontology for
an enterprise application. Our approach operates
at a slightly higher level than their work which is
more closely aligned to SDPs.

Second, the work on Ontology Patterns
(Gangemi, 2005; Gangemi & Presutti, 2009)
has proposed the Conceptual Ontology Design
Pattern (CODeP) categorized as a Content OP
to capture a generalized use case scenario acting
as a template to solve domain knowledge design
issues and offering a number of different patterns
that target varied capabilities. For example, Time
Indexed Participation is a CODeP that represents
time indexing for the relation between persons and
roles they play. The Role Task Pattern is also a
CODeP representing temporary roles that objects
can play, and the tasks that events/actions that are
allowed to execute. The Participation Pattern is a
CODeP extracted from the DOLCE ontology that
illustrates participation relation between objects
and events. The CODeP are knowledge-level
abstractions that primarily influence the design
of the ontology content and can be employed by
OAPs to define ontology knowledge for the par-
ticipating ontology models (Ontology1, Figure 4;
Global Ontology, Figure 12 and Layered Ontology,
Figure 18). Similarly, both the paradigms CODeP
and OAP provide abstractions at different levels,
i.e., the former provides knowledge abstraction
and the latter provide architectural abstraction.

Third, the work of (Clark, Thompson, & Porter,
2004) has proposed the concept of knowledge pat-
terns defined as a semantic structure representing
reoccurring patterns similar to SDP, but morph-

ing the knowledge pattern entities onto domain
classes instead of instantiating them. For example,
a simple distribution knowledge patterns consists
of a Producer P, a Switch mechanism S, and a
Consumer C that are connected. This knowledge
pattern is applicable to any domain model, e.g.,
P can represent a battery, generator, etc., S can
be a common electrical switch, and C can be any
electrical device such as light, heater, computer,
etc. There is a close association among our LOAP
and their knowledge pattern, since they are both
similar to Pipes & Filters and Chain of Respon-
sibility SDPs. However, their knowledge pattern
primarily targets ontological concepts similar to
CODeP for a domain across multiple enterprise
applications that follows a similar knowledge
structure.

Fourth, our work on a framework for ontologies
has proposed extensions to the OWL framework
to provide additional modeling features and
introduce the concept of an ontology schema to
evolve OWL to align to the UML meta-model
(Saripalle, Demurjian, & Behre, 2011) with an
associated software engineering process (Saripalle
& Demurjian, 2012a) that elevates ontologies to
be more design-oriented as opposed to instance
based, allowing ontologies to be reused in an
enterprise setting. As a foundation for the Ontol-
ogy Architectural Patterns (OAP) in this chapter,
our work (Saripalle & Demurjian, 2012) has
introduced a Semantic Design Pattern defined
as a modular domain knowledge pattern at the
meta-model level which can be referenced while
developing concrete domain models. The work
in this chapter significantly extends the semantic
design pattern concept to Ontology Architectural
Patterns, promoting a design process for ontolo-
gies that has a much higher abstraction level than
existing ontology frameworks.

Finally, there are a number of efforts underway
in ontology frameworks related to Enterprise ap-
plications, where our work on OAP can be utilized
to augment their approaches. The Enterprise
Ontology (Uschold, 1995) project provides an

