
62 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Ontologies are built to establish standard terminologies representing a semantic agreement between humans
and knowledge systems via representational frameworks (e.g., KIF, DAML+OIL, OWL, etc.) that have been
proposed in the research community, with limited adoption in industry. One possible reason is a lack of a
formal model and associated process to more precisely and accurately design and develop ontologies. The
authors’ prior work explored UML, entity-relationship diagrams, and XML as compared to RDF and OWL,
identifying modeling capabilities lacking in ontologies. In all three approaches, design precedes instantiation
which contrasts with ontology developers who build ontologies at the application level targeted to a specific
domain. The paper proposes design-level modeling enhancements to ontologies by extending the OMG
Ontology Definition Model (ODM) and OWL grammar with capabilities from the three aforementioned ap-
proaches, promoting a software engineering-based process. As a result, this work provides a more software
engineering-oriented process to ontology design and development.

A Software Modeling Approach
to Ontology Design via

Extensions to ODM and OWL
Rishi Kanth Saripalle, Department of Computer Science & Engineering, University of

Connecticut, Storrs, CT, USA

Steven A. Demurjian, Department of Computer Science & Engineering, University of
Connecticut, Storrs, CT, USA

Alberto De la Rosa Algarín, Department of Computer Science & Engineering, University of
Connecticut, Storrs, CT, USA

Michael Blechner, Department of Pathology, University of Connecticut Health Center,
Farmington, CT, USA

Keywords:	 Ontology Design and Development, Ontology Domain Profile, Ontology Life Cycle Model,
Ontology Modeling, Standard Terminologies

1. INTRODUCTION

Software domain modeling is a process where
individuals seek to conceptualize an application
in order to arrive at a solution that meets all of
the application’s domain needs and require-

ments. Conceptualization can be defined as a
structure {D, R}, where D is the domain (scope
of the application) and R is the set of relevant
relations (functionality and interactions of the
application) in the D (Gruber, 2005). Cur-
rently, one popular domain conceptualization

DOI: 10.4018/jswis.2013040103

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 63

approach is ontologies where the representa-
tion of knowledge occurs via the definition of
concepts that can be related to one another for
sharing and reuse of that knowledge. In practice,
W3C supports two major ontology develop-
ment frameworks, the Resource Description
Framework (RDF) (Powers, 2003) and the
Web Ontology Language (OWL) (Allemang
& Hendler, 2011), where the latter is built on
top of the former. Additionally, a wide range of
knowledge representational frameworks (e.g.,
KIF (Genesereth, 1991), KL-ONE (Brachman
& Schmolze, 1985), DAML+OIL (Horrocks,
2002), etc.) are available. When reviewing the
usage of these frameworks in real applications,
the overriding theme is realizing a specific
instance-level solution for a particular system,
rather than designing a solution that can be
reused by multiple similar applications within
the same general domain. For example, in
health information technology (HIT), multiple
systems such as AllScripts (AllScripts, 2012),
Centricity (GE Centricity, 2012), MS Health
Vault (Microsoft Health Vault., 2013), etc.,
are developed with their own specific (and
different) medical ontologies despite the fact
that each one is storing and managing patient
data. Any attempt to integrate data from across
multiple EHRs, referred to as health informa-
tion exchange (HIE) requires integrating their
different medical ontologies which at best is
a semi-automated and arduous task. While
many of these HIT systems leverage existing
standard medical terminologies (e.g., LONIC
(LOINC, 2001), UMLS (Bodenreider, 2004),
ICD (ICD, 2009), etc.), there is no uniform at-
tempt to design an ontology domain model for
medical knowledge that is general purpose and
reusable in multiple contexts. For example, one
HIT system may organize medical knowledge
in an ontology by disease, symptoms (for each
disease), diagnoses (for each disease), and
treatments (for each disease), while another
HIT system might invert and target this infor-
mation from a symptom to diagnosis to disease
to treatment basis. Attempting to reconcile this
medical knowledge in two or more different
ontologies is an arborous, time-consuming,

and at best semi-automated task, making HIE
difficult to achieve.

In order to successfully employ ontologies
in existing/new applications, structural and
semantic interoperability issues among the
ontologies that are used for the overall domain
must be addressed. There are a number of key
issues. First, the individual ontologies of each
constituent system used by a new application
may each organize knowledge in different ways
to suit their specific application and organiza-
tional processes, meaning that the ontologies
across the constituent systems are often incom-
patible and difficult to integrate. Second, the
ontology development and deployment process
is predominantly instance and construction
based, often dictated by the talent and expertise
of the ontology designer rather than using any
concrete software development process; such an
approach limits the reuse since ontologies end up
being very domain centric. For a new applica-
tion, the existence of consistent ontologies of
the constituent systems will greatly simplify the
semantic interoperability. Finally, many exist-
ing ontology representational frameworks lack
an ability to design solutions that are broader
in scope; the end result is often narrowed to
not just a single domain, but to a subset of the
domain that is very application specific. Thus,
the overriding issue is that ontologies solely
focus on the domain knowledge and its usage
by constituent systems rather than abstracting
back from the problem to consider the entire
domain and its appropriate set of ontologies
in a more comprehensive and general manner.
Clearly, there is a lack of design and process
in the current ontology definition process –
focusing solely on the domain knowledge and
its usage by a particular application rather than
abstracting back from the problem to consider
domain knowledge in a more comprehensive
and general manner (Kuhn, 2010). Such an ap-
proach is contrary to the long history of design
in software, databases, and web settings, where
the emphasis is on individual modeling tech-
niques that can applied to conceptualize problem
solutions in a fashion that promotes abstraction
and fosters reuse. In computing, there is a wide

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

64 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

range of such modeling techniques ranging
from programming (e.g., C#/C++/Java, LISP,
Prolog, etc.) to software design (e.g., the unified
modeling language (UML) (Booch, Rumbaigh,
& Jacobson, 2005), design patters, software
architectures, etc.) to databases (e.g., entity-
relationship diagrams (ERD) (Chen, 1976),
relational theory and normalization, etc.) to the
world wide web (e.g., the eXtensible Markup
Language (XML) (Harold & Scott, 2004) and
associated technologies). All of these modeling
techniques have underling conceptual models
(e.g., object-oriented, functional, formal logic,
relations, etc.), a means to access the concep-
tual model (e.g., programming language, SQL,
XSLT, etc.), and in some situations, the existence
of a metamodel that allows for the model itself
to be modified and changed (e.g., the UML
metamodel, meta-programming through an-
notations in Java, etc.).

To illustrate these concepts and their as-
sociated processes, consider UML, ERD, and
XML. UML is a metamodel driven approach
that provides diagrammatic models (e.g., use
case diagram, class diagram, sequence, diagram,
activity diagram etc.) and an extension mecha-
nism for extending UML modeling entities (like
class, association, property etc.) to build domain
specific metamodel elements. In database de-
sign, ERD focus on abstract entities, relation-
ships between entities, and other capabilities
that can be transitioned to formal relational
database schema; the schema describes the
tables, dependencies, keys, referential integrity,
etc. XML has emerged as a de facto standard
for modeling and data exchange and has revo-
lutionized the way information is represented,
transmitted, and shared across heterogeneous
systems. XML is used in a wide variety of set-
tings (e.g., document representation, database
exchange, medical standards such as HL7,
access control (XACML), security, etc.), but
is still focused on the modeling of data rather
than capturing information and knowledge (the
meaning or semantics of data/information). Due
to the lack of standard semantic interpretation
of information represented in XML, there has
been a movement by researchers to augment

data with knowledge, as evidenced by the de-
velopment of the aforementioned knowledge
representational frameworks supported by RDF
and OWL to encode data, with a major focus
on the use and development of ontologies.
This approach juxtaposes UML, ERD, and
XML, where the emphasis is on concentrating
on the design level considerations and defers
the implementation. In emphasizing model-
ing, one of our objectives of this paper is to
enhance knowledge representational languages
with modeling capabilities to improve design
and usability.

The overall intent of our research, as shown
in Figure 1, is to develop a framework for on-
tology modeling, design, and development to
represent a process that spans the entire gamut
from the metamodel to the realization of an
actual ontology, moving the process from one
that is instance-based and domain specific to
align more closely with a software engineering
process and a focus on modeling and design.
The core of the work proposed in this paper is
captured in the horizontal boxes Metamodel
Concepts, Ontology Extensions, and Ontology
in Figure 1.

For the Metamodel Concepts, we lever-
aged the MOF Metal Model Library (M0) in
conjunction with the metamodel (M1) concepts
of UML, ERD and XML as applied to OWL
allowing us to propose Ontology Extensions
to OWL allowing OWL concepts to be aligned
to the UML metamodel, an OWL Domain
Profile (ODP) that is used to capture domain
generic concepts at a metamodel level, and
OWL Schema Associations that allow high
level associations between OWL schemas. The
last step, the Ontology box in Figure 1, utilizes
Metamodel Concepts and Ontology Extensions
to design an ontology that is supported by an
underlying conceptual model defined with one
or more models and/or schemas using a given
ontology vocabulary, resulting in an instance
of the ontology. The vertical boxes in Figure
1 clearly illustrates the interactions between
different components (horizontal boxes) of the
proposed framework. The Software Engineering
Concepts and Process (far left of Figure 1) spans

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 65

from Metamodel Concepts to the realization of
the Ontology; this is the software design process
aspects of our work in the framework that is
achieved by proposing Hybrid Ontology Design
and Development with Life Cycle (HOD2LC)
(second left box, Figure 1), an agile enhanced
ontology design and development lifecycle
for developing an Ontology (bottom middle
box) utilizing software concepts spanning the
horizontal boxes.

In this paper, the main goal is to elevate
ontology models and their design and develop-
ment process so that the end result aligns more
closely to traditional modeling processes that are
widespread in software engineering. Towards
this goal, we utilize our previous work (Sari-
palle, Demurjian, & Behre, 2011) that contrasted
the features of OWL against UML, ERD, and
XML and proposed conceptual extensions to
OWL from varied perspectives in terms of at-
tributes, profiles, and schema associations. Our
prior work focused on conceptual extensions to
OWL to support a more software-engineering

based process for constructing ontologies; this
paper extends this work with specific model
recommendations to more fully leverage OWL
modeling capabilities by adding design-level
modeling concepts and capabilities, and most
importantly, propose extensions to Ontology
Definition Model (ODM) (ODM, 2009) and
OWL to incorporate these recommendations.
We transition the design capabilities of UML,
ERD, and XML to identify new capabilities to
be included in ODM and OWL that augment
ontology models and frameworks to upgrade the
usage of ontologies to an engineering process.

The remainder of this paper has seven sec-
tions. Section 2 presents a realistic health care
scenario based on EHR’s, their supporting on-
tology knowledge concepts, and the knowledge
required for the queries the clinical researchers
may be interested in making across multiple
HIT systems. Section 3 briefly summarizes our
previous work (Saripalle, Demurjian, & Behre,
2011) that compared and contrasted UML,
ERD, and XML to OWL. Using this as a basis,

Figure 1. A complete framework for ontology design and development

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

66 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

Section 4 explores concepts related to domain
modeling by applying UML’s layered OMG’s
Meta Object Facility (MOF) to XML, RDF, and
OWL (Meta Model in Figure 1); as a result, OWL
is aligned at a higher conceptual design level
away from the more traditional instanced-based
approach to more easily support our proposed
ontology extensions. Section 5 proposes and
explains the ontology extensions (see Figure
1) of Attribute, Domain Profile, and Schema
Associations to OWL and ODM in combina-
tion with the Ontology Metadata Vocabulary
(OMV) framework. Section 6 examines a
Hybrid Ontology Design and Development
Life Cycle (HOD2LC) (Saripalle & Demurjian,
2012) for ontology design, development, and
deployment. Section 7 reviews related research
with Section 8 offering concluding remarks and
ongoing research.

