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ABSTRACT
Ontologies are built to establish standard terminologies representing a semantic agreement between humans 
and knowledge systems via representational frameworks (e.g., KIF, DAML+OIL, OWL, etc.) that have been 
proposed in the research community, with limited adoption in industry. One possible reason is a lack of a 
formal model and associated process to more precisely and accurately design and develop ontologies. The 
authors’ prior work explored UML, entity-relationship diagrams, and XML as compared to RDF and OWL, 
identifying modeling capabilities lacking in ontologies. In all three approaches, design precedes instantiation 
which contrasts with ontology developers who build ontologies at the application level targeted to a specific 
domain. The paper proposes design-level modeling enhancements to ontologies by extending the OMG 
Ontology Definition Model (ODM) and OWL grammar with capabilities from the three aforementioned ap-
proaches, promoting a software engineering-based process. As a result, this work provides a more software 
engineering-oriented process to ontology design and development.
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1. INTRODUCTION

Software domain modeling is a process where 
individuals seek to conceptualize an application 
in order to arrive at a solution that meets all of 
the application’s domain needs and require-

ments. Conceptualization can be defined as a 
structure {D, R}, where D is the domain (scope 
of the application) and R is the set of relevant 
relations (functionality and interactions of the 
application) in the D (Gruber, 2005). Cur-
rently, one popular domain conceptualization 
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approach is ontologies where the representa-
tion of knowledge occurs via the definition of 
concepts that can be related to one another for 
sharing and reuse of that knowledge. In practice, 
W3C supports two major ontology develop-
ment frameworks, the Resource Description 
Framework (RDF) (Powers, 2003) and the 
Web Ontology Language (OWL) (Allemang 
& Hendler, 2011), where the latter is built on 
top of the former. Additionally, a wide range of 
knowledge representational frameworks (e.g., 
KIF (Genesereth, 1991), KL-ONE (Brachman 
& Schmolze, 1985), DAML+OIL (Horrocks, 
2002), etc.) are available. When reviewing the 
usage of these frameworks in real applications, 
the overriding theme is realizing a specific 
instance-level solution for a particular system, 
rather than designing a solution that can be 
reused by multiple similar applications within 
the same general domain. For example, in 
health information technology (HIT), multiple 
systems such as AllScripts (AllScripts, 2012), 
Centricity (GE Centricity, 2012), MS Health 
Vault (Microsoft Health Vault., 2013), etc., 
are developed with their own specific (and 
different) medical ontologies despite the fact 
that each one is storing and managing patient 
data. Any attempt to integrate data from across 
multiple EHRs, referred to as health informa-
tion exchange (HIE) requires integrating their 
different medical ontologies which at best is 
a semi-automated and arduous task. While 
many of these HIT systems leverage existing 
standard medical terminologies (e.g., LONIC 
(LOINC, 2001), UMLS (Bodenreider, 2004), 
ICD (ICD, 2009), etc.), there is no uniform at-
tempt to design an ontology domain model for 
medical knowledge that is general purpose and 
reusable in multiple contexts. For example, one 
HIT system may organize medical knowledge 
in an ontology by disease, symptoms (for each 
disease), diagnoses (for each disease), and 
treatments (for each disease), while another 
HIT system might invert and target this infor-
mation from a symptom to diagnosis to disease 
to treatment basis. Attempting to reconcile this 
medical knowledge in two or more different 
ontologies is an arborous, time-consuming, 

and at best semi-automated task, making HIE 
difficult to achieve.