243

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

approach to model ontologies at the enterprise
level, and is part of a larger Enterprise Project
(Uschold, 1998) that is aimed at supporting a
framework to collaboratively model enterprise
applications. Our work in this chapter dovetails
with this effort by providing the means to define
OAPs within their framework to have a higher-
level modeling (OAP) not currently supported by
their work. Another effort, the Toronto Virtual
Enterprise (TOVE) project (Gruninger & Fox,
1995) is an enterprise model that is able to gener-
ate common sense enterprise data models that has
the ability to deduce answers to common sense
queries regarding the enterprise. Our work on
OAP in this chapter can augment TOVE and EO
enterprise projects by promoting a higher-level
abstract design process for ontologies (source of
enterprise application knowledge for the projects)
that supports knowledge reusability through ontol-
ogy modeling coupled with architectural concepts.
Additionally, the concept of OAP can easily be
integrated into TOVE’s project lifecycle model to
tackle any interoperability issues. For the field of
Ontology Based Information Extraction (OBIE)
(Maynard, Yankova, Kourakis, & Kokossis, 2005;
Saggion, Funk, Maynard, & Bontcheva, 2007;
Wimalasuriya & Dou, 2010), the construction
of an application for an enterprise domain heav-
ily relies on ontology models that capture the
required domain knowledge using information
and knowledge extracted from unstructured and
semi-structured sources (e.g., Web, texts, data
streams, etc.). Our work on OAP can provide
OBIE with the ability to model knowledge at
a higher level of abstraction, providing another
means to organize the needed knowledge into an
ontology via a pattern. Similarly, in enterprise data
warehousing architecture (Blechner, Saripalle, &
Demurjian, 2012), ontologies play a key role of
attaching semantics to the stored data for: provid-
ing meaning to information, support querying of
the stored data using the shared standard concept
semantics, and providing the ability to present the
stored information as human readable knowledge

through semantic definition. We envision that
our OAP architectural pattern framework will
assist ontology designers to make better ontology
architectural decisions in the initial phases of the
ontology life cycle process that will influence the
usage of the ontology models in multiple enter-
prise application setting, thus primarily targeting
enterprise interoperability.

5. FUTURE RESEARCH DIRECTIONS

Over the span of the last 30 years, the computing
field has evolved to be more domain independent
and device agnostic trending towards the develop-
ment of software, database, and Web applications
that are easily modified and evolved as require-
ments change over time. There have been many ex-
amples in computing where industry and academia
have come together towards generalized solutions.
The 1980s provided a transition from procedural
to object-oriented languages (objective-C, Eiffel,
GNU C++, AT&T C++, etc.). Standards eventu-
ally coalesced C++ into a single solution. During
the same time, there was a wide (and confusing)
collection of object-oriented design models with
different (and often conflicting) concepts and
terminology that were eventually unified into
UML. The Object Management Group (OMG)
took control of the standard, which included a
UML meta-model and the ability to generate an
XML instance of a UML design with both the
content of the design and the positioning of the
graphical objects in each UML diagram that was
easily ported. There was a similar convergence in
the database community, first on standardizing
the Structure Query Language (SQL) and later in
the use of XML and XMI to export/import both a
database schema and the tuples themselves from
one database system to another. In the late 1990s,
Java came on the scene to revolutionize program-
ming (write once, run anywhere), and today its
dominance throughout computing and our daily
lives is significant particular in regards to mobile

244

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

devices. This history serves as a strong justification
as to why there needs to be improvements in the
ontology development process towards a design-
oriented approach where reuse can be facilitated
and interoperability can be achieved.

In order to ease structural and semantic in-
teroperability issues among knowledge sources,
we need to analyze and implement the lessons
learned from software engineering, program-
ming languages, and computing. First, there is
definitely a lack of commitment and agreement
by knowledge developers and domain experts
towards a common knowledge source. This is
evident in the health care domain as shown in
Figure 1 and for many other domains such as
e-commerce, digital collections (METS), hu-
man resource applications (HR-UML), legal
applications (LegalUML), document exchange
(Open Office XML), where multiple standards
are developed for providing semantic knowledge
on the same domain with minimal knowledge re-
use. We need to strive towards a formal standard
for knowledge sources, primarily ontologies, as
they are currently the key source of knowledge
semantics. This process encompasses the devel-
opment of standard knowledge models and, most
importantly, employing up-to-date technologies
such as UML 2.0, RDF, OWL, etc. For example,
many existing medical standards are implemented
using outdated technologies such as XML DTDs,
KIF, Frames, Semantic Networks, etc.; the future
will require knowledge representation frameworks
to demonstrate the same evolution as UML tools
and databases towards a common context.