2. A HEALTH CARE SCENARIO

This section presents a clinical scenario of health
care based on HIT systems, their supporting
ontologies, and the knowledge required for the
types of queries the clinical researchers may be
interested in making across multiple systems.
The intent is to provide a realistic scenario of
patient care that includes: a patient’s relevant
medical problem, involved laboratory tests and
results, the resulting medical diagnosis, the
role of involved HIT systems in the process,
motivation to fully place our work in this paper
in an appropriate context, and the potential
usage of the information by providers and
clinical researchers. Note that this example
was formulated by co-author M. Blechner, MD
who has used his medical expertise to provide
a real-world scenario and its usage in practice:

•	 Patient History and Initial Findings: A 72
year old male, Mr. Smith, with a history of
type 2 diabetes presents to the emergency
room complaining of shortness of breath
(also known as dyspnea) on exertion. He
reports experiencing increased difficulty
climbing the one flight of stairs in his

house. Mr. Smith also indicates experienc-
ing occasional chest pressure on exertion
(stable angina). He has recently developed
swelling in his ankles and feet (edema).
He indicates that he takes metformin (for
blood glucose control) for his diabetes and
benazepril for his blood pressure, although
he does not recall the doses. He also takes
an aspirin a day because his regular doctor
told him that he should. The physical exam
of Mr. Smith reveals a gentleman in mild
respiratory distress with moderate pedal
(foot) and lower extremity edema (fluid
in tissues). He is tachypneic (increased
respiratory rate) with a respiratory rate of
30/min. Chest auscultation (listening to the
lungs with a stethoscope while the patient
breathes) reveals bilateral basilar rales
(crackling sounds at the base of both lungs)
and the neck shows jugular venous disten-
sion (a visible distension of the jugular vein
in the neck that typically represents backup
of blood returning to the heart which is
typically due to congestive heart failure -
CHF). He has a regular pulse at 90 beats
per minute and blood pressure of 140/90
(mildly elevated). Oxygen saturation (a
measurement of the amount of oxygen be-
ing carried in the blood, normally around
98%) on room air (what your breathing
now) is 88% and rises to 98% when given
supplemental oxygen by nasal cannula at
2 liters/min (we supplement the air the
patient is breathing through the nose).
An electrocardiogram (EKG) measures
the electrical activity in the heart that is
responsible for heart pumping) shows a
normal rate and rhythm with evidence of
left ventricular hypertrophy (the muscle of
the left side of the heart is thickened) but
no ischemia (i.e., at the time the EKG was
being performed there was no evidence of
inadequate blood flow to the heart muscle);

•	 Laboratory Tests and Results: The ER
physician as part of the evaluation process
ordered a series of laboratory blood tests
ordered to be performed to assist in the

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 67

evaluation of Mr. Smith. Specifically, the
laboratory tests ordered on Mr. Smith were
(B-natriuretic peptide (BNP), Hemoglobin,
Hematocrit, white blood count (WBC),
sodium (NA), potassium (K), chloride
(Cl), bicarbonate (CO2), glucose, blood
urea nitrogen (BUN), creatinine (Cr), and
Troponin I) and their results as impacting
Mr. Smith yield as given in Table 1.

To explain and review the results, BNP
(B-natriuretic peptide) is a compound released
by the heart when it is stretched. In CHF, blood
returning to the heart is not pumped out quickly
enough and as result the heart stretches to ac-
commodate the extra blood. Thus, the elevated
BNP is very suggestive of CHF. Hemoglobin
and hematocrit are both measurements of the
amount of red blood cells in the patient’s circula-
tion. Na (sodium), K (potassium), Cl (chloride),
CO2 (bicarbonate) are all measurements of ion/
electrolyte concentrations in the patient’s blood.
In the case of Mr. Smith, while these results
are in the normal range, CHF can often result
in imbalances to these electrolytes. GLUC is
the patient’s serum glucose and the elevation
in the test result in this case may indicate poor
control of his diabetes. However, CHF is a
stressful condition and serum glucose values
typically rise during physiologic stress even
in non-diabetics and otherwise healthy patients
so this may not represent poor glucose control.
BUN (blood urea nitrogen) and Cr (creatinine)
are typically used to assess kidney function.
The elevated BUN and normal creatinine of
Mr. Smith suggest that the BUN is elevated due
to decreased blood flow through the kidneys

rather than due to a problem with the kidneys
themselves. This increased BUN can be referred
to as azotemia and since it is due to poor kidney
perfusion (a variable that has its effect before
the kidney); it is often referred to as pre-renal
azotemia. The decreased kidney perfusion in
Mr. Smith is due to the CHF in this case. Tro-
ponin I is a protein found only in heart muscle
cells. Elevations in troponin I indicate damage
to heart muscle cells which spill the protein
into the blood. The normal troponin I in Mr.
Smith’s case indicates that there has not been
a heart attack and is consistent with the lack of
evidence of ischemia seen on EKG. Overall,
the Lab tests for Mr. Smith reveal a marked
elevation in the BNP suggestive of congestive
heart failure. The elevated BUN and normal
creatinine suggest a possible pre-renal azotemia
which would also be consistent with CHF. The
normal troponin is consistent with the lack of
evidence of ischemia seen on EKG:

•	 Medical Diagnosis based on Exami-
nation, EKG, and Labs: Mr. Smith is
suffering from an exacerbation of CHF.
The pumping function of his heart is not
powerful enough to move all of his blood
volume through his circulation. As a result,
the blood that is returning to the heart
backs-up and essentially pools in the blood
vessels. In the legs and feet, gravity tends
to accentuate this pooling. The extra pooled
blood in these parts of the circulation exerts
increased pressure on the vessel walls and
this increased pressure pushes fluid from
the circulation into the body tissues. This
fluid and the resulting puffiness of the tis-

Table 1. Lab test ranges and value results

Test (Ranges) Value Test (Ranges) Value Test (Ranges) Value Test (Ranges) Value

BNP
(<100 pg/mL) 800 pg/mL

Hemoglobin
(13.5 – 17.5
g/dL)

13.5 g/dl Hematocrit
(42 -52%) 41% WBC

(4 – 10 k/uL) 8 k/ul

Na (135 - 145
meq/L) 142 meq/L K (3.5 – 5.5

meq/L) 4.3 meq/L CI (100 – 111
meq/L) 99 meq/L CO2 (23 –32

meq/L) 31 meq/L

GLUC
(<200 pg/mL) 250 mg/L BUN

(8 -24 mg/dL) 33 ml/dL Cr (0.6– 1.2
meq/L) 1.1 mg/L Troponin I

(<0.05 ng/mL) <0.05 ng/mL

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

68 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

sues are called edema. In CHF, edema fluid
also collects in the lungs and this fluid in
the lung impairs the lungs ability to absorb
oxygen, thus the difficulty breathing and
the increased respiratory rate as an attempt
to compensate. The rales (crackles) heard
on auscultation are an indication of fluid
in the lungs. So both oxygenation of the
blood (due to fluid in lungs or “pulmonary
edema”) and delivery of blood to tissues
(the heart’s pumping function is inad-
equate) is compromised. Together, these
two factors compromise oxygen delivery
to the tissues resulting in fatigue (thus,
the difficulty climbing stairs) and poten-
tially organ dysfunction. The jugular vein
returns blood from the head and brain to
the heart. The jugular venous distension is
another manifestation of pooling of blood
due to inadequate cardiac function. The
occasional chest pressure on exertion sug-
gests that Mr. Smith has coronary artery
disease where inflammation and deposition
of cholesterol in the vessel wall results in
a localized expansion of the vessel wall
(typically referred to as a plaque) that can
impede blood flow. When the patient is at
rest, there is adequate blood flow past this
plaque but when the patient exerts them-
selves, the heart needs to work harder and
needs more oxygen and thus more blood
flow. If the plaque is large enough, blood
flow becomes inadequate on exertion and
heart muscle can become damaged. This
can be felt as chest pressure or pain. If
Mr. Smith stops exertion, the heart stops
working so hard, the oxygen demand
drops, oxygen delivery is once again ad-
equate and the chest pressure goes away.
This transient chest pain or discomfort is
called stable angina. If the blood flow is
too compromised for too long, heart muscle
dies of a “heart attack” or myocardial in-
farction. Mr. Smith has stable angina and
no evidence of a myocardial infarction.
Mr. Smith’s blood pressure is slightly
elevated but since he has been prescribed
antihypertensive medication (benazepril),

this suggests that the medication or dose
may need to be changed or that the patient
is not following the prescription. Diabetics
are often hypertensive and hypertension
leads to left ventricular hypertrophy and
eventually CHF as well as coronary artery
disease. Aspirin decreases the risk of heart
attack and is often recommended in patients
with cardiovascular disease like him;

•	 Role of HIT and Discharge: Mr. Smith
provided the ER physician with access to
his personal health record (PHR) that had
been recently initiated by the patient’s
son who was not present. The PHR data
was sparse but did include that the patient
had been taking flax seed oil supplements
for the past 6 months. A search of the
regional HIE revealed that the patient had
a recent admission at another hospital for
CHF; thus data must be gathered from that
electronic health record (HER), his primary
physicians EHR, and potentially others in
support of his ongoing care. The discharge
summary from that admission indicated that
the patient had improved after 2 doses of
Lasix (diuretic, makes you pee a lot and the
loss of fluid decreases your blood volume
which often improves CHF symptoms) and
the patient had been discharged on Lasix
for use at home. A query of the Superscripts
electronic prescription database, however,
suggested that the patient never filled the
Lasix prescription. The HIE also informed
the ER physician that the patient has a
documented allergy to sulfa containing
medications;

•	 Motivation of Scenario as Related to
Paper: In practice, information from
multiple EHRs are brought together via
HIE in order to allow data not only to be
shared, but for physician researchers to be
able to make queries across repositories
on various medical concepts. We assume
a situation in the not so far future that each
of these EHRs has their own ontology to
represent product-specific information
within the EHR, and utilizes the various
standard medical ontologies (e.g., LOINC,

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 69

UMLS, customized ontology, etc.) to store
information in either CCD or CCR formats,
or in a proprietary data format. The ontolo-
gies for each EHR must be integrated into
a global ontology in order for the data to
be effectively shared so that differences in
ontologies can be reconciled. In this case,
a global ontology is created by utilizing
information from existing ontologies. For
example, EHR-specific ontologies may
contain information on diagnosis (the
disease or condition that a patient has),
symptoms (the discomfort or issue that a
patient is having), treatments (the regime,
medication, or therapy order for the dis-
ease), etc. The two key issues with such
product specific ontologies are two-fold.
First, each of the EHRs may organize the
information hierarchically into ontologies
in different ways; one may use symptom as
the highest level to reference diseases which
in turn references treatments, while another
may use disease to organize the symptoms
and their treatments. The problem is that
if one tries the search the first EHR for all
treatments for the different diseases that
have the same symptoms, the complexity
of the search is difficult since it is struc-
tured differently than the ontology, and
the same search is different for the second
EHR that has an alternative organization
for the same ontology Second, the same or
similar terms in the ontologies themselves
may be semantically interpreted in alter-
native ways by different EHRs; cardiac
failure in one ontology and heart attack in
another ontology. This is why there needs
to be syntactic and semantic unification
to reconcile and integrate ontologies. One
objective with our work is to define a global
ontology using our extended ontology
model and HOD2MLC in order to allow
this integration based on the integration
of terms, structure, and semantics by al-
ternate ontologies from different EHRs. A
complementary approach would start with
the creation of a global meta-ontology from

existing information on ontologies that
currently exist in the public domain, result-
ing in a global meta-ontology that can be
translated to platform specific ontologies.
While our research focuses on the former,
our long-term goal is to achieve the later,
with the potential to semi or full automate
the translation between meta-ontologies
and local ontologies;

•	 Potential Usage of Scenario in Clinical
Practice and for Research: The scenario
as presented above has the underlying as-
pect of information that has been gathered
for this patient from multiple data sources
that have been utilized for his treatment. If
one extrapolates across all of the patients
that may have similar symptomatology,
there is the opportunity for improved
clinical practice or utilization by a phy-
sician researcher who is interested in
conducting research on patients that have
a profile similar to Mr. Smith (as outline
in the scenario). The intent is to transition
from using the data for clinical purposes to
leveraging the data for research. We want
to model and define a set of underlying
ontologies based on the clinical data from
the scenario that can then facilitate research
across a broader spectrum. From a research
perspective, an almost limitless number
of questions can arise when considering
Mr. Smith’s case or similar patients. This
common clinical scenario is associated
with a number of clinical variables from
the presence or absence and magnitude of
various symptoms or physical exam find-
ings such as dyspnea (shortness of breath)
or edema (swelling) to the administration
and dose of various medications, to the
results of various laboratory tests to the
patient’s clinical diagnoses.