In order to successfully employ ontologies 
in existing/new applications, structural and 
semantic interoperability issues among the 
ontologies that are used for the overall domain 
must be addressed. There are a number of key 
issues. First, the individual ontologies of each 
constituent system used by a new application 
may each organize knowledge in different ways 
to suit their specific application and organiza-
tional processes, meaning that the ontologies 
across the constituent systems are often incom-
patible and difficult to integrate. Second, the 
ontology development and deployment process 
is predominantly instance and construction 
based, often dictated by the talent and expertise 
of the ontology designer rather than using any 
concrete software development process; such an 
approach limits the reuse since ontologies end up 
being very domain centric. For a new applica-
tion, the existence of consistent ontologies of 
the constituent systems will greatly simplify the 
semantic interoperability. Finally, many exist-
ing ontology representational frameworks lack 
an ability to design solutions that are broader 
in scope; the end result is often narrowed to 
not just a single domain, but to a subset of the 
domain that is very application specific. Thus, 
the overriding issue is that ontologies solely 
focus on the domain knowledge and its usage 
by constituent systems rather than abstracting 
back from the problem to consider the entire 
domain and its appropriate set of ontologies 
in a more comprehensive and general manner. 
Clearly, there is a lack of design and process 
in the current ontology definition process – 
focusing solely on the domain knowledge and 
its usage by a particular application rather than 
abstracting back from the problem to consider 
domain knowledge in a more comprehensive 
and general manner (Kuhn, 2010). Such an ap-
proach is contrary to the long history of design 
in software, databases, and web settings, where 
the emphasis is on individual modeling tech-
niques that can applied to conceptualize problem 
solutions in a fashion that promotes abstraction 
and fosters reuse. In computing, there is a wide 
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range of such modeling techniques ranging 
from programming (e.g., C#/C++/Java, LISP, 
Prolog, etc.) to software design (e.g., the unified 
modeling language (UML) (Booch, Rumbaigh, 
& Jacobson, 2005), design patters, software 
architectures, etc.) to databases (e.g., entity-
relationship diagrams (ERD) (Chen, 1976), 
relational theory and normalization, etc.) to the 
world wide web (e.g., the eXtensible Markup 
Language (XML) (Harold & Scott, 2004) and 
associated technologies). All of these modeling 
techniques have underling conceptual models 
(e.g., object-oriented, functional, formal logic, 
relations, etc.), a means to access the concep-
tual model (e.g., programming language, SQL, 
XSLT, etc.), and in some situations, the existence 
of a metamodel that allows for the model itself 
to be modified and changed (e.g., the UML 
metamodel, meta-programming through an-
notations in Java, etc.).

To illustrate these concepts and their as-
sociated processes, consider UML, ERD, and 
XML. UML is a metamodel driven approach 
that provides diagrammatic models (e.g., use 
case diagram, class diagram, sequence, diagram, 
activity diagram etc.) and an extension mecha-
nism for extending UML modeling entities (like 
class, association, property etc.) to build domain 
specific metamodel elements. In database de-
sign, ERD focus on abstract entities, relation-
ships between entities, and other capabilities 
that can be transitioned to formal relational 
database schema; the schema describes the 
tables, dependencies, keys, referential integrity, 
etc. XML has emerged as a de facto standard 
for modeling and data exchange and has revo-
lutionized the way information is represented, 
transmitted, and shared across heterogeneous 
systems. XML is used in a wide variety of set-
tings (e.g., document representation, database 
exchange, medical standards such as HL7, 
access control (XACML), security, etc.), but 
is still focused on the modeling of data rather 
than capturing information and knowledge (the 
meaning or semantics of data/information). Due 
to the lack of standard semantic interpretation 
of information represented in XML, there has 
been a movement by researchers to augment 

data with knowledge, as evidenced by the de-
velopment of the aforementioned knowledge 
representational frameworks supported by RDF 
and OWL to encode data, with a major focus 
on the use and development of ontologies. 
This approach juxtaposes UML, ERD, and 
XML, where the emphasis is on concentrating 
on the design level considerations and defers 
the implementation. In emphasizing model-
ing, one of our objectives of this paper is to 
enhance knowledge representational languages 
with modeling capabilities to improve design 
and usability.

The overall intent of our research, as shown 
in Figure 1, is to develop a framework for on-
tology modeling, design, and development to 
represent a process that spans the entire gamut 
from the metamodel to the realization of an 
actual ontology, moving the process from one 
that is instance-based and domain specific to 
align more closely with a software engineering 
process and a focus on modeling and design. 
The core of the work proposed in this paper is 
captured in the horizontal boxes Metamodel 
Concepts, Ontology Extensions, and Ontology 
in Figure 1.

For the Metamodel Concepts, we lever-
aged the MOF Metal Model Library (M0) in 
conjunction with the metamodel (M1) concepts 
of UML, ERD and XML as applied to OWL 
allowing us to propose Ontology Extensions 
to OWL allowing OWL concepts to be aligned 
to the UML metamodel, an OWL Domain 
Profile (ODP) that is used to capture domain 
generic concepts at a metamodel level, and 
OWL Schema Associations that allow high 
level associations between OWL schemas. The 
last step, the Ontology box in Figure 1, utilizes 
Metamodel Concepts and Ontology Extensions 
to design an ontology that is supported by an 
underlying conceptual model defined with one 
or more models and/or schemas using a given 
ontology vocabulary, resulting in an instance 
of the ontology. The vertical boxes in Figure 
1 clearly illustrates the interactions between 
different components (horizontal boxes) of the 
proposed framework. The Software Engineering 
Concepts and Process (far left of Figure 1) spans 
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from Metamodel Concepts to the realization of 
the Ontology; this is the software design process 
aspects of our work in the framework that is 
achieved by proposing Hybrid Ontology Design 
and Development with Life Cycle (HOD2LC) 
(second left box, Figure 1), an agile enhanced 
ontology design and development lifecycle 
for developing an Ontology (bottom middle 
box) utilizing software concepts spanning the 
horizontal boxes.