Second, even with the existence of multiple
standard models for a given domain, there would
still be disagreement on the semantics on the ele-
ments defined in the standard. For example, the
health care domain has various representational
standards such as CCD, CCR, HL7 CDA for patient
data and ontologies with similar domain interests
such as SNOWMED-CT, LOINC, ICD, DSM, etc.
However, these standards lack the agreement on
semantics of the defined concepts; CCD and CCR

store the same information in different ways and
as a result infer different semantic relationships
among the information that comprises a patient’s
medical record. Further, it is nearly impossible
to take data form one vendor’s EHR to another
vendor’s EHR since data formats and ontologies
are all proprietary. We need to understand the
existing standards from both structural and se-
mantic perspectives, and define an agreed standard
meta-model for enterprise domains with sound
structure and semantics that can be utilized in a
unification process. The structure and semantics
for this meta-model can be defined based on exist-
ing domain model standards supplemented with
additional concepts. This developed meta-model
will then act as a standard framework for devel-
oping multiple standard models. For example,
the UML meta-model provides a UML Profile
feature which is a generic lightweight extension
mechanism allowing developers to tailor the UML
metamodel to domain specific requirements.
The extension allows refining the standard UML
semantics according to user requirements in a
strictly additive manner without contradicting the
defined metamodel semantics. The OMG employs
this feature to define profiles (Fuentes-Fernández
& Vallecillo-Moreno, 2004) in various domains
such as Service oriented architecture Modeling
Language (SoAML), Distributed Data Systems
(DDS), Advanced and Integrated Telecommunica-
tion Services (TelcoML), etc. These UML Profiles
based on the UML metamodel act as a domain
specific standard metamodel with well-defined
concepts from respective domains for develop-
ing multiple domain models. Thus, developing a
generic or domain specific metamodel for domains
such as e-commerce, human resources, legal
field, medicine, finance, business, biology etc.,
will ease interoperability issues as the structure
and semantics defined in the metamodel are well
agreed among the domain experts.

Third, we need to encourage domain experts
to develop and standardize knowledge patterns
which can be referred to while developing knowl-

245

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

edge models for specific domains. When multiple
knowledge models refer to the same knowledge
pattern, the semantics of the defined model can
easily be understood, closing the gap for any se-
mantic misinterpretations. As a result, knowledge
patterns supplement ontology patterns and strive
towards a process that emphasizes design rather
than development. For example, the well-defined
Task-Role CODeP proposed by Gangemi in Figure
20 in Section 4 can be referenced for developing
any domain applications involving tasks (such
as financial transactions, prescription writing,
changes to Web services, etc.), roles (such as
manager, physician, developer, etc.), object (such
as currency, patient, software code), etc. Similarly,
the domain experts need to develop, document,
maintain, and share domain knowledge patterns
for easing semantic interoperation.

CONCLUSION

This chapter has addressed a serious disconnect
between ontologies for enterprise applications
that are primarily focused on encoding the
captured domain knowledge concepts and their
respective relationships at the instance level and
software-engineering-based approaches focused
on developing domain models which provide
abstract view of the solution employing software
design patterns. The current approach chosen by
ontologists focuses on the development of specific
instance-level ontologies to capture knowledge
requirements of specific domain application but
with the side effect of causing potential structural
and semantic interoperability conflicts when one
attempts to integrate two or more ontologies from
different contexts. For two or more enterprise ap-
plication that need to share data and knowledge
via their respective ontologies, this is a significant
roadblock to facilitate interoperation. There is a
clear need to support Enterprise Interoperability
(EI) particularly in regards to the interoperation
of data and knowledge across multiple enterprise

applications. The major premise of this chapter is
that there needs to be an upgrade from an ontol-
ogy development process to one that is focused on
abstraction and the leveraging of design models
(UML and ER) and approaches (SDPs). Through
this enhanced design and modeling process,
ontologies will be able to be more clearly and
abstractly defined with the potential for reuse
in multiple settings. The work of this chapter
applied and extended the concept of SDPs in
order to propose a set of Ontology Architectural
Patterns (OAPs) that would provide ontologists
with a significant abstraction capability to be
able to more effectively design ontologies that
can promote enterprise interoperability in terms
of both data and knowledge.