Correlations between two or more of
any of these variables may be of interest to a
researcher. A number of broad research topics
(RT) can be posed:

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

70 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

RT.1: Effects of a specific medical therapy on
a patient’s co-morbid conditions:
1. 	 How does metformin used for glucose

control in type 2 diabetics effect the
incidence and natural history of CHF
and chronic renal (kidney) Failure or
stable angina (chest pain successfully
treated)?

2. 	 If there is an effect on any of these
conditions, is type 2 diabetics dose
dependent on metformin or does the
absence of any other medications alter
it?

3. 	 Does metformin affect the utility of
the BNP test (measure of how well
the heart is working) for the diagnosis
and monitoring of CHF?

4. 	 Does metformin decrease the risk of
developing any seemingly unrelated
co-morbid diseases like breast cancer?

Many of these questions would be an-
swerable if you had a large enough integrated
database supported by ontologies that would
be able to extract all of the required data and
attempt to identify for markers of CHF across
both long-term and short-term periods of time:

RT.2: Comparative study of different diabetic
therapies with CHF using various patient
groups:
1. 	 What is the patient’s profile with CHF

and associated medications involved
for diabetic therapies?

2. 	 What are incidence and/or severity
of CHF for diabetes patients who use
hyperglecimic agents?

3. 	 Is metformin more or less effective in
maintaining glucose control in type
2 diabetics with a history of stable
angina as compared to other anti-
hyperglycemic medications?

4. 	 Is lasix (reduces edema) more or less
effective than alternative diuretics in
treating CHF in patients with type 2
diabetes?

RT.3: Biomarkers (measureable characteristics)
of disease, disease progression or risk:

1. 	 Are there patterns of laboratory test
results seen in type 2 diabetes patients
that are associated with increased risk
of developing CHF or Stable Angina?

2. 	 If so, do any specific medical therapies
alter this risk?

RT.4: Adverse events associated with specific
medical therapies:
1. 	 Adverse events associated with a

specific drug like metformin may not
be detectible in the entire metformin
treated population but may be sig-
nificant in a specific subpopulation of
patients. Are there any subpopulations
of type 2 diabetics on metformin that
reveal a significant adverse event rate?
Diabetics with CHF? Diabetics with
renal failure? Diabetics also treated
with lasix for CHF?

2. 	 Is there a subpopulation of patients
taking flax seed oil supplements that
reveals a significant incidence of
adverse events? Perhaps diabetics on
metformin with concurrent CHF?

Individually, each of these research topics
provides a means to allow a physician researcher
to explore various aspects of a disease, its
symptoms, medications, therapies, interactions
with other conditions, etc. To accomplish this,
it will be necessary not only to integrate the
data sources, but to provide a consistent set of
ontologies that describe the information in a
manner that will allow queries from differing
perspectives to be posed and answered. The
role of our research on ontology design is in
support of such a process.

3. PRIOR WORK ON MODELS
AND ONTOLOGIES

This section briefly reviews our prior work
(Saripalle, Demurjian, & Behre, 2011) compar-
ing UML, ERD, and XML to OWL at a class
and instance level. UML provides diagram-
matic models (e.g., use case, class, sequence,
etc.) with the focus on artifacts (classes/types)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 71

rather than instances (objects). ERD supports
database requirements via entities to model ag-
gregations (set of attributes) and relationships to
model static associations between entities with
cardinalities (e.g., one-to-one, one-to-many,
etc.) and inheritance. XML supports informa-
tion content to be hierarchically organized and
tagged which can be defined and validated by
XML Schema Definition (XSD) achieving
type-level characteristics that are enforced by
all type instances. RDF captures knowledge with
the RDF Schema (RDFS) framework support-
ing classes, properties, and restrictions. OWL
extends the RDF/RDFS to improve expressive-
ness in terms of qualified restriction, number
restriction, unique keys, boolean expression, etc.
From a modeling perspective, UML, ERD, and
XML share: abstraction to hide implementation
details and aggregation to group attributes or
properties into a named concept, namely, an
entity in ERD, a class in UML, a table in a rela-
tional database schema, etc.; schema definition
for a conceptual model that describes system
structure and behavior; schema association to

allow relationships among the logical schemas;
classes (types) to aggregate objects that share
common attributes; attribute (properties) that
are characteristics which are owned by the class;
interface that abstractly defines the behavioral
aspects (operations) of the implementing class;
associations to relate two or more classes (types
or entities, etc.); inheritance for extension (child
is enhanced), specialization (child is restricted),
generalization (common attributes of classes
are abstracted to form parent), and combination
(inherit from multiple classes among classes
(types); and, constraints to limit information in
schemas. Associations can be qualified (based
on a value), at the class level, n-array between
multiple classes, and with a limited number of
instances (cardinality).

In Table 2, we compare UML, ERD, and
XML using three qualitative criteria: None, the
model does not support the feature; Partial, the
model has some aspects of the feature; and,
Full, the model has all aspects of the feature.
The comparisons of UML, ERD, and XML
are quite clear given the earlier discussion.

Table 2. Model characteristics vs. UML, ERD, XML and OWL

Modeling Element UML ERD XML OWL

Schema Definition Full None Full None

Schema Associations Full None Partial Partial

Interfaces Full None None None

Class Full Full Full Partial

Associations Full Full Full Partial

Qualified Associations Full Full Full Partial

Association Class Full Full Full None

N-Array Associations Full Full Full Full

Cardinality Full Full Full Full

Inheritance Full Full Full Full

Extension Full Full Full Full

Specialization Full Full Full Full

Generalization Full Full Full Full

Combination Full Full Full Full

Constraints Full Full Full Full

Profile Full None None None

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

72 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

What is more relevant is an evaluation of the
features vs. ontologies/OWL. While schema
definition in OWL is not directly supported,
associations of schemas are possible to a lim-
ited extent. For classes and interfaces in OWL,
owl:Class is defined as a set of individuals and
owl:ObjectProperty links two individuals, but
the link can’t differentiate between a relationship
and an attribute and the definition of the class in
OWL and modeling are semantically different.
As a result, there is a lack of support in OWL
for schema definition. Due to the lack of the
semantic definition of a class and the concept
attribute, developers can’t capture the structure
of the concepts and ontology itself, resulting in
the “None” for schema in Table 2. Presently,
ontologies can refer to multiple ontologies, but
can’t define customized associations between
them, thus, Partial support. The Associations
and Inheritance are present in OWL grammar,
are designed to be used with OWL class (in the
context of the OWL).

4. A LAYERED MOF
ARCHITECTURAL APPROACH

This section applies UML‘s layered OMG’s
Meta Object Facility (MOF) (OMG, 2011) to
XML, RFD, and OWL to represent domain
modeling as shown in the metamodel box in
Figure 1, to allow designers to understand
the function and capabilities of the planned
system by conceptualizing an abstract view of
the solution. For this paper, we are interested
in not only the modeling techniques, but also
the underlying metamodels of these techniques
that provide the means to specify the model,
its properties, and its semantics. This section
explores domain modeling of XML, RDF, and
OWL via a layered MOF approach, focusing
not only on their individual modeling capabili-
ties, but on also understanding their underlying
metamodels and the way that these metamod-
els can be exploited to add a more software
engineering emphasis to ontology design and
development. The intent is to transition from an
instance-based process for ontology creation to

one that is design based and has an underlying
formalism (the metamodel) that elevates the
process to one that is at a higher conceptual level.

As a model, UML provides diagrams
(e.g., class, use case, etc.) at varied levels of
abstraction to represent associations among
different concepts (e.g., actors, use case, class,
etc.). Underlying these diagrams and modeling
concepts is the UML metamodel which is built
on top of MOF as given in Figure 2a: M3 is a
meta-meta library for defining new metamodels;
M2 is at the metamodel layer where models such
as UML, ODM, and NeOn (Haase, Rudolph,
Wang, & Brockmans, 2005) can be defined;
M1 is the domain model instance of an M2
metamodel; and, M0 is the instance of the
domain model. Building a metamodel using
MOF for specific domain requirements is a
tedious task, as the developer has to define the
syntax and the semantics of the new entities. To
facilitate this process, it is possible to utilize the
UML abstraction Profile (Fuentes-Fernández &
Vallecillo-Moreno, 2004), where existing UML
metamodel elements such as class, associa-
tion, property, etc., can be extended to build
domain specific metamodel elements. UML
profile only extends existing UML metamodel
features, allowing the profile extension to act
as a metamodel itself. In addition to M3 and
M2, Figure 2a also shows the transition from
the metamodel UML (M2) to a domain model
for a university application (M1) applied to a
“real” university UConn (M0). Likewise, an
ODM, metamodel (M2) can be used to develop
a domain model (M1) for Diseases that can then
be applied at the domain data layer (M0) for
various diseases (e.g., Asthma). Three of the
four layers of MOF in Figure 2a (metamodel,
domain model, and domain data) can be used
to organize a conceptual view of XML Schema,
RDF/RDFS schema, and OWL metamodel, as
shown in Figure 2b. In the case of XML, the
capability of XML Schema Definition (XSD)
at the MM layer (XML schema for short)
provides predefined schema tags like element,
complexType, simpleType, etc. These schema
tags are akin to classes, attributes, actors, etc.,

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 73

in UML. Through this approach, the definition
of an XML schema at the domain model (DM)
level can be transitioned to an instance level
(domain data – DD).

XML has the flexibility in representing
the information, but lacks support in providing
semantic interpretation/meaning to the informa-
tion represented. For example, consider a sample
XML snippet in Figure 3, humans can conclude
that the concept “Stroke” is a symptom of the
concept “Heart Attack”, but a knowledge-based
system could also interpret the information as
“Heart Attack” has a symptom of “Stroke”
(Figure 4). XML provides a flexible framework
for representing information at the schema
level (domain model) and its corresponding
instances (domain data), but the semantics of
the structure have to be mutually agreed on
between the exchanging systems in order for
data to be successfully shared.