In this paper, the main goal is to elevate 
ontology models and their design and develop-
ment process so that the end result aligns more 
closely to traditional modeling processes that are 
widespread in software engineering. Towards 
this goal, we utilize our previous work (Sari-
palle, Demurjian, & Behre, 2011) that contrasted 
the features of OWL against UML, ERD, and 
XML and proposed conceptual extensions to 
OWL from varied perspectives in terms of at-
tributes, profiles, and schema associations. Our 
prior work focused on conceptual extensions to 
OWL to support a more software-engineering 

based process for constructing ontologies; this 
paper extends this work with specific model 
recommendations to more fully leverage OWL 
modeling capabilities by adding design-level 
modeling concepts and capabilities, and most 
importantly, propose extensions to Ontology 
Definition Model (ODM) (ODM, 2009) and 
OWL to incorporate these recommendations. 
We transition the design capabilities of UML, 
ERD, and XML to identify new capabilities to 
be included in ODM and OWL that augment 
ontology models and frameworks to upgrade the 
usage of ontologies to an engineering process.

The remainder of this paper has seven sec-
tions. Section 2 presents a realistic health care 
scenario based on EHR’s, their supporting on-
tology knowledge concepts, and the knowledge 
required for the queries the clinical researchers 
may be interested in making across multiple 
HIT systems. Section 3 briefly summarizes our 
previous work (Saripalle, Demurjian, & Behre, 
2011) that compared and contrasted UML, 
ERD, and XML to OWL. Using this as a basis, 

Figure 1. A complete framework for ontology design and development
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Section 4 explores concepts related to domain 
modeling by applying UML’s layered OMG’s 
Meta Object Facility (MOF) to XML, RDF, and 
OWL (Meta Model in Figure 1); as a result, OWL 
is aligned at a higher conceptual design level 
away from the more traditional instanced-based 
approach to more easily support our proposed 
ontology extensions. Section 5 proposes and 
explains the ontology extensions (see Figure 
1) of Attribute, Domain Profile, and Schema 
Associations to OWL and ODM in combina-
tion with the Ontology Metadata Vocabulary 
(OMV) framework. Section 6 examines a 
Hybrid Ontology Design and Development 
Life Cycle (HOD2LC) (Saripalle & Demurjian, 
2012) for ontology design, development, and 
deployment. Section 7 reviews related research 
with Section 8 offering concluding remarks and 
ongoing research.

2. A HEALTH CARE SCENARIO

This section presents a clinical scenario of health 
care based on HIT systems, their supporting 
ontologies, and the knowledge required for the 
types of queries the clinical researchers may be 
interested in making across multiple systems. 
The intent is to provide a realistic scenario of 
patient care that includes: a patient’s relevant 
medical problem, involved laboratory tests and 
results, the resulting medical diagnosis, the 
role of involved HIT systems in the process, 
motivation to fully place our work in this paper 
in an appropriate context, and the potential 
usage of the information by providers and 
clinical researchers. Note that this example 
was formulated by co-author M. Blechner, MD 
who has used his medical expertise to provide 
a real-world scenario and its usage in practice:

•	 Patient History and Initial Findings: A 72 
year old male, Mr. Smith, with a history of 
type 2 diabetes presents to the emergency 
room complaining of shortness of breath 
(also known as dyspnea) on exertion. He 
reports experiencing increased difficulty 
climbing the one flight of stairs in his 