Towards this objective, Section 2 presented
background and motivation on the different ways
that ontologies can be exploited in the design and
development process, reviewed software design
patterns, and provided a context for the work of
this chapter by exploring enterprise interoper-
ability (EI) with a particular emphasis on data
and knowledge integration via ontologies. Using
this as basis, in Section 3, we presented three
Ontology Architectural Patterns (OAPs): the
Linear Ontology Architectural Pattern (LOAP)
in Section 3.1 for modeling the linear/parallel
architectural arrangement of ontology models for
achieving the required knowledge goal; the Cen-
tralized Ontology Architectural Pattern (COAP)
in Section 3.2 which supported the definition of
a centralized ontology model and its interactions
with multiple local/other ontology models; and, the
Layered Ontology Architectural Pattern (LaOAP)
in Section 3.3 that defined a layered architectural
arrangement of participating modules in the ontol-
ogy model. The discussed OAPs applied concepts
from structural and architectural software design
patterns in order to define the three OAPs that allow
ontologies to be both modeled and related to one
another at a higher conceptual level. As a result,
OAPs promote the design of domain knowledge
semantics into a modular concept that can then

246

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

yield reusable ontology models for enterprise ap-
plications to more effectively address structural
and semantic enterprise interoperability. To place
our work into its proper perspective, Section 4
explored related work in ontology patterns and
ontology frameworks, comparing their efforts to
our OAPs thereby demonstrating the inclusion
of our OAPs in practice. Section 5 focused on
future directions by first providing a discussion of
the history of programming languages, software
models, and databases, and that the standards
have shaped their evolution over time. This in
turn serves as a basis for discussing improvements
in regards to ontology design and development
to work towards a knowledge representation
framework that operates in a more abstract per-
spective through the proposal of OAPs. While the
chapter demonstrated the developed OAP in the
health care domain, the work is more general in
nature and applicable to interoperability issues
among ontologies for, any enterprise domain.
This argument was supported by providing ad-
ditional and complementary examples of LOAP,
COAP, and LaOAP for e-government, e-services,
and e-commerce domains. If we can continue to
move the ontology process to embrace a more
conceptual and design level perspective, there
is great potential to allow ontologies to be more
easily integrated leading to an ability to share
information across a domain.

REFERENCES

Allemang, D., & Hendler, J. (2011). Semantic
web for the working ontologist: Effective model-
ing in RDFS and OWL (2nd ed.). Waltham, MA:
Morgan Kaufmann.

Ashburne, M., & Lewis, S. (2002). On ontologies
for biologists: The gene ontology-untangling the
web. In Proceedings of the Novartis Found Sym-
posium (pp. 66-80). Novartis Found.

ASTM. (2003). Standard specification for conti-
nuity of care record (CCR). Retrieved from www.
astm.org/Standards/E2369.htm

Baader, F., McGuinness, D., Nardi, D., & Patel-
Schneider, P. (2007). The description logic hand-
book: Theory, implementation and applications.
New York, NY: Cambridge University Press.
doi:10.1017/CBO9780511711787

Bell, M. (2008). Service-oriented modeling: Ser-
vice analysis, design, and architecture. Hoboken,
NJ: Wiley & Sons. doi:10.1109/EDOC.2008.51

Bettahar, F., Moulin, C., & Barthes, J. (2009).
Towards a semantic interoperability in an e-
government applications. Electronic. Journal of
E-Government, 7(3), 209–226.

Blechner, M., Saripalle, R., & Demurjian, S.
(2012). Proposed star schema and extraction
process to enhance the collection of contextual
& semantic information for clinical research data
warehouses. In Proceedings of the 2012 Inter-
national Workshop on Biomedical and Health
Informatics. Philadelphia: Academic Press.

Bodenreider, O. (2004). The unified medical
language system (UMLS), integrating biomedi-
cal terminology. Journal Nucleic Acids Research,
32(1), 267–270. doi:10.1093/nar/gkh061

Brauer, M., & Schubert, S. (2013). The OpenOf-
fice.org XML project. Retrieved from http://www.
openoffice.org/xml/

Burstein, H. M., & McDermott, V. D. (2005).
Ontology translation for interoperability among
semantic web services. AI Magazine, 26(1), 71–82.