The semantic ambiguity in interpreting
XML elements has led to RDF (MM in Figure
2b) which leverages the structure of XML by
annotating data and its structure with semantics.
RDF has tags that have a similar syntax to XML
(DM in Figure 2b) and utilizes the data types
defined in the XML Schema grammar. For
example, in Figure 4, Heart Attack – hasSymp-
tom – Stroke is an RDF triple statement where
“Heart Attack” is the Subject, “hasSymptom” is
the Predicate and “Stroke” is the Object. This
supports a transition from the domain model
to the domain data layer. RDFS (MM in Fig-
ure 2b) was developed for providing schema
modeling elements like class (rdfs:Class)
and property elements like rdfs:subClassof,
rdfs:subPropertyOf, etc. However, both RDF
and RDFS are constrained with respect to the
expressiveness (i.e., axioms, unique key, and
reasoning, etc.) to build complex knowledge

Figure 2. A layered organization of metamodels

Figure 3. XML example illustrating the semantic ambiguity in data interpretation

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

74 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

structures. OWL (OWL Guide, 2004), also at
M2 in Figure 2b, is built on top of RDF/RDFS
to take advantage of RDF triples and provides
richer semantics with greater expressive power
for defining complex ontologies via three
variants: OWL Lite an easy to use functional
subset of OWL; OWL Description Logic (DL)
to support the existing description logic and
to provide a language subset that has desir-
able computational properties for reasoning
systems; and, OWL Full that relaxes some of
the constraints on OWL DL. However, OWL
Full semantics are undecidable (Motik, 2005)
making OWL DL the most popular framework
used for developing ontologies that combine
expressiveness and complexity; as a result, our
focus is on OWL DL.

Concepts in OWL DL are represented
as classes of type owl:Class, which can be
instantiated to form data instances of type
owl:NamedIndividual. OWL DL has the unique-
ness to define new classes from existing classes

via boolean operators such as union, intersec-
tion, negation, and number restrictions. OWL
DL specifications also have three role variants,
as shown in Figure 5, which act as “binary re-
lationships or associations” between concepts
or classes of type owl:Class (hasSymptom in
Figure 4), defined as:

1. 	 ObjectProperty: Is a binary relation or a
role between two individuals:

<owl:ObjectProperty	
rdf:ID=”hasSymptom”>	
“hasSymptom” relates two individuals as 	
shown in Figure4	

2. 	 DateTypeProperty: Represents the prop-
erties of classes whose values are datatype
like Integer, URI, and String, etc. The OWL
grammar uses most of the built-in XML
Schema datatypes:

Figure 4. RDF statement example in triple format

Figure 5. An extended OWL property metamodel in ODM

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 75

<owl:DatatypeProperty 	
rdf:ID=”hasScienticName”>	

3. 	 AnnotationProperty: Allows annota-
tion of various ontology concepts using
rdfs:Comment, rdfs:SeeAlso, etc. In ODM,
OWLAnnotationProperty entity represents
<owl:AnnotationProperty> as shown in
Figure 5.

In summary, this section provides the reader
with a basic understanding of RDF/RDFS and
OWL frameworks and their potential alignment
with MOF layers. The OWL Semantic Web
guide (Lacy, 2005; Motik, 2005; Motik, Patel-
Schneider, & Grau, 2009) provides in-depth
knowledge on the model-theoretic semantics
of the framework and the work of (Horrocks,
Sattler, & Tobies, 1999) explains the semantics
in detail.

5. EXTENSIONS TO OWL,
ODM, AND OMV

Ontologies are primarily built to support
knowledge-based systems or the key terms and
their relationships for a given domain, where
an ontology designer focuses on defining a
specific instance-based solution for the given
application. As a result, the ability to reuse
and share of existing knowledge to facilitate
semantic interoperability between information
exchanging systems is difficult to achieve when
ontologies are constructed for such specific and
narrow purposes. OWL provides a framework

for embedding knowledge semantics and to
develop complex ontologies. Section 3 identi-
fied the key capabilities missing in OWL when
compared to UML, ERD, and XML, result-
ing in a lack of software modeling concepts
and an engineering process when designing,
developing, and deploying ontologies. These
missing components in OWL make the ontology
integration process to be highly inefficient and
laborious in nature; the emphasis has been on
building an ontology instance-based solution
which limits the ability to reuse the ontology in
other applications of the same domain.

The objective of this section is to pro-
pose three extensions to the OWL and ODM
frameworks in combination with the Ontol-
ogy Metadata Vocabulary (OMV) (Hartmann,
Palma, & Sure, 2005) to yield an approach that
improves the design and modeling capabilities
thereby defining a software engineering process
for ontology design, development, and deploy-
ment (see Section 6). As shown in Figure 6, we
leverage MOF concepts and the four layers (M3
to M0) and the discussion in Section 3 in order
to transition to an engineering-based process
for ontology construction. OWL provides a
framework for developing ontologies and
enables reasoning by exploiting the underly-
ing description logic representation of the
knowledge, shown in the middle of Figure 6.

ODM is an instance (indicated by solid
black arrow) of MOF as shown in Figure 6, and
provides visual modeling diagrams for develop-
ing ontologies. As a result, this section provides
a detailed discussion on two recommendations
for extending OWL, ODM, and OMV in order

Figure 6. Representing OWL and ODM at the various design phases

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

76 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

to enhance modeling capabilities of ontology
models. The remainder of this section details
our proposed OWL extensions for the frame-
work of Figure 1. Section 5.1 examines the first
proposed extension to OWL that adds Attribute
as a means capture the characteristics of a class.
Section 5.2 details the second proposed exten-
sion to OWL that adds Domain Profile to OWL
in order to capture domain specific concepts at
the meta-model (M2 in Figure 6) level. Finally,
Section 5.3 presents the third extension for
schema associations by leveraging OMV to
define Ontology Schema Associations to work
with the two extensions in Sections 5.1 and
5.2 to define associations. The first two exten-
sions leverage the modeling capabilities of the
OWL/ODM meta-model, thereby influencing
the OWL domain model design; the usage of
OMV’s to define ontology associations will
allow dependencies across ontologies to be
defined. Note that further implementation
details of the work in this paper that integrate
our OWL extensions into the Protégé tool (Pro-
tege, 2012) and provide an implementation of
the ontology in this paper are provided at the
web site: http://www.engr.uconn.edu/~steve/
KanthSaripalle.html.

5.1. The Owl Attribute Extension

This section examines the first extension to
OWL that adds Attribute as a means capture the
characteristics of a class as defined in Section
4; this is akin to attributes in UML meta-model
(Booch, Rumbaigh, & Jacobson, 2005). The
reason that we are proposing attributes is to
augment OWL with the capability to capture
characteristics owned by a class and define
an OWL class as an aggregation of attributes.
When the semantics of OWL DL are utilized
for this purpose, the result is that a class (identi-
fied as a concept in DL) is formed by grouping
a set of objects (Horrocks, Sattler, & Tobies,
1999; Kuhn, 2010), but not by identifying and
grouping the attributes of those objects (Baader,
McGuinness, Nardi, & Patel-Schneider, 2005).
To further support this argument, consider the
UML diagram shown in the Figure 7, which is
a subset of the XML standard Health Language
Seven (HL7) Standard Clinical Document Ar-
chitecture (CDA) (Boone, 2011). The Patient
class has attributes id (type Integer), Weight
(type Double), Height (type Double), and
hasName (type Name), and is associated with
the Provider class using an association hasPri-

Figure 7. A conceptual HIT system model in UML via HL7 CDA

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 77

maryProvider. The Patient is also associated
with the Observation class using the association
hasMedicalObservations, the Procedure class is
associated with the Substance classs with asso-
ciation involvesSubstance, etc. When this UML
model is mapped to an OWL model (Baclawski,
et al., 2002), the attributes id, Weight, Height
are mapped to owl:DatatypeProperty, while
the attributes hasName, has Address, hasVitals,
etc., and the associations hasPrimaryProvider,
hasMedicalObservations, performedProce-
dures, etc., are mapped to owl:ObjectProperty.
As a result, there is no semantic differentiation
shown between association (identified as roles
in DL) and attribute, which can cause semantic
ambiguity in representing a link between the
concepts and results in a lack of a true “class”
concept with attributes in OWL.

Our intent with the addition of attributes
to OWL is to eliminate this semantic ambigu-
ity in representing a relationship between
classes and characteristics owned by a class.
Therefore, in order to capture the essence of a
class from a modeling perspective, we redefine
the semantics of the entity Class in OWL and
introduce a new first class element OWLAt-
tribute (owl:Attribute) as shown in the Figure
8 to handle attributes and utilize the existing
owl:ObjectProperty entity to capture the as-
sociations between the classes. The domain and
range of the owl:Attribute entity is owl:Class,
but is constrained and is placed at the same
layer as OWLObjectProperty in the ODM
property hierarchy as was shown in Figure 5.
The semantics of the class can be defined as
Class {At0, At1… Atn; Dt0, Dt1… Dtn}, a set of

attributes, where each Ati is the attribute and
Dti is the datatype for all n define the class. For
providing a syntactical and semantic definition
consistent with the OWL 2 guide (OWL 2,
2004), the attribute can be defined as a role Ati
(A, B) ⊆ ΔI x ΔI with additional constraint that
there exists no R (C, B) ⊆ ΔI x ΔI, where R is
a binary predicate in the same domain of
disclosure(ΔI). Correspondingly, we can repre-
sent the same definition axiomatically as
Ati(A,B) ∩ ∉ R(C,B) ⊆ ΔI x ΔI, which also
states that the concept A has an attribute concept
B connected through the attribute Ati and the
concept B can’t be involved in a binary relation-
ship R with any other concept such as C. For
example, the concept A (Observation and Pro-
cedure) are connected to the concept B (Vitals
and IVL) through attribute (hasVitals and hasEf-
fectiveTime), and then there is no other concept
C (Patient) that can form a relationship or role
or association with B (Vitals or IVL).

The syntax of the attribute element is
defined using the notation: <owl: Attribute
rdf:ID=”hasVitals”/>. Using this OWL attribute
definition, and the structure as given in Figure
8, the Vitals class shown in the Figure 7 with
attributes and can capture actual patient vitals
(pulse, BP, respirations).

The patient vitals could be a crucial part of
a study when researchers identify the required
patient population for the research topics RT2.A,
RT3.A, RT4.A, etc., as presented at the end of
Section 2. Notice that each UML class has been
translated to an OWL class, with the proposed
owl:Attribute capturing the attribute hasVitals
between the Observation and Vitals classes. The

Figure 8. The structure of an OWL Attribute model element

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

78 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

result as given in Figure 9 can be considered
an ontology schema since it is defining the data
types, structure, and associations.

To summarize, by introducing the concept
of attribute for OWL, a class can be defined as a
group of attributes, employ owl:ObjectProperty
for representing associations, and define es-
sentially a schema for the ontology as given
in Figure 9. This is equivalent to a UML class
diagram (Figure 7) which defines classes, at-
tributes, and associations. As a result, rather
than integrating ontologies at the instance
level, it is now possible to integrate ontologies
at a schema level, to allow associations across
different ontology schemas to be mapped with
integration rules. As a result, when one then at-
tempts to integrate domain data from multiple
ontologies, the mapping integration rules can be
applied with the potential of alleviating or even
eliminating semantic interoperability issues.
This mapping across ontologies at the schema
level is the subject of our ongoing research.

5.2. The Owl Domain
Profile Extension

In this section, we define the OWL Domain
Profile (ODP), our second extension to OWL,
a feature for extending the primitive OWL
meta-modeling elements for developing do-
main specific meta-modeling entities. Our
intent with OWL Domain Profile is to capture
abstract concepts that are initially laid out by
the stakeholders in order to build the domain
model. In UML, the developers employ UML
Profile that provides a means to customize
the UML meta-model to a particular domain.
Generally, in software engineering, before de-
veloping domain models or schemas (M1 Level,
Figure 6), stakeholders agree on a higher-level
abstract theory based on which a domain model
is realized. Once there is agreement on the ab-
stract theory (i.e., abstract type concepts), the
ontology designer traditionally focuses on the
domain model concepts and its vocabulary at

Figure 9. The OWL Translation of UML diagram in Figure 7

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 79

the instance level (e.g., actual terms and their
structure in an ontology), neglecting to capture
the agreed abstract theory and its type concepts.
Our intent with ODP is to capture the abstract
theory and its concepts that are initially laid
out by the stakeholders in order to build the
domain model.