house. Mr. Smith also indicates experienc-
ing occasional chest pressure on exertion 
(stable angina). He has recently developed 
swelling in his ankles and feet (edema). 
He indicates that he takes metformin (for 
blood glucose control) for his diabetes and 
benazepril for his blood pressure, although 
he does not recall the doses. He also takes 
an aspirin a day because his regular doctor 
told him that he should. The physical exam 
of Mr. Smith reveals a gentleman in mild 
respiratory distress with moderate pedal 
(foot) and lower extremity edema (fluid 
in tissues). He is tachypneic (increased 
respiratory rate) with a respiratory rate of 
30/min. Chest auscultation (listening to the 
lungs with a stethoscope while the patient 
breathes) reveals bilateral basilar rales 
(crackling sounds at the base of both lungs) 
and the neck shows jugular venous disten-
sion (a visible distension of the jugular vein 
in the neck that typically represents backup 
of blood returning to the heart which is 
typically due to congestive heart failure - 
CHF). He has a regular pulse at 90 beats 
per minute and blood pressure of 140/90 
(mildly elevated). Oxygen saturation (a 
measurement of the amount of oxygen be-
ing carried in the blood, normally around 
98%) on room air (what your breathing 
now) is 88% and rises to 98% when given 
supplemental oxygen by nasal cannula at 
2 liters/min (we supplement the air the 
patient is breathing through the nose). 
An electrocardiogram (EKG) measures 
the electrical activity in the heart that is 
responsible for heart pumping) shows a 
normal rate and rhythm with evidence of 
left ventricular hypertrophy (the muscle of 
the left side of the heart is thickened) but 
no ischemia (i.e., at the time the EKG was 
being performed there was no evidence of 
inadequate blood flow to the heart muscle);

•	 Laboratory Tests and Results: The ER 
physician as part of the evaluation process 
ordered a series of laboratory blood tests 
ordered to be performed to assist in the 
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evaluation of Mr. Smith. Specifically, the 
laboratory tests ordered on Mr. Smith were 
(B-natriuretic peptide (BNP), Hemoglobin, 
Hematocrit, white blood count (WBC), 
sodium (NA), potassium (K), chloride 
(Cl), bicarbonate (CO2), glucose, blood 
urea nitrogen (BUN), creatinine (Cr), and 
Troponin I) and their results as impacting 
Mr. Smith yield as given in Table 1.

To explain and review the results, BNP 
(B-natriuretic peptide) is a compound released 
by the heart when it is stretched. In CHF, blood 
returning to the heart is not pumped out quickly 
enough and as result the heart stretches to ac-
commodate the extra blood. Thus, the elevated 
BNP is very suggestive of CHF. Hemoglobin 
and hematocrit are both measurements of the 
amount of red blood cells in the patient’s circula-
tion. Na (sodium), K (potassium), Cl (chloride), 
CO2 (bicarbonate) are all measurements of ion/
electrolyte concentrations in the patient’s blood. 
In the case of Mr. Smith, while these results 
are in the normal range, CHF can often result 
in imbalances to these electrolytes. GLUC is 
the patient’s serum glucose and the elevation 
in the test result in this case may indicate poor 
control of his diabetes. However, CHF is a 
stressful condition and serum glucose values 
typically rise during physiologic stress even 
in non-diabetics and otherwise healthy patients 
so this may not represent poor glucose control. 
BUN (blood urea nitrogen) and Cr (creatinine) 
are typically used to assess kidney function. 
The elevated BUN and normal creatinine of 
Mr. Smith suggest that the BUN is elevated due 
to decreased blood flow through the kidneys 

rather than due to a problem with the kidneys 
themselves. This increased BUN can be referred 
to as azotemia and since it is due to poor kidney 
perfusion (a variable that has its effect before 
the kidney); it is often referred to as pre-renal 
azotemia. The decreased kidney perfusion in 
Mr. Smith is due to the CHF in this case. Tro-
ponin I is a protein found only in heart muscle 
cells. Elevations in troponin I indicate damage 
to heart muscle cells which spill the protein 
into the blood. The normal troponin I in Mr. 
Smith’s case indicates that there has not been 
a heart attack and is consistent with the lack of 
evidence of ischemia seen on EKG. Overall, 
the Lab tests for Mr. Smith reveal a marked 
elevation in the BNP suggestive of congestive 
heart failure. The elevated BUN and normal 
creatinine suggest a possible pre-renal azotemia 
which would also be consistent with CHF. The 
normal troponin is consistent with the lack of 
evidence of ischemia seen on EKG:

•	 Medical Diagnosis based on Exami-
nation, EKG, and Labs: Mr. Smith is 
suffering from an exacerbation of CHF. 
The pumping function of his heart is not 
powerful enough to move all of his blood 
volume through his circulation. As a result, 
the blood that is returning to the heart 
backs-up and essentially pools in the blood 
vessels. In the legs and feet, gravity tends 
to accentuate this pooling. The extra pooled 
blood in these parts of the circulation exerts 
increased pressure on the vessel walls and 
this increased pressure pushes fluid from 
the circulation into the body tissues. This 
fluid and the resulting puffiness of the tis-

Table 1. Lab test ranges and value results 

Test (Ranges) Value Test (Ranges) Value Test (Ranges) Value Test (Ranges) Value

BNP  
(<100 pg/mL) 800 pg/mL

Hemoglobin 
(13.5 – 17.5 
g/dL)