Charalabidis, Y., Goncalves, R. J., & Popplewell,
K. (2010). Developing a science base for enterprise
interoperability. In K. Popplewell, J. Harding, C.
Ricardo, & R. Poler (Eds.), Enterprise interoper-
ability IV: Making the internet of the future for
the future of enterprise (pp. 245–254). Springer
Publications. doi:10.1007/978-1-84996-257-5_23

247

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Chen, P. (1976). The entity-relationship model:
Toward a unified view of data. ACM Trans-
actions on Database Systems, 1(1), 9–36.
doi:10.1145/320434.320440

Chiang, M. F., Hwang, J. C., Yu, A. C., Casper, D.
S., Cimino, J. J., & Starren, J. (2006). Reliability
of SNOMED-CT coding by three physicians using
two terminology browsers. In Proceedings of the
2006 AMIA Annual Symposium (pp. 131-135).
AMIA.

Clark, P., Thompson, J., & Porter, B. (2004).
Knowledge patterns. In S. Staab, & R. Struder
(Eds.), Handbook on ontologies (pp. 191–207).
Berlin: Springer. doi:10.1007/978-3-540-24750-
0_10

Davis, J., Harris, S., Crichton, C., Shukla, A., &
Gibbons, J. (2008). Metadata standards for seman-
tic interoperability in electronic government. In
Proceedings of the 2nd International Conference
on Theory and Practice of Electronic Governance
(pp. 67-75). Academic Press.

Demurjian, S., Saripalle, R., & Behre, S. (2009).
An integrated ontology framework for health
information exchange. In Proceedings of the 21st
International Conference on Software Engineer-
ing and Knowledge Engineering (pp. 575-580).
Boston: Academic Press.

DSM. (2012). DSM-5 implementation and sup-
port. Retrieved from http://www.dsm5.org/

FIBO. (2013). Financial report ontology. Retrived
from http://financialreportontology.wikispaces.
com/home

Fonou-Dombeu, J. V., & Huisman, M. (2011).
Semantic-driven e-government: Application of
uschold and king ontology building methodology
for semantic ontology models developments. Inter-
national Journal of Web & Semantic Technology,
2(4), 1–20. doi:10.5121/ijwest.2011.2401

Freeman, E., Robson, E., Bates, B., & Sierra, K.
(2004). Head first design patterns. Sebastopol,
CA: O’Reilly Media.

Fuentes-Fernández, L., & Vallecillo-Moreno, A.
(2004). An introduction to UML profiles. Europe-
an Journal for the Informatics Professional, 5(2).

Gali, A., Chen, C. X., Claypool, K. T., & Uceda-
Sosa, R. (2004). From ontology to relational da-
tabases. In S. Wang (Ed.), ER workshops (LNCS)
(Vol. 3289, pp. 278–289). Berlin: Springer-Verlag.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1994). Design patterns: Elements of reusable
object-oriented software. Boston, MA: Addison-
Wesley.

Gangemi, A. (2005). Ontology patterns for se-
mantic web content. In Proceedings of the 4th
International Semantic Web Conference (pp.
262-276). Academic Press.

Gangemi, A., & Presutti, V. (2009). Ontology
design patterns. In S. Staab, & R. Struder (Eds.),
Handbook on ontologies: International handbooks
on information systems (pp. 221–243). IOS Press.
doi:10.1007/978-3-540-92673-3_10

Genesereth, M. (1991). Knowledge interchange
format. In Proceedings of the 2nd International
Conference on Priciples of Knowledge Repre-
sentation and Reasoning (pp. 238-249). Morgan
Kaufman.

HL7 CDA R2. (2008). HL7/ASTM implementation
guide for CDA® R2 -Continuity of care docu-
ment (CCD®) release 1. Retrieved from http://
www.hl7.org/implement/standards/product_brief.
cfm?product_id=6

Horrocks, I. (2002). DAML+OIL: A description
logic for the semantic web. IEEE Computer Society
on Data Engineering, 25, 4–9.