For the conceptual understanding of ab-
stract theory and type concepts, consider the
sample ontology domain models developed
using UML as shown in the Figures 10, 11, and
12. Briefly, Figure 10 presents the Diagnosis
Ontology Model that captures the required
knowledge for identifying a patient’s conditions,
its causes, and the approaches to mitigate these
conditions. Figure 11 details the Test Ontology
Model that captures the knowledge on various
medical tests required for analyzing various
patient conditions. Then, Figure 12 represents
the Anatomy Ontology Model that captures
knowledge on physical parts and their inter-
actions of the human body. To fully explain,
Figure 10 presents the Diagnosis Ontology
Model that defines classes such as Metabolic
System Diseases, Digestive System Diseases,
Cardiac System Diseases, Skin Diseases, etc.,
which will each include attributes to represent
what needs to be recorded for each class and
defines and represents associations between
the participating classes. These classes are
used to realize the actual medical instances or
vocabulary of the ontology such as digestive
system disease instances, cardiac system disease
instances, respiratory system disease instances,
skin diseases instances, etc. Similarly, other
classes with their respective attributes (such as
hasCode, hasEffectiveTime, hasLimits, etc.) in
the ontology model such as Respiratory System
Procedure, Digestive System Medications,
Fractures, Dislocations, etc., can be utilized
to capture the respective medical vocabulary
and are interconnected via associations such
as hasCardiacSymptoms, hasGeneralSymp-
toms, hasMentalDisorderSymptoms, has-
CardiacProcedure, causedByGeneralInjury,
hasCardiacMedication, etc. Figure 11 details
the Test Ontology Model that defines classes
such as Physical Tests, Laboratory Test, Blood

Test, etc., with respective attributes (hasCode,
uId, MedicalName) to represent features of the
class and associations (is-a, etc.) between the
classes to capture the interactions between the
defined classes. These classes are later real-
ized to capture actual medical test instances
or the vocabulary of the ontology. Similarly,
the Anatomy Ontology model shown in the
Figure 12 captures human anatomy using the
class Human Parts with respective attributes
to describe the human part and associations to
capture various relationships between them.
This model is later instantiated to capture
instances of human parts such as Heart, Veins,
Arteries, etc.

However, from the perspective of the
meta-model (Level M2, Figure 6) and by using
the exemplified ontology models in Figures
10-12, a ontology designer can abstract and
define generic domain specific type concepts
shown in Figure 13, that include: classes such
as Metabolic System Diseases, Respiratory
System Diseases, Digestive System Diseases,
etc., which are all of type Disease; classes
such as General Symptoms, Cardiac System
Symptoms, Respiratory System Symptoms, etc.,
which are all of type Symptom; classes such as
Cardiac System Medication, Respiratory Sys-
tem Medication, Nervous System Medication,
etc., which are all of type Medication; classes
such as Cardiac System Procedures, Respiratory
System Procedures, etc., which are all of type
Procedure; classes such as Cardiac System Test,
Respiratory System Test, Blood Test, etc., which
are all of type Test; classes such as Fracture,
Sprain, Dislocation etc., which are all of type
Injury; and, classes such as General Diagnostics,
Radiology, Nuclear Medicine, etc., which are
all of type Diagnostic.

Within these abstract type concepts (Figure
13), abstract attribute types can be defined,
namely: hasPharmaceuticalName, hasCode-
Name, hasCommonName, etc., which are all
of type hasName; and, hasUId, hasDeaNumber,
etc., which all are of type hasId. Figure 13 il-
lustrates the abstract associations types: hasGen-
eralSymptoms, hasMentalDisorderSymptoms,
hasCardiacSymptoms, etc., which are all of type

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

80 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

hasSymptom; hasCardiacProcedure, hasRespi-
ratoryProcedure, hasDigestiveProcedure, etc.,
which are all of type hasProcedure; hasBlood-

Test, hasPhysicalTest, performXRay, etc., which
are all of type hasTest;(hasCardiacMedication,
hasSkinMedication, hasDigestiveMedication,

Figure 10. Sample diagnosis ontology models developed in UML

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 81

Figure 11. A test ontology model in UML

Figure 12. An anatomy ontology model in UML

Figure 13. The abstract theory from ontology models shown in Figures 10-12

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

82 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

etc., which are all of type hasMedication;
hasNuclearDiagnostic, hasRadioDiagnostic,
etc., which are all of type hasDiagnostic; and,
isCausedByFracture, isCausedByDislocation,
sprainedBy, etc., which are all of type causedBy.

Essentially, the ontology models in Figures
10-12 are used as the basis to yield a more gen-
eralized knowledge base for the given domain.
The result in Figure 13 is an abstract theory with
type concepts that can be reused in multiple
contexts for many HIT systems and EHRs for
the development of multiple domain models.

For example, another domain ontology
model can be developed involving: classes
such as Ear Diseases, Swelling, Eye and Cornea
Diseases, etc., which are of type Disease; as-
sociations such as hasEyeInfections, develop-
sEarInfection, showsSwelling, etc., which are of
type hasSymptom; and, attributes hasSynonym,
hasBiologicalName, previouslyNamed, etc.,
which are of type hasName. This signifies that
even though the ontology model (classes, at-
tributes, and associations) expresses knowledge
on different domains, both the domain models
use the same abstract theory (Figure 13) for
developing multiple ontology models as shown
in the Figure 14a.

Thus, the sample abstract theory captured
as a domain profile (Figure 13) at a higher level
(meta-model level, Figure 6) can be used as a
base theory to develop a global ontology model

capturing knowledge about various domains
such as diseases, symptoms, tests, medications,
procedure, etc., or another biomedical ontology
model which can meet the knowledge require-
ment of the researchers RT’s. For instance,
the knowledge required for RT1.A and RT1.B
(Section 2) will involve types Disease and Medi-
cation with their respective association type
(hasMedication) to obtain an output which can
be of type Symptom or Injury, RT3.A requires
types Disease and Test to obtain common test
patterns between similar disease profiles, etc.

The proposed OWL Domain Profile (ODP)
supports the OWL framework by allowing the
ontology designer to capture the abstract type
concepts as profile concepts akin to UML
profiles at the meta-model level, and to impose
(reuse) them onto the multiple ontology models
(Level M1, Figure 6) as shown in Figure 14b.
In order to impose the profile concepts onto
the domain model entities and automate the
load/parse/save process, we have designed and
implemented a DomainProfileParser algorithm
that authenticates and validates the imposing
of the profile entities onto the ontology model
concepts and structural associations. Figure 15
illustrates the comparison of ontology modeling
using OWL and OWL supported with ODP to
define the same (Figure 13) information us-
ing both OWL (Figure 15a) and our proposed
extensions with ODP (Figure 15b). Figure 15a

Figure 14. An architectural perspective of OWL ODP and its domain models

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 83

demonstrates the development of a domain
ontology using traditional OWL, where the con-
cept Disease is defined as an owl:Class entity,
which in turn is instantiated to define domain
instances such as Brittle Asthma captured as
owl:NamedIndividual. In contrast, in Figure
15b, OWL is extended with ODP, allowing a
generic concept such as Disease to be abstracted
as a profile concept (Sample Abstract theory,
Figure 13) that is then imposed onto the concept
Asthma (read as Asthma isofType Disease)
defined as a class by instantiating owl:Class,
which is turn is instantiated to define domain
instances such as Brittle Asthma captured as
owl:NamedIndividual. In general, when OWL is
used alone, the owl:Class metamodel element is
instantiated to create domain classes (applicable
to a general HIT system’s concepts) which are
later instantiated for capturing domain data (for
a specific vendor’s HIT sytem’s concepts). Us-
ing OWL extended with ODP, the defined ODP
entities can be imposed onto the domain model

that are then instantiated to capture instances;
this is shown in the transition from the classes
in Figure 15a to the domain profile entities in
Figure 15b.

The ODP entities extend OWL primitive
meta-modeling elements by creating a depen-
dency relationship with the OWL meta-model
and, hence, can only be utilized in the OWL
meta-model framework as shown in the Figure
15b (M2 – meta-model level). In ODP at the
meta-model level, there are four extensions:
Profile Class (PC) is utilized for capturing do-
main specific type concepts; Profile Attribute
(PA) is intended to capture the characteristics
of a Profile Class, namely the comprising at-
tributes; Profile ObjectProperty (POP) captures
all of the interactions between profile classes,
which may be inheritance or associations; and,
ProfileDatatypeProperty (PDP) defines proper-
ties to capture datatype values (such as integer,
URI, String etc.) for a profile class. From a
practical perspective, these four extensions of

Figure 15. A comparison of modeling using OWL and OWL+ODP

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

84 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

ODP extend OWL first-class entities: owl:Class,
owl:Attribute, owl:ObjectProperty, and
owl:DatatypeProperty to define ODP entities
odp:ProfileClass(PC), odp:ProfileAtrribute(PA),
odp:ProfileObjectProperty(POP) and odp:Pro
fileDatatypeProperty(PDP), respectively. The
primary objective of ODP is to encapsulate
the abstract theory which can be reused across
multiple settings (instantiated differently for
each vendor’s HIT System). A secondary
objective is to leverage PC, PA, POP, and PDP for
defining meta-schema at M2 Level which can
be referred to when developing ontology models
at M1 Level in Figure 6. The remainder of this
section reviews PC, PA, POP, and PDP:

Profile Class (PC): A Profile Class is an ODP
meta-modeling entity that is represented
using the tag odp:ProfileClass for develop-
ing domain specific class meta-model (M2
Level, Figure 6) entities such as Disease,
Virus, etc., by extending OWL’s owl:Class
primitive element. A Profile Class extends
the core element owl:Class but does not
change the semantics of the element. As
given in Figure 16, Disease, Procedure,
Treatment, Symptom and Medication are
of type ProfileClass, which are imposed
onto the domain model concepts with our
extended ODP syntax;

Profile Attribute (PA): A Profile Attribute is
an ODP meta-modeling entity utilized for
defining domain specific attributes such as
hasSymptom, hasScientificName, hasICD-
Code, etc., by extending owl:Attribute
element. A Profile Attribute is represented
by the tag element odp:ProfileAttribute
which extends owl:Attribute element,

but does not change the semantics of the
core element. From Figure 17, name is a
odp:ProfileAttribute with domain Disease
and range EName, with our extended ODP
syntax in Figure 17;

Profile ObjectProperty (POP): The Profil-
eObjectProperty is represented by the
tag element odp:ProfileObjectProperty is
a member of the ODP for encapsulating
abstract domain specific roles (Figure 13)
such as hasProcedure, hasMedication,
hasSymptom, hasTreatment, etc. Profil-
eObjectProperty follows the semantics of
owl:ObjectProperty for capturing associa-
tions. A ProfileObjectProperty can only
capture interactions between entities of
type odp:ProfileClass, with our extended
ODP syntax in Figure 18;

Profile DatatypeProperty (PDP): The Profile-
DatatypeProperty captures domain specific
roles whose range is a datatype such as in-
teger, double, URI, time, etc. This element
extends OWL’s owl:DatatypeProperty
and is represented using with element
odp:ProfileDatatypeProperty. Profile-
DatatypeProperty follows the semantics
of owl:DatatypeProperty and takes domain
values only of type odp:ProfileClass. The
datatype uid from Figure 13 is of type
ProfileDatatypeProperty with our extended
ODP syntax in Figure 19;

In summary, the ODP provides a means to
transition to a higher level of conceptualization
that promotes ontology design. As a result, as
illustrated in Figure 13, 14 and Figure 15b, stake-
holders can agree on ontology meta-schema
details at a higher conceptual level and create

Figure 16. Sample code illustrating the profile class

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 85

type concepts that are reusable. Once the abstract
type concepts are captured as profile concepts,
they can be employed by different HIT system,
where each HIT system would build their own
ontology model based on their specific data,
but all of the systems would share the same
abstract theory (same generalized meta-schema)
at the meta-model level, thus reusing the core
conceptual abstract theory and type concepts.