13.5 g/dl Hematocrit 
(42 -52%) 41% WBC  

(4 – 10 k/uL) 8 k/ul

Na (135 - 145 
meq/L) 142 meq/L K (3.5 – 5.5 

meq/L) 4.3 meq/L CI (100 – 111 
meq/L) 99 meq/L CO2 (23 –32 

meq/L) 31 meq/L

GLUC  
(<200 pg/mL) 250 mg/L BUN  

(8 -24 mg/dL) 33 ml/dL Cr (0.6– 1.2 
meq/L) 1.1 mg/L Troponin I 

(<0.05 ng/mL) <0.05 ng/mL
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sues are called edema. In CHF, edema fluid 
also collects in the lungs and this fluid in 
the lung impairs the lungs ability to absorb 
oxygen, thus the difficulty breathing and 
the increased respiratory rate as an attempt 
to compensate. The rales (crackles) heard 
on auscultation are an indication of fluid 
in the lungs. So both oxygenation of the 
blood (due to fluid in lungs or “pulmonary 
edema”) and delivery of blood to tissues 
(the heart’s pumping function is inad-
equate) is compromised. Together, these 
two factors compromise oxygen delivery 
to the tissues resulting in fatigue (thus, 
the difficulty climbing stairs) and poten-
tially organ dysfunction. The jugular vein 
returns blood from the head and brain to 
the heart. The jugular venous distension is 
another manifestation of pooling of blood 
due to inadequate cardiac function. The 
occasional chest pressure on exertion sug-
gests that Mr. Smith has coronary artery 
disease where inflammation and deposition 
of cholesterol in the vessel wall results in 
a localized expansion of the vessel wall 
(typically referred to as a plaque) that can 
impede blood flow. When the patient is at 
rest, there is adequate blood flow past this 
plaque but when the patient exerts them-
selves, the heart needs to work harder and 
needs more oxygen and thus more blood 
flow. If the plaque is large enough, blood 
flow becomes inadequate on exertion and 
heart muscle can become damaged. This 
can be felt as chest pressure or pain. If 
Mr. Smith stops exertion, the heart stops 
working so hard, the oxygen demand 
drops, oxygen delivery is once again ad-
equate and the chest pressure goes away. 
This transient chest pain or discomfort is 
called stable angina. If the blood flow is 
too compromised for too long, heart muscle 
dies of a “heart attack” or myocardial in-
farction. Mr. Smith has stable angina and 
no evidence of a myocardial infarction. 
Mr. Smith’s blood pressure is slightly 
elevated but since he has been prescribed 
antihypertensive medication (benazepril), 

this suggests that the medication or dose 
may need to be changed or that the patient 
is not following the prescription. Diabetics 
are often hypertensive and hypertension 
leads to left ventricular hypertrophy and 
eventually CHF as well as coronary artery 
disease. Aspirin decreases the risk of heart 
attack and is often recommended in patients 
with cardiovascular disease like him;

•	 Role of HIT and Discharge: Mr. Smith 
provided the ER physician with access to 
his personal health record (PHR) that had 
been recently initiated by the patient’s 
son who was not present. The PHR data 
was sparse but did include that the patient 
had been taking flax seed oil supplements 
for the past 6 months. A search of the 
regional HIE revealed that the patient had 
a recent admission at another hospital for 
CHF; thus data must be gathered from that 
electronic health record (HER), his primary 
physicians EHR, and potentially others in 
support of his ongoing care. The discharge 
summary from that admission indicated that 
the patient had improved after 2 doses of 
Lasix (diuretic, makes you pee a lot and the 
loss of fluid decreases your blood volume 
which often improves CHF symptoms) and 
the patient had been discharged on Lasix 
for use at home. A query of the Superscripts 
electronic prescription database, however, 
suggested that the patient never filled the 
Lasix prescription. The HIE also informed 
the ER physician that the patient has a 
documented allergy to sulfa containing 
medications;