HR-XML. (2013). HR-XML consortium. Retrieved
from http://www.hr-xml.org/

248

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Hu, B. (2010). Semantic interoperability for
financial information: A component-based ap-
proach. In Proceedings of 3rd IEEE International
Conference on Computer Science and Information
Technology (pp. 228- 232). IEEE.

ICD. (2013). ICD-10. Retrieved from http://
www.cms.gov/Medicare/Coding/ICD10/index.
html?redirect=/icd10

Janowicz, K., Scheider, S., Pehle, T., & Hart, G.
(2012). Geospatial semantics and linked spatio-
temporal data – Past, present, and future. Semantic
Web – Interoperability, Usability. Applicability,
3(4), 321–332.

Jardim-Goncalves, R., Grilo, A., Agostinho, C.,
Lampathaki, F., & Charalabidis, Y. (2013). Sys-
tematisation of interoperability body of knowl-
edge: The foundation for EI as a science. Special
Information Systems for Enterprise Integration,
Interoperability and Networking. Theory and
Applications, 7(1), 7–32.

Java Ontology Editor. (1998, May 19). Java on-
tology editor (JOE). Retrieved from http://cit.cse.
sc.edu/demos/java/joe/joeBeta-jar.html

Kohler, M. (2007). UMLS for information ex-
traction. (Mater’s Thesis). Vienna University of
Technology, Vienna, Austria.

Krauthammer, M. (2002). Brief review of clinical
vocabularies. Retrieved from http://www.cbil.
upenn.edu/Ontology/MKreview.html

Kuhn, M. (2010). Modeling vs encoding for
semantic web. Journal of Semantic Web-Interop-
erability, Usability. Applicability, 1(1), 11–15.

Lacy, L. (2005). OWL: Representing informa-
tion using the web ontology language. Victoria,
Canada: Trafford Publishing.

Legal, X. M. L. (2008). Overview of the OASIS
LegalXML. Retrieved from http://www.legalxml.
org/

Lenzerini, M. (2002). Data integration: A theoreti-
cal perspective. In Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (pp. 233-246). ACM.

LOC. (2012). Standards in the library of congress.
Retrieved from http://www.loc.gov/standards/

LOINC. (2013). Logical observation identifiers
names and codes (LOINC®). Retrieved from
http://loinc.org/

Maedche, A., Motik, B., Silva, N., & Volz, R.
(2002). MAFRA - A mapping framework for
distributed ontologies. In Knowledge engineering
and knowledge management: Ontologies and the
semantic web (LNCS) (Vol. 2473, pp. 235–250).
Berlin: Springer. doi:10.1007/3-540-45810-7_23

Makela, T., Rommel, K., Uskonem, J., & Wan, T.
(2007). Towards a financial ontology – A compari-
son of e- business process standards. Retrived from
http://www.soberit.hut.fi/T-86/T-86.5161/2007/
FinancialOntology_final.pdf

Maynard, D., Yankova, M., Kourakis, R., & Ko-
kossis, A. (2005). Ontology-based information
extraction for market monitoring and technology
watch. In Proceedings of the Workshop Of ESWC,
End User Apects of Semantic Web. Heraklion.

Nagarajan, M., Verma, K., Sheth, A., Miller, J.,
& Lathem, J. (2006). Semantic interoperability
of web services – Challenges and experiences.
In Proceedings of the 4th IEEE International
Conference on Web Services (pp. 373-382). IEEE.

OWL-S. (2004, November). OWL-S: Semantic
markup for web services. Retrieved from http://
www.w3.org/Submission/OWL-S/

249

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Popplewell, K., Lampathaki, F., Koussouris, S.,
Mouzakitis, S., Charalabidis, Y., Goncalves, R.,
& Agostinho, C. (2012). ENSEMBLE: Promot-
ing future internet enterprise systems research.
Retrieved from http://www.fines-cluster.eu/fines/
jm/Publications/Download-document/339-EN-
SEMBLE_D2.1_EISB_State_of_Play_Report-
v2.00.html

Powers, S. (2003). Practical RDF. Sebastopol,
CA: O’ Reilly Media.