5.3. The OWL/OMV Schema
Associations Extension

The primary goal for developing Ontology
Schema Associations or Ontology Schema
Relationships for OWL ontology models is
to capture appropriate associations between

and across ontology models. Current usage
of OWL when developing ontologies often
embeds these associations within a single ontol-
ogy. As a result, an ontology that has diseases
referencing symptoms referencing treatments
can be searched in that structured order, but,
if one wants to find all diseases that have the
same treatments, such a search is very difficult
to write. With ontology schema associations,
there would be separate ontologies for disease,
symptoms, and treatments, that can be linked in
different ways to allow a wider variety of queries
using a higher-level structure that doesn’t bury
linkages deep with an ontology tree.

The first two extensions for Attribute (Sec-
tion 5.2) and OWL Domain Profile (Section 5.2)
are focused on the OWL features and capabilities

Figure 19. Sample code illustrating the profile data type property

Figure 17. Sample code illustrating the profile attribute

Figure 18. Sample code illustrating the ProfileObjectProperty

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

86 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

applied at the metamodel and domain model
level to dictate the way that domain models
are developed. The intent of Ontology Schema
Associations is to leverage realize the Ontology
Meta Vocabulary (OMV) (Hartmann, Palma,
& Sure, 2005) model using OWL framework,
which is then instantiated for each ontology
model to capture the respective metadata and
later interrelated with another ontology model
metadata concepts to define schema associa-
tions. The OMV is a domain model for providing
metadata for the ontology and was developed
as part of NeOn project group. OMV provides
a way to capture the metadata for the ontology
as related to domain, organization, language,
place, version, tools, etc. To demonstrate, Figure
20 provides an overview of core OMV concepts.
In Figure 20, in a typical ontology engineering
process has a Person(s) or Organization(s)
responsible for developing an ontology repre-
sented using Ontology entity can be grouped
to form a generic entity Party by a subclass-of
relation. The geographical information for
the party is described by the Location entity.
Further, the engineering process employed for
building the ontology is captured by Ontolo-
gyEngineeringMethodology and development
tools, namely, OntologyEngineeringTool. The
entity OntologyTask describes the primary task
of the ontology and LicenceModel describes the
usage boundaries of the ontology schema. The
entities OntologySyntax, OntologyLanguage
and KnowledgeRepresentationParadigm cap-
ture the implementation details of the ontology
schema. A further classification of the ontology
schema relies on their level of formality captured
using FormalityLevel and types of knowledge
representation primitives supported using
KnowledgeRepresentationParadigam. The
domain the ontology describes is represented
by the entity OntologyDomain, while Onotolo-
gyType describes the nature of the content of
the ontology.

Our intent for leveraging OMV is to al-
low ontology associations at the schema level.
For instance, consider a medical domain that
needs an ontology that contains information on

diseases, medications, treatments, symptom,
assessment, and test. In a traditional ontology
approach, an ontology designer would put
together these concepts into single source ontol-
ogy (Os), and say organize the concepts first by
disease, then symptoms of each disease, along
with treatments, medication, assessment and test
for each disease. If one only wants to reuse the
disease, tests and assessment concept models,
it may involve a complex ontology transforma-
tion or importing the complete source ontology,
which also imports unwanted concepts. This
becomes a huge issue when dealing with large
ontologies (thousands of concepts) which have
a direct impact on performance as the applica-
tion parser and reasoners also needs to import,
read and parse unwanted concepts. In order to
address this issue, our approach as shown in
Figure 21, is to separate Disease, Tests, and
Assessment concepts into independent ontology
schemas and then interconnect the schemas us-
ing relationships. As shown in Figure 21, the
Diagnosis Ontology Schema (O1) links Disease
to Symptoms, Treatment, Procedure, and Medi-
cation; a Test Ontology Schema (O2) describes
various tests such as Cardiac Test, Blood Test,
Image Test, and Respiratory Test etc.; and, a
Triage1 Ontology Schema (O3) provides initially
assessment about vitals and previous injuries
and also may provide medication information.
Each of these ontology schemas can be described
(metadata about the ontology) by associating
various OMV concepts. As shown in Figure
21, the ontology schema O1 has OMV concept
ontologyDomain with value “Condition”, O2 has
ontologyDomain with value “Triage” and O3 has
the concept ontologyDomain with value “Test”.
These OMV concepts across these individual
ontology schemas (O1, O2, and O3) are associ-
ated to form Ontology Schema Associations.

By separating the domain model into
multiple schemas, pieces of the domain model
can be reused in other applications, much as a
subset of a UML class diagram can be utilized
in different solutions of a similar domain. This
contrast with a single ontology that may either be
unable to represent the knowledge requirement

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 87

of the system and also be incapable of being
seperated easily to be reused in other contexts,
as we described above. Trying to capture entire
knowledge within a single ontology will sac-
rifice modularity and the potential for reuse.

Figure 21 shows hasAssessment and hasT-
est which are Ontology Associations which
are binary predicates between OMV concepts
across multiple ontology schemas as indicated
by the dotted lines. Ontology Associations are

Figure 20. An overview of OMV core concepts

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

88 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

similar to package imports and class diagrams
in UML and schema reference in XML. OWL
also has the ability to reference other ontolo-
gies, but with OMV, ontology designers can
define customized ontology relationships
between OMV concepts across multiple ontol-
ogy models. Besides providing modularity and
knowledge reuse, schema associations assist
the user to identify required knowledge sources
through ontological relationships for RT’s. For
instance, while a user is researching on side
effects of hyperglycemic agents on CHF and
diabetes (RT2.B, Section 2) using the Diagnosis
Ontology, the researcher might be interested in
also knowing the various tests which can be
performed for conducting statistical analysis.
The schema association hasTest between the
Diagnosis and Tests ontologies assists the re-
searcher in identifying the appropriate ontology
for obtaining medical test knowledge. Similarly,
for finding the physical impact of diabetes while
using metformin (RT3.A, Section 2) can be
explored using knowledge captured in anatomy
ontology related to diagnosis ontology using
effects schema associations.

6. AN ONTOLOGY DESIGN AND
DEVELOMPENT LIFE CYCLE

In this section, we briefly review our work on
a software development life cycle for ontolo-
gies that provides the design methodology as
characterized in Figure 1 in support of a design
process for the three OWL extensions for At-
tribute, Domain Profile, and Schema Associa-
tions as discussed in Sections 5.1, 5.2 and 5.3,
respectively. Historically, there are numerous
life cycles including the waterfall model (Win-
ston, 1970), the iterative model (Basili & Turner,
1975), the spiral model (Boehm, 1986), agile
development (Craig, 2003), and others, that
share phases such as requirements, specifica-
tion, design, analysis, implementation, testing,
deployment and maintenance. For ontologies,
there have been related efforts that are of note.
Methonotology (Fernández-Lopez, Gomez-
Perez, & Juristo, 1997) employs phases: specifi-
cation for knowledge acquisition to develop an
ontology vocabulary; and, conceptualization to
structure the domain vocabulary and develop a
conceptual model for the ontology, integration,

Figure 21. Illustrating ontology relationships between ontology schemas

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 89

implementation and evaluation. The approach
leverages an evolutionary model to expand the
ontology over time as new requirements emerge
and was based on earlier work that proposed
a method based on steps for requirements and
specification, construction of data dictionary,
concept classification, and other instance-based
ontology considerations. Another effort (Us-
chold & King, 1996) proposed an enterprise
ontology with requirements, conceptualization,
implementation, and documentation phases that
was later expanded (Uschold, 1998) in order to
create a unified methodology.

In this section, we review our work on a
Hybrid Ontology Design and Development
Life Cycle (HOD2LC) model (Saripalle & De-
murjian, 2012) that leverages various software
engineering process and methodologies which
can be applied to ontologies. The intent is to
provide a concrete context for utilizing the
OWL extensions coupled with the alignment
with the meta-model to yield a design process.
The HOD2LC model has a number of phases
that represent different aspects of the ontology
design and development process, and integrate
with approach (Figure 1) and proposed exten-
sions (Sections 5.1 to 5.3):

Phase 1: The Problem Analysis phase identi-
fies and analyzes the problem faced in
information system leading to the develop-
ment of new ontology and/or extending an
existing ontology. Generally the problems
faced are related to instance data of the
domain or a state of the ontology, from
which an abstract domain problem has to
be formulated. For example, list all of the
symptoms of Radiation Chemotherapy
on Breast Cancer; when rewritten into a
domain problem, the query is focusing on
domains of symptoms, treatment and dis-
eases. The problem analysis is to identify
the abstract meta-concepts (M2 Level,
Figure 6) and the domain model concepts
(M1 Level, Figure 6) from instance data
(M0 Level, Figure 6);

Phase 2: The Integration Phase allows design-
ers to search for existing ontologies meeting

the problem criteria. For instance, reusing
RxNorm (Liu, Ma, Moore, Ganesan, &
Nelson, 2005) which provides normal-
ized names for clinical drugs and UMLS
provides semantic types and network
(Bodenreider, 2004) to in support various
medical concepts;

Phase 3: In the Knowledge Acquisition phase,
designers interact with domain experts
(providers, researchers, etc.) searching
multiple resources (medical records, data,
ontologies, etc.) to identify the concepts
and domain vocabulary required to develop
the complete ontology. This phase can be
performed in parallel with Specification,
Design and/or Analysis phases;

Phase 4: In the Specification phase the designer
firmly defines the domain’s scope and
functional details of the ontology and its
concepts. For instance, the disease domain
from Phase 1 can be refined by specifying
types of diseases, associating diseases
with symptom(s) and name as its attribute
(see Figure 7), resulting in a conceptual
schema for disease and symptom and then
associating these schemas;

Phase 5: In the Design Phase, the concepts
in the domain are identified, including:
classes, attributes, and associations that can
be classified into meta-concepts (Figure
13) and model concepts (Figures 10-12).
For instance, the type concept Disease and
Symptom (Figure 13) can be meta-concepts
with hasSymptom a meta-association
to capture their interactions. The meta-
concepts can further be refined to identify
domain model concepts (Figure 15);

Phase 6: In the Analysis phase, designers and
the end users (and domain experts) revisit
the specification phase to validate (all re-
quired system requirements are met) the
design models developed in the Design
Phase. The cycling between Specification,
Design, and Analysis phases promotes an
incremental learning process;

Phase 7: The Implementation phase provides
the transition from conceptual model (UML
Class Diagram or ERD diagram) to concrete

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

90 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

implementation (using OWL DL, OWL
Lite, Frames, etc.). This phase requires de-
cisions to be made regarding the particular
ontology language and framework for the
implementation, which can be based on
issues related to usability, performance,
interoperability, and availability;

Phase 8: The Testing phase carries out a tech-
nical judgment of the ontologies, their
software environment, and documentation
with respect to a frame of reference (in
our case, the requirements specification
document) during each phase and between
phases of their life cycle, using techniques
such as Ontolingua (Gomez-Porez, Ju-
risto, & Pazos, 1995) or a framework for
evaluating knowledge sharing technology
(software, ontologies and documentation)
(Gomez-Porez, 1996);

Phase 9: The Maintenance and Documentation
phase is where the developed ontology has
to be monitored for smooth and efficient
performance of the system (maintenance)
backed by a detailed narrative report of the
ontology concepts, its axioms, and usage
(documentation). This phase can start with
knowledge acquisition and run in parallel
with subsequent phases.