•	 Motivation of Scenario as Related to 
Paper: In practice, information from 
multiple EHRs are brought together via 
HIE in order to allow data not only to be 
shared, but for physician researchers to be 
able to make queries across repositories 
on various medical concepts. We assume 
a situation in the not so far future that each 
of these EHRs has their own ontology to 
represent product-specific information 
within the EHR, and utilizes the various 
standard medical ontologies (e.g., LOINC, 
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UMLS, customized ontology, etc.) to store 
information in either CCD or CCR formats, 
or in a proprietary data format. The ontolo-
gies for each EHR must be integrated into 
a global ontology in order for the data to 
be effectively shared so that differences in 
ontologies can be reconciled. In this case, 
a global ontology is created by utilizing 
information from existing ontologies. For 
example, EHR-specific ontologies may 
contain information on diagnosis (the 
disease or condition that a patient has), 
symptoms (the discomfort or issue that a 
patient is having), treatments (the regime, 
medication, or therapy order for the dis-
ease), etc. The two key issues with such 
product specific ontologies are two-fold. 
First, each of the EHRs may organize the 
information hierarchically into ontologies 
in different ways; one may use symptom as 
the highest level to reference diseases which 
in turn references treatments, while another 
may use disease to organize the symptoms 
and their treatments. The problem is that 
if one tries the search the first EHR for all 
treatments for the different diseases that 
have the same symptoms, the complexity 
of the search is difficult since it is struc-
tured differently than the ontology, and 
the same search is different for the second 
EHR that has an alternative organization 
for the same ontology Second, the same or 
similar terms in the ontologies themselves 
may be semantically interpreted in alter-
native ways by different EHRs; cardiac 
failure in one ontology and heart attack in 
another ontology. This is why there needs 
to be syntactic and semantic unification 
to reconcile and integrate ontologies. One 
objective with our work is to define a global 
ontology using our extended ontology 
model and HOD2MLC in order to allow 
this integration based on the integration 
of terms, structure, and semantics by al-
ternate ontologies from different EHRs. A 
complementary approach would start with 
the creation of a global meta-ontology from 

existing information on ontologies that 
currently exist in the public domain, result-
ing in a global meta-ontology that can be 
translated to platform specific ontologies. 
While our research focuses on the former, 
our long-term goal is to achieve the later, 
with the potential to semi or full automate 
the translation between meta-ontologies 
and local ontologies;

•	 Potential Usage of Scenario in Clinical 
Practice and for Research: The scenario 
as presented above has the underlying as-
pect of information that has been gathered 
for this patient from multiple data sources 
that have been utilized for his treatment. If 
one extrapolates across all of the patients 
that may have similar symptomatology, 
there is the opportunity for improved 
clinical practice or utilization by a phy-
sician researcher who is interested in 
conducting research on patients that have 
a profile similar to Mr. Smith (as outline 
in the scenario). The intent is to transition 
from using the data for clinical purposes to 
leveraging the data for research. We want 
to model and define a set of underlying 
ontologies based on the clinical data from 
the scenario that can then facilitate research 
across a broader spectrum. From a research 
perspective, an almost limitless number 
of questions can arise when considering 
Mr. Smith’s case or similar patients. This 
common clinical scenario is associated 
with a number of clinical variables from 
the presence or absence and magnitude of 
various symptoms or physical exam find-
ings such as dyspnea (shortness of breath) 
or edema (swelling) to the administration 
and dose of various medications, to the 
results of various laboratory tests to the 
patient’s clinical diagnoses.

Correlations between two or more of 
any of these variables may be of interest to a 
researcher. A number of broad research topics 
(RT) can be posed:
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RT.1: Effects of a specific medical therapy on 
a patient’s co-morbid conditions:
1. 	 How does metformin used for glucose 

control in type 2 diabetics effect the 
incidence and natural history of CHF 
and chronic renal (kidney) Failure or 
stable angina (chest pain successfully 
treated)?

2. 	 If there is an effect on any of these 
conditions, is type 2 diabetics dose 
dependent on metformin or does the 
absence of any other medications alter 
it?

3. 	 Does metformin affect the utility of 
the BNP test (measure of how well 
the heart is working) for the diagnosis 
and monitoring of CHF?

4. 	 Does metformin decrease the risk of 
developing any seemingly unrelated 
co-morbid diseases like breast cancer?

Many of these questions would be an-
swerable if you had a large enough integrated 
database supported by ontologies that would 
be able to extract all of the required data and 
attempt to identify for markers of CHF across 
both long-term and short-term periods of time:

RT.2: Comparative study of different diabetic 
therapies with CHF using various patient 
groups:
1. 	 What is the patient’s profile with CHF 

and associated medications involved 
for diabetic therapies?

2. 	 What are incidence and/or severity 
of CHF for diabetes patients who use 
hyperglecimic agents?

3. 	 Is metformin more or less effective in 
maintaining glucose control in type 
2 diabetics with a history of stable 
angina as compared to other anti-
hyperglycemic medications?