Protege. (2012). Protege ontology editor. Re-
trieved from http://www.protege.stanford.edu

Saggion, H., Funk, A., Maynard, D., & Bontcheva,
K. (2007). Ontology-based information extraction
for business intelligence. In Proceedings of the 6th
International Conference on Semantic Web. IEEE.

Saripalle, R., & Demurjian, S. (2012a). Towards a
hybrid ontology design and development life cycle.
In Proceedings of the 11th International Confer-
ence on Semantic Web and Web Services. IEEE.

Saripalle, R., & Demurjian, S. (2012b). Semantic
patterns using the OWL domain profile. In Pro-
ceedings of the 2012 International Knowledge
Engineering Conference (pp. 3-9). IEEE.

Saripalle, R., Demurjian, S., & Behre, S. (2011).
Towards software design process for ontologies.
In Proceedings of the 1st International Conference
on Software and Intelligent Information. IEEE.

Smith, B. A., & Ceusters, W. B. (2006). Ontology
as the core discipline of biomedical informatics:
Legacies of the past and recommendations for the
future direction of research. In G. D. Crnkovic,
& S. Stuart (Eds.), Computing, philosophy, and
cognitive science. Cambridge, UK: Cambridge
Scholars Press.

SNOMED CT. (2013). SNOMED CT® techni-
cal implementation guide. Retrieved from http://
ihtsdo.org/fileadmin/user_upload/doc/

SOAP. (2007, April). Simple object access proto-
col. Retrieved from http://www.w3.org/TR/soap/

Wimalasuriya, D. C., & Dou, D. (2010).
Ontology-based information extraction: An in-
troduction and a survey of current approaches.
Journal of Information Science, 36(6), 306–323.
doi:10.1177/0165551509360123

WSDL. (2001, March). Web services description
language. Retrieved from http://www.w3.org/
TR/2001/NOTE-wsdl-20010315

ADDITIONAL READING

Baclawski, K., Kokar, M., Kogut, A. P., Hart, L.,
Smith, E. J., Letkowski, J., & Emery, P. (2002).
Extending the Unified Modeling Language for
ontology development. Journal of Software and
System Modeling, 1, 142–156. doi:10.1007/
s10270-002-0008-4

Bendaoud, R., Napoli, A., & Toussaint, Y. (2005).
A proposal for an Interactive Ontology Design
Process based on Formal Concept Analysis. In
Proceedings of the Formal Information and On-
tology System (FIOS).

Boone, K. (2011). The CDA book. New York,
NY: Springer. doi:10.1007/978-0-85729-336-7

D’Amore, J. D., Sittig, D. F., Wright, A., Iyengar,
M. S., & Ness, R. (2011). The Promise of the CCD:
Challenges and Opportunity for Quality Improve-
ment and Population Health. In Proceedings of
the 2011 AMIA Annual Symposium (pp. 285-294).

Davis, J., Harris, S., Crichton, C., Shukla, A., &
Gibbons, J. (2008). Metadata standards for seman-
tic interoperability in electronic government. In
Proceedings of the 2nd international conference
on Theory and practice of electronic governance
(pp. 67-75).

250

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Djurić, D., Gašević, D., & Devedžić, V. (2005).
Ontology Modeling and MDA. Journal of Ob-
ject Technology, 4(1), 109–128. doi:10.5381/
jot.2005.4.1.a3

Gomez-Porez, A. (1996). A Framework to Verify
Knowledge Sharing Technology. Expert Systems
with Applications, 11(4), 519–529. doi:10.1016/
S0957-4174(96)00067-X

Gruber, R. T. (2005). Toward Principles for design
of ontologies used for knowledge sharing. Journal
of Human Computer Studies, 43, 90–928.

Guranio, N. (2001). Formal Ontology and In-
formation Systems. In Proceedings of the 1st
International Conference on Foraml Ontology
and Infomration System. Trento, Itlay.