To form the complete life cycle model,
Figure 22 illustrates a Hybrid Ontology Design
and Development Life Cycle (HOD2LC) involv-
ing the aforementioned phases. The HOD2LC is
an agile methodology through Phase 2 to Phase
7. The iterative and incremental approach as-
sists developers to take advantage of what was
learned during previous phases. There is also a
need of loop between Analysis and Specification
phases, as the developers have to validate the
ontology model to check if the specifications
have met. This loop is represented using a dotted
line differentiating it from the life cycle’s solid
line. This loop helps the end users to verify or edit
specifications so as to make necessary changes
to the ontology model without go through
the whole cycle. The Knowledge Acquisition
phase can be executed in parallel with other
phase until the Implementation phase, which

is responsible for developing the vocabulary
of the domain from the information gathered
from the Knowledge Acquisition phase. The
Documentation phase of the ontology can also
be executed in parallel starting from Analysis
phase. To support the iterative process em-
ployed in the Design phase, we utilize Feature
Driven Development methodology (FDD)
(Palmer & Felsing, 2002), a model driven agile
software development process. Abstracting
out the steps from FDD and applying it to our
approach (Figure 23), we have the following
steps. In Step 1, a higher-level walkthrough of
the domains involved in the domain problem
should be performed to identify type concepts
(Figure 13). For example, type concepts such
as Disease, Symptom, Medication, Treatment,
etc.; type concept attributes such as uid, name,
etc.; and type concept associations such as
hasSymptom, hasTreatment, hasMedication,
hasParent, and isa. This step is equivalent to
identifying domain profile concepts at the meta-
model level (M2 Level) as shown in Figure
15. In Step 2, once there is agreement on the
abstract theory and its type concepts, they are
decomposed into smaller domain concepts by
multiple groups. For example, classes such as
Respiratory Diseases, and Cardiac Diseases can
be defined which are of type Disease; Cardiac
Symptoms and Mental Disorder Symptoms, etc.,
of type Symptom. The respective attributes and
associations are also identified. Finally, in Step
3, as the respective models have been built, the
modular models can be interconnected using
ontology schema associations to form a network
of ontology models (Figure 21). The iterative
nature of the cycle will help developers learn
from the previous phase and the incremental
nature shows the sign of progress and partial
output to the end users. The cycle is stopped once
an agreement has been reached on structural
and semantic aspects of the ontology. The work
presented in this section is our initial effort to
quantify an ontology design and development
process; our work is ongoing in this area to fine
tune the process and apply to more complex,
realistic examples.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 91

Figure 22. HOD2LC, the hybrid ontology design and development life cycle

Figure 23. A feature driven development (FDD) of the ontology design phase

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

92 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

7. RELATED WORK

There are many related works that have influ-
enced our objective of driving ontology develop-
ment towards a model drive approach (MDA)
that leverages software engineering. Gruniger
and Fox (1995) has proposed a methodology to
develop or enhance the ontology by formulating
application scenarios which often are problems
encountered in an enterprise application, giv-
ing rise to informal competency questions.
The underlying existing ontology is enhanced
to solve the problem by making sure that the
queries against the ontology satisfy the com-
petency questions. Bendaoud, Rouane-Hacene,
Toussaint, Delecroix, and Napoli (2007) have
proposed a methodology for developing ontolo-
gies using formal concept analysis. Similarly in
Aussenac-Gilles, Biebow, and Szulman (2000),
Bendaoud, Napoli, and Toussaint (2005), and
Cimiano, Hotho, and Staab (2005), the research
methodologies primarily focus on developing/
enriching underlying application ontology con-
cepts or roles between the concepts, but not on
enhancing the core modeling capabilities of the
ontology language. All of these efforts have the
underlying intent of our work to improve the
ontology design, development, and deployment
process, but our work is more focused on extend-
ing OWL and ODM and leveraging OMV for
a more software engineering-based approach.

The Network Ontology Model (NeOn) has
a primary purpose to define a metamodel for
integrating heterogeneous ontologies together
by defining an OWL metamodel by extending
MOF. The project also encompassed metamod-
els for SWRL, Rules, Mapping, and OMV. We
have clearly leveraged their work as part of Sec-
tion 5. Similarly, the work of Baclawski, Kokar,
Kogut, Hart, Smith, Letkowski, and Emery
(2002) has studied OWL and extended UML to
provide visual models for developing ontolo-
gies. However, they found that the extensions
were too complicated to understand and difficult
to implement, and hence they proposed a Unified
Ontology Language (UOL). The author’s inten-
tions were to provide a modeling environment
for OWL similar to UML and in this process they

mapped OWL language constructs onto UML
concepts; this is comparable to our work, but,
we differ since we want to try to incorporate
additional capabilities into OWL and ODM
rather than define an entire new model. The
research presented in ODM (2009) discusses the
development of an Ontology Definition Model
(ODM) built on the top of MOF for enabling
MDA for ontology engineering. This effort
primarily focus on providing an MDA approach
by extending MOF 2.0, but does not provide in-
depth analysis about the modeling capabilities
of OWL when compared to the UML software
modeling techniques; our approach as presented
in Section 3 seeks to leverage MDA and MOF
to allow a similar process for ontology design,
development, and deployment. The work of
Kuhn (2010) supports our argument to advocate
that the primary goal of an ontology engineer is
to encode as much knowledge as possible and
to exploit automated reasoning or discovering
implicit knowledge, while acknowledging the
lack of the essence of software modeling; like
us, the work strongly recommends separating
modeling and encoding concerns as modeling
semantics as a design task while encoding is
implementation oriented. This is also supported
in Guranio (2001) that proposed the definition
of an ontology as a commitment by a language
(L) for capturing the intended meaning of the
conceptualization. The intent of the ontology is
to define a set of axioms in L such that the set
captures the appropriate best possible model of
conceptualization. The definition capture two
aspects model and axioms, clearly emphasiz-
ing a design task and an implementation task,
respectively.

Recently, researchers have been focusing
on extending the OWL grammar with metamod-
eling capabilities Motik (2005). Recall that the
OWL family encompasses three models (OWL
Lite, OWL DL and OWL Full) arranged in
ascending order of their expressiveness. OWL
Full, the most expressive language supports
metamodeling since a class can be viewed as
group of instances or individual by itself, i.e.,
a class can refer to another class as if the lat-
ter is an instance of the former, which is basic

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 93

essence of metamodeling, and similar to our
intent to associate ontology schemas. However,
the underlying semantics of OWL Full are
undecidable making it difficult for automated
reasoning engines. The work of Motik (2005)
demonstrated that OWL Full semantics are
undecidable for metamodeling and bestowed
metamodeling capabilities in OWL DL in two
ways: contextual semantics and Hilog seman-
tics. Similarly, the work in Glimm, Rudolph,
& Völker (2010) explained the need to add
metamodeling capabilities to OWL framework.
However, both efforts focus on providing
metamodeling capabilities to OWL, but not on
extending existing OWL metamodel elements
to define profiles and capture domain specific
entities (Section 5.2).

The latest version of OWL 2.0 has intro-
duced OWL Profiles (OWL 2 Profile, 2012),
which is essentially a reduced version of com-
plete OWL 2 semantics that trades expressive
power for the efficiency of reasoning. OWL
2 has three profile formats: OWL2 EL for
applications employing ontologies that con-
tain very large numbers of properties and/or
classes; OWL2 QL for applications that use
very large volumes of instance data, and where
query answering is the most important reason-
ing task; and, OWL2 RL for applications that
require scalable reasoning without sacrificing
too much expressive power. These OWL pro-
file languages have restricted semantics from
OWL, while the OWL Domain Profile proposed
which is similar to UML profile, is a structural
aspect acting in parallel with OWL (similar to
UML Profile which acts according to UML) as
shown in the Figures 17 and 18. The semantics
and the decidability of the OWL language are
unchanged. In the Software Design process,
various methodologies and methods have been
proposed by Fernandez-Lopez, Grüninger, and
Fox (1995), Gomez-Porez (1996), Fernández-
Lopez, Gomez-Perez, and Juristo (1997), Us-
chold and King (1996), and Uschold, (1998),
but they are focused around the conceptualiza-
tion phase and are attempting to maximize the
domain vocabulary of the ontology, while they

do not address the conceptual design phase and
complete life cycle model, which are prominent
in the software process and in our approach.
Also, the design phases in these techniques
are primarily centered on developing domain
models using metamodels such as UML, RDF,
and OWL, etc., but not a well-proven layered
architectural approach such as UML Profile,
DOGMA, and ODP. The Analysis phase (see
Section 6) which is a crucial phase in the soft-
ware engineering primarily responsible for
analyzing the conceptual model and validating
the model with specification, is not a part of the
development cycle of many of these efforts, or
has at best given just a limited consideration.
UPON (Nicola, Missikoff, & Navigli, 2005) is
an instance of Unified Process consisting of four
phases (inception, elaboration, construction, and
transition) and each phase is furthered iterated
over five workflows (requirements, analysis,
design, implementation, and test). The HOD2LC
is agile methodology over various enhanced
phases (without cycles and workflows) and also
leveraging proven software design techniques:
meta-schema (ODP, Section 5.3) and the FDD
approach (Figure 23) in our Design Phase and
inner feedback loops in the Analysis Phase,
and Testing Phase.

8. CONCLUSION AND
ONGOING RESEARCH

This paper has addressed the issue of the current
approach to ontology design, development, and
deployment that is primarily focused on encod-
ing the concepts and relationships directly at
the instance level rather than fostering a model-
driven approach like UML, ERD, and XML in
which structural and relational artifacts of the
data model are captured and the instance data
follows the model rules. Towards this goal,
in Section 3, we have reviewed our previous
work (Saripalle, Demurjian, & Behre, 2011)
and re-defined critical modeling characteristics
and evaluated them against UML, ERD, and
XML. Using this as a basis, in Section 4, we

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

94 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

explored domain modeling for UML using a
layered OMG’s Meta Object Facility (MOF)
and then applying this approach in concept to
XML, RDF, and OWL to demonstrate a more
software engineering like process approach that
aligns RDF and OWL to the layers of MOF. The
main contribution of the work presented herein
is in Section 4 with two extensions attribute
(Section 5.1) and domain profile (Sections 5.2).
With Ontology Metadata Vocabulary (OMV)
framework and the ability to model ontology
relations in Section 5.3. Both Sections 4 and
5 utilized an example in clinical informatics
as presented in Section 2, to demonstrate the
concepts. To place the work in this paper into
a large concept, a software life cycle model is
proposed via the Hybrid Ontology Design and
Development Life Cycle (HOD2LC) in Section
6 which provides a process for ontology design,
development, and deployment using OWL. We
believe that the work presented herein is an
important step towards a model-driven ontology
design and development process that leverages
software engineering principles and practices.
The interested reader is referred to http://www.
engr.uconn.edu/~steve/KanthSaripalle.html
for supplemental material on implementation
details of the work in this paper that integrate
our OWL extensions into the Protégé tool
(Protege, 2012).

Our ongoing research seeks to work to-
wards a framework for ontology integration that
operates at an ontology schema level and our
contribution in Sections 5.1, 5.2, and 5.3, can be
utilized to view ontologies at a schema level. If
we are in a specific domain, say medicine, where
we need to integrate ontologies from multiple
HIT systems, the ability to define ontology sche-
mas for each that break apart a traditional single
ontology, and merging at the schema rather than
the instance level, which has the potential to fully
automate ontology integration. Additionally,
with the ability to extend metamodel entities,
we can capture generic domain concepts of
medicine in a profile and impose them across

multiple HIT settings. We are also considering
and expanding UML via its metamodel with
extensions to support an ontology design and
development process integrated into UML. Our
prior work on security access-control model
(Pavlich-Marsical, Demurjian, & Michel, 2010)
and collaborative security (Berhe, Demurjian,
Gokhale, Pavlich-Mariscal, & Saripalle, 2011)
extensions to existing UML and proposed new
UML diagrams in support of role-based, dis-
cretionary, mandatory, and collaborative access
control that were integrated into a UML setting,
allowing for a comprehensive design process
that included security. We believe such an ap-
proach would also benefit our work by including
ontology design and development directly into
the software process as another facet of overall
information systems design.