4. 	 Is lasix (reduces edema) more or less 
effective than alternative diuretics in 
treating CHF in patients with type 2 
diabetes?

RT.3: Biomarkers (measureable characteristics) 
of disease, disease progression or risk:

1. 	 Are there patterns of laboratory test 
results seen in type 2 diabetes patients 
that are associated with increased risk 
of developing CHF or Stable Angina?

2. 	 If so, do any specific medical therapies 
alter this risk?

RT.4: Adverse events associated with specific 
medical therapies:
1. 	 Adverse events associated with a 

specific drug like metformin may not 
be detectible in the entire metformin 
treated population but may be sig-
nificant in a specific subpopulation of 
patients. Are there any subpopulations 
of type 2 diabetics on metformin that 
reveal a significant adverse event rate? 
Diabetics with CHF? Diabetics with 
renal failure? Diabetics also treated 
with lasix for CHF?

2. 	 Is there a subpopulation of patients 
taking flax seed oil supplements that 
reveals a significant incidence of 
adverse events? Perhaps diabetics on 
metformin with concurrent CHF?

Individually, each of these research topics 
provides a means to allow a physician researcher 
to explore various aspects of a disease, its 
symptoms, medications, therapies, interactions 
with other conditions, etc. To accomplish this, 
it will be necessary not only to integrate the 
data sources, but to provide a consistent set of 
ontologies that describe the information in a 
manner that will allow queries from differing 
perspectives to be posed and answered. The 
role of our research on ontology design is in 
support of such a process.

3. PRIOR WORK ON MODELS 
AND ONTOLOGIES

This section briefly reviews our prior work 
(Saripalle, Demurjian, & Behre, 2011) compar-
ing UML, ERD, and XML to OWL at a class 
and instance level. UML provides diagram-
matic models (e.g., use case, class, sequence, 
etc.) with the focus on artifacts (classes/types) 
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rather than instances (objects). ERD supports 
database requirements via entities to model ag-
gregations (set of attributes) and relationships to 
model static associations between entities with 
cardinalities (e.g., one-to-one, one-to-many, 
etc.) and inheritance. XML supports informa-
tion content to be hierarchically organized and 
tagged which can be defined and validated by 
XML Schema Definition (XSD) achieving 
type-level characteristics that are enforced by 
all type instances. RDF captures knowledge with 
the RDF Schema (RDFS) framework support-
ing classes, properties, and restrictions. OWL 
extends the RDF/RDFS to improve expressive-
ness in terms of qualified restriction, number 
restriction, unique keys, boolean expression, etc. 
From a modeling perspective, UML, ERD, and 
XML share: abstraction to hide implementation 
details and aggregation to group attributes or 
properties into a named concept, namely, an 
entity in ERD, a class in UML, a table in a rela-
tional database schema, etc.; schema definition 
for a conceptual model that describes system 
structure and behavior; schema association to 

allow relationships among the logical schemas; 
classes (types) to aggregate objects that share 
common attributes; attribute (properties) that 
are characteristics which are owned by the class; 
interface that abstractly defines the behavioral 
aspects (operations) of the implementing class; 
associations to relate two or more classes (types 
or entities, etc.); inheritance for extension (child 
is enhanced), specialization (child is restricted), 
generalization (common attributes of classes 
are abstracted to form parent), and combination 
(inherit from multiple classes among classes 
(types); and, constraints to limit information in 
schemas. Associations can be qualified (based 
on a value), at the class level, n-array between 
multiple classes, and with a limited number of 
instances (cardinality).

In Table 2, we compare UML, ERD, and 
XML using three qualitative criteria: None, the 
model does not support the feature; Partial, the 
model has some aspects of the feature; and, 
Full, the model has all aspects of the feature. 
The comparisons of UML, ERD, and XML 
are quite clear given the earlier discussion. 