Hartmann, J., Palma, R., & Sure, Y. (2005). OMV–
Ontology Metadata Vocabulary for the Semantic
Web. In Proceedings of the International Work-
shop on Ontology Patterns for the Semantic Web.

Herre, H., Heller, B., Burek, P., Hoehndorf, R.,
Loebe, F., & Michalek, H. (2007). General For-
mal Ontology (GFO), A Foundational Ontology
Integrating Objects and Processes. Part I: Basic
Principles. Research Group Ontologies in Medi-
cine (Onto-Med). University of Leipzig.

Mazzoleni, P., Crispo, B., Sivasubramanian, S.,
& Bertino, E. (2008). Xacml policy integration
algorithms. [TISSEC]. ACM Transactions on
Information and System Security, 11.

Nicola, A., Missikoff, M., & Navigli, R. (2005).
A Proposal for a Unified Process for Ontology
building: UPON. In Proceedings of the 16th In-
ternational Conference on Database and Expert
Systems Applications.

OMIM. (2013). Retrieved from Online Mendelian
Inheritance in Man: http://www.omim.org/

Trinh, Q. (2007). Semantic Interoperability Be-
tween Relational Database Systems. In Proceed-
ings of the 11th International Database Engineer-
ing and Applications Symposium (pp. 208-215).

Wache, H., Vögele, T. U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., & Hübner, S. (2001).
Ontology-Based Integration of Information - A
Survey of Existing Approaches. In Proceedings
of the International Workshop on Ontologies and
Information Sharing (pp. 108-117).

KEY TERMS AND DEFINITIONS

Continuity of Care Record (CCR): A docu-
ment standard for health information typically
used for representing data in Personal Health
Records (PHR).

Electronic Health Record (EHR): An elec-
tronic health record contains all related health
information, from medications to procedures, and
is managed by the institution in which it is stored
(e.g. hospital, private practice, clinic, etc.).

Enterprise Interoperability (EI): A field of
activity with the aim to improve the manner in
which enterprises, by means of information and
communications technologies, interoperate with
other enterprises, organizations, or with other
business units, in order to conduct their business.

eXtensible Markup Language (XML):
A structured language utilized for information
exchange, standards and information validation
via the use of schemas. Its extensibility allows
developers and experts to design and implement
common standards for the use across systems
and domains.

Health Information Exchange (HIE): The
ability to share information among health informa-
tion technology systems by linking information
for the same patient across multiple repositories
to provide a complete health care view.

Health Language Seven Clinical Document
Architecture (HL7 CDA): HL7 CDA is an
XML-based markup standard intended to specify
the encoding, structure and semantics of clinical
documents for exchange.

Interoperability: The ability of diverse sys-
tems and organizations to work in a collaborative
environment.

251

Attaining Semantic Enterprise Interoperability through Ontology Architectural Patterns

Resource Description Framework (RDF):
RDF is as a metadata data model which is used
for conceptual description or modeling of informa-
tion that is implemented in web resources, using a
variety of syntax notations and data serialization
formats.

Software Design Patterns (SDPs): SDPs are
general reusable solution to a reoccurring problem
in multiple different situations with similar context
without involving any application specific objects.

SPARQL Protocol and RDF Query Lan-
guage (SPARQL): SPARQL is an RDF query
language that will be able to retrieve and manipu-
late data stored in RDF/OWL format. SPARQL
allows for a query to consist of triple patterns,
conjunctions, disjunctions, and optional patterns.

Systematized Nomenclature of Medicine
Clinical Terms (SNOMED-CT): an organized
computer processable collection of medical terms
providing codes, terms, synonyms and definitions
covering domains such as diseases, findings, pro-
cedures, microorganisms, substances, etc.

Unified Medical Language System (UMLS):
UMLS is defined as a compendium of multiple
standard medical vocabularies such as ICD,
LOINC, SNOMED-CT, etc., and provides a map-
ping structure between the integrated standards.

Web Ontology Language (OWL): The Web
Ontology Language is a knowledge representation
languages for defining ontologies.