REFERENCES

Allemang, D., & Hendler, J. (2011). Semantic web
for the working ontologist, second edition: Effective
modeling in RDFS and OWL. (2nd, Ed.) Morgan
Kaufmann.

AllScripts. (2012). AllScripts. Retrieved from http://
www.allscripts.com/

Aussenac-Gilles, N., Biebow, B., & Szulman, S.
(2000). Revisiting ontology design: A method based
on corpus analysis. In Proceeding of International
Conference in Knowledge Engineering and Knowl-
edge Managment (pp. 172-188).

Baader, F., McGuinness, D., Nardi, D., & Patel-
Schneider, P. (2005). The description logic handbook:
Theory, implementation and applications. Cambridge
University Press.

Baclawski, K., Kokar, M., Kogut, A. P., Hart, L.,
Smith, E. J., Letkowski, J., & Emery, P. (2002). Ex-
tending the unified modeling language for ontology
development. Journal of Software and System Mod-
eling, 1, 142–156. doi:10.1007/s10270-002-0008-4

Basili, V., & Turner, J. (1975). Iterative enhancement:
A practical technique for software development.
IEEE Transcation on Software Engineering, 390-396.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 95

Berhe, S., Demurjian, S., Gokhale, S., Pavlich-
Mariscal, J., & Saripalle, R. (2011). Leveraging
UML for security engineering and enforcement in a
collaboration on duty and adaptive workflow model
that extends NIST RBAC. In Y. Li (Ed.), Data and
applications security and privacy XXV (pp. 293–300).
doi:10.1007/978-3-642-22348-8_25

Bodenreider, O. (2004). The unified medical language
system (UMLS): Integrating biomedical terminology.
Journal Nucleic Acids Research, 32(1), 267–270.
doi:10.1093/nar/gkh061

Boehm, B. (1986). A spiral model of software
development and enhancement. ACM SIGSOFT
Software Engineering Notes, 11(4), 14–24.
doi:10.1145/12944.12948

Booch, G., Rumbaigh, J., & Jacobson, I. (2005).
The unified modeling language user guide (2nd ed.).
Addison-Wesley Professional.

Brachman, R. J., & Schmolze, J. (1985). An over-
view of the KL-ONE knowledge representation
system. Journal of Cognitive Science, 9, 171–216.
doi:10.1207/s15516709cog0902_1

Centricity, G. E. (2012). GE centricity. Retrieved
from http://www3.gehealthcare.com/en/Products/
Categories/Healthcare_IT/Electronic_Medical_Re-
cords

Chen, P. (1976). The entity-relationship model:
Toward a unified view of data. ACM Trans-
actions on Database Systems, 1(1), 9–36.
doi:10.1145/320434.320440

Cimiano, P., Hotho, A., & Staab, S. (2005). Learning
concept hierarchies from text corpora using formal
concept analysis. Journal of Artificial Intelligence
Research, 24, 305–339.

Craig, L. (2003). Agile and iterative development:
A manager’s guide (1st ed.). Addison-Wesley Pro-
fessional.

Fernandez-Lopez, A., Grüninger, M., & Fox, M.
(1995). Methodology for the design and evaluation
of ontologies. In Proceeding of Workshop on Basic
Ontological Issues in Knowledge Sharing.

Fernández-Lopez, M., Gomez-Perez, A., & Juristo, N.
(1997). Methontology: From ontological art towards
ontological engineering. In Proceedings of the AAAI
Spring Symposium (pp. 33-40).

Fuentes-Fernández, L., & Vallecillo-Moreno, A.
(2004). An introduction to UML profiles. European
Journal for the Informatics Professional, 5(2).

Genesereth, M. (1991). Knowledge interchange
format. In Proceedings of the 2nd International
Conference on Priciples of Knowledge Representa-
tion and Reasoning (pp. 238-249). Morgan Kaufman.

Glimm, B., Rudolph, S., & Völker, J. (2010). Inte-
grated metamodeling and diagnosis in OWL 2. In
Proceeding of the 9th International Semantic Web
Conference.

Gomez-Porez, A. (1996). A framework to verify
knowledge sharing technology. Expert Systems with
Applications, 11(4), 519–529. doi:10.1016/S0957-
4174(96)00067-X

Gomez-Porez, A., Juristo, N., & Pazos, J. (1995).
Evaluation and assessment of knowledge sharing
technology. In N. J. Mars (Ed.), Towards very large
knowledge bases (pp. 289–296). IOS Press.

Gruber, R. T. (2005). Toward principles for design
of ontologies used for knowledge sharing. Journal
of Human Computer Studies, 43, 900–928.

Grüninger, M., & Fox, M. (1995). Methodology for
the design and evaluation of ontologies. In Proceed-
ing of Workshop on Basic Ontological Issues in
Knowledge Sharing.

Guide, O. W. L. (2004). OWL web ontology lan-
guage. Retrieved from http://www.w3.org/TR/
owl-ref/#Header

Guranio, N. (2001). Formal ontology and informa-
tion systems. In Proceedings of 1st International
Conference on Foraml Ontology and Infomration
System, Trento, Itlay.

Haase, P., Rudolph, S., Wang, Y., & Brockmans, S.
(2005). NeOn- Lifecycle support for networked ontol-
ogies. Retrieved from http://www.neon-project.org/

Harold, E., & Scott, M. (2004). XML in an nutshell.
O’Reilly Media.

Hartmann, J., Palma, R., & Sure, Y. (2005). OMV–
Ontology metadata vocabulary for the semantic
web. In Proceeding of International Workshop on
Ontology Patterns for the Semantic Web.

Horrocks, I. (2002). DAML+OIL: A description
logic for the semantic web. IEEE Computer Society
on Data Engineering, 25, 4–9.

Horrocks, I., Sattler, U., & Tobies, S. (1999). Practi-
cal reasoning for expressive description logics. In
Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning
(pp. 161-180).

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

96 International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013

Horrocks, I., Sattler, U., & Tobies, S. (1999). Practi-
cal reasoning for expressive description logics. In
Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning
(pp. 161-180).

ICD. (2009). International classification of diseases.
Retrieved from http://www.who.int/classifications/
icd/en/

Kuhn, M. (2010). Modeling vs encoding for semantic
web. Journal of Semantic Web-Interoperability, Us-
ability. Applicability, 1(1), 11–15.

Lacy, L. (2005). OWL: Representing Information us-
ing the web ontology language. Trafford Publishing.

Liu, S., Ma, W., Moore, R., Ganesan, V., & Nelson,
S. (2005). RxNorm: Prescription for electronic drug
information. IEEE IT Professional, 7(5), 17–23.
doi:10.1109/MITP.2005.122

LOINC. (2001). Logical observation identifiers
names and codes. Retrieved from http://loinc.org/

Microsoft Health Vault. (2013). Microsoft health
vault. Retrieved from http://www.microsoft.com/
enus/

Motik, B. (2005). On properties of metamodeling
in OWL. In Proceeding Of the 4th International
Semantic Web Conference (pp. 548-562).

Motik, B. (2005). On properties of metamodeling
in OWL. In Proceeding Of the 4th International
Semantic Web Conference (pp. 548-562).

Motik, B., Patel-Schneider, P., & Grau, B. C. (2009).
OWL 2 web ontology language direct semantics.
Retrieved from http://www.w3.org/2007/OWL/wiki/
Direct_Semantics

Nicola, A., Missikoff, M., & Navigli, R. (2005). A
proposal for a unified process for ontology building:
UPON. In Proceeding of 16th International Confer-
ence on Database and Expert Systems Applications.

ODM. (2009). Ontology definition metamodel
(ODM). Retrieved from http://www.omg.org/spec/
ODM/

OMG. (2011, August). Meta object facility
(MOF). Retrieved from http://www.omg.org/spec/
MOF/2.4.1/PDF/

OWL 2 Profile. (2012, December 11). OWL 2 web
ontology language profile. Retrieved from http://
www.w3.org/TR/owl2-profiles/

Palmer, S. R., & Felsing, J. M. (2002). A practi-
cal guide to feature-driven development (1st ed.).
Prentice Hall.

Pavlich-Marsical, P., Demurjian, S., & Michel, D.
L. (2010). A framework of composable security
features: Preserving separation of security concerns
from models to code. Special Issue on Software
Engineering for Secure Systems, 29(3), 350–379.

Powers, S. (2003). Practical RDF. O’ Reilly Media.

Protege. (2012). Protege ontology editor. Retrieved
from www.protege.stanford.edu

Saripalle, R., & Demurjian, S. (2012). Towards a
hybrid ontology design and development life cycle.
In Proceeding of Semantic Web and Web Services.
Las Vegas.

Saripalle, R., Demurjian, S., & Behre, S. (2011).
Towards software design process for ontologies.
In Proceeding of 1st International Conference on
Software and Intelligent Information.

Uschold, M. (1998). The enterprise ontology. Jour-
nal of The Knowledge Engineering Review, 31-89.

Uschold, M., & King, M. (1996). Building ontologies:
Towards a unified methodology. In Proceeding of
the 16th Annual Conference of the British Computer
Society Specialist Group on Expert Systems.

Winston, R. (1970). Managing the development of
large software systems. In Proceedings of the 9th
international conference on Software Engineering
(pp. 328-338). IEEE Computer Society.

ENDNOTES
1 	 A medical term denoting the priority of pa-

tients treatments based on the severity of their
condition.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013 97

Rishi Kanth Saripalle is a final year Ph.D. student in the Department of Computer Science &
Engineering at the University of Connecticut, under the supervision of Dr. Steven A. Demur-
jian. His research interests include: software engineering and modeling using various domain
modeling standards, ontology design and development, knowledge engineering and modeling,
software engineering applied to biomedical informatics. His research focuses on imposing
software engineering, modeling and life cycle modeling concepts onto the domain ontologies,
with the end purpose of defining a software engineering approach to designing and developing
ontologies. He received his Masters, with a major in Computer Engineering, from the University
Massachusetts, where he had research experiences in developing ontologies for aiding medical
decision support system.

Steven A. Demurjian is a Full Professor and Director of Graduate Studies in Computer Science
& Engineering at the University of Connecticut, and co-Director of Research Informatics for the
Biomedical Informatics Division, with research interests of: collaborative security and access
control models for role-based, mandatory, and discretionary approaches with security assurance
for UML, XML, and cloud computing; biomedical informatics and software architectures for
health information exchange; secure software engineering with UML; and, ontology design and
development models and methodologies. Dr. Steven A. Demurjian has 150 archival publications,
in the following categories: 1 book, 2 edited collections, 50 journal articles and book chapters,
and 98 refereed conference/workshop articles.

Alberto De la Rosa Algarín is a Ph.D. student of Computer Science & Engineering at the Univer-
sity of Connecticut, with research interests including: information and knowledge-level security
and privacy enforcement, document-level information security, identity-inferred access control,
knowledge modeling and ontology engineering. He holds two majors, one in Computer Science
and another in Mathematics, from the University of Puerto Rico.

Michael Blechner is an Assistant Professor of Pathology and Laboratory Medicine and Director
of Pathology Informatics and Transfusion Medicine at UCHC, and a faculty member of the Bio-
medical Informatics Division, with medical informatics fellowship training as a National Library
of Medicine (NLM) funded fellow in 2006. He is a skilled educator with teaching experience in
both clinical and technology settings. Dr. Blechner’s research interests include computerized
decision support for laboratory medicine, data warehousing and optimization of clinical labora-
tory data for research and patient safety initiatives, and intelligent tutoring systems for medical
training, especially in the context of laboratory utilization and test interpretation.