Table 2. Model characteristics vs. UML, ERD, XML and OWL 

Modeling Element UML ERD XML OWL

Schema Definition Full None Full None

Schema Associations Full None Partial Partial

Interfaces Full None None None

Class Full Full Full Partial

Associations Full Full Full Partial

Qualified Associations Full Full Full Partial

Association Class Full Full Full None

N-Array Associations Full Full Full Full

Cardinality Full Full Full Full

Inheritance Full Full Full Full

Extension Full Full Full Full

Specialization Full Full Full Full

Generalization Full Full Full Full

Combination Full Full Full Full

Constraints Full Full Full Full

Profile Full None None None
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What is more relevant is an evaluation of the 
features vs. ontologies/OWL. While schema 
definition in OWL is not directly supported, 
associations of schemas are possible to a lim-
ited extent. For classes and interfaces in OWL, 
owl:Class is defined as a set of individuals and 
owl:ObjectProperty links two individuals, but 
the link can’t differentiate between a relationship 
and an attribute and the definition of the class in 
OWL and modeling are semantically different. 
As a result, there is a lack of support in OWL 
for schema definition. Due to the lack of the 
semantic definition of a class and the concept 
attribute, developers can’t capture the structure 
of the concepts and ontology itself, resulting in 
the “None” for schema in Table 2. Presently, 
ontologies can refer to multiple ontologies, but 
can’t define customized associations between 
them, thus, Partial support. The Associations 
and Inheritance are present in OWL grammar, 
are designed to be used with OWL class (in the 
context of the OWL).

4. A LAYERED MOF 
ARCHITECTURAL APPROACH

This section applies UML‘s layered OMG’s 
Meta Object Facility (MOF) (OMG, 2011) to 
XML, RFD, and OWL to represent domain 
modeling as shown in the metamodel box in 
Figure 1, to allow designers to understand 
the function and capabilities of the planned 
system by conceptualizing an abstract view of 
the solution. For this paper, we are interested 
in not only the modeling techniques, but also 
the underlying metamodels of these techniques 
that provide the means to specify the model, 
its properties, and its semantics. This section 
explores domain modeling of XML, RDF, and 
OWL via a layered MOF approach, focusing 
not only on their individual modeling capabili-
ties, but on also understanding their underlying 
metamodels and the way that these metamod-
els can be exploited to add a more software 
engineering emphasis to ontology design and 
development. The intent is to transition from an 
instance-based process for ontology creation to 

one that is design based and has an underlying 
formalism (the metamodel) that elevates the 
process to one that is at a higher conceptual level.

As a model, UML provides diagrams 
(e.g., class, use case, etc.) at varied levels of 
abstraction to represent associations among 
different concepts (e.g., actors, use case, class, 
etc.). Underlying these diagrams and modeling 
concepts is the UML metamodel which is built 
on top of MOF as given in Figure 2a: M3 is a 
meta-meta library for defining new metamodels; 
M2 is at the metamodel layer where models such 
as UML, ODM, and NeOn (Haase, Rudolph, 
Wang, & Brockmans, 2005) can be defined; 
M1 is the domain model instance of an M2 
metamodel; and, M0 is the instance of the 
domain model. Building a metamodel using 
MOF for specific domain requirements is a 
tedious task, as the developer has to define the 
syntax and the semantics of the new entities. To 
facilitate this process, it is possible to utilize the 
UML abstraction Profile (Fuentes-Fernández & 
Vallecillo-Moreno, 2004), where existing UML 
metamodel elements such as class, associa-
tion, property, etc., can be extended to build 
domain specific metamodel elements. UML 
profile only extends existing UML metamodel 
features, allowing the profile extension to act 
as a metamodel itself. In addition to M3 and 
M2, Figure 2a also shows the transition from 
the metamodel UML (M2) to a domain model 
for a university application (M1) applied to a 
“real” university UConn (M0). Likewise, an 
ODM, metamodel (M2) can be used to develop 
a domain model (M1) for Diseases that can then 
be applied at the domain data layer (M0) for 
various diseases (e.g., Asthma). Three of the 
four layers of MOF in Figure 2a (metamodel, 
domain model, and domain data) can be used 
to organize a conceptual view of XML Schema, 
RDF/RDFS schema, and OWL metamodel, as 
shown in Figure 2b. In the case of XML, the 
capability of XML Schema Definition (XSD) 
at the MM layer (XML schema for short) 
provides predefined schema tags like element, 
complexType, simpleType, etc. These schema 
tags are akin to classes, attributes, actors, etc., 
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in UML. Through this approach, the definition 
of an XML schema at the domain model (DM) 
level can be transitioned to an instance level 
(domain data – DD).

XML has the flexibility in representing 
the information, but lacks support in providing 
semantic interpretation/meaning to the informa-
tion represented. For example, consider a sample 
XML snippet in Figure 3, humans can conclude 
that the concept “Stroke” is a symptom of the 
concept “Heart Attack”, but a knowledge-based 
system could also interpret the information as 
“Heart Attack” has a symptom of “Stroke” 
(Figure 4). XML provides a flexible framework 
for representing information at the schema 
level (domain model) and its corresponding 
instances (domain data), but the semantics of 
the structure have to be mutually agreed on 
between the exchanging systems in order for 
data to be successfully shared.

The semantic ambiguity in interpreting 
XML elements has led to RDF (MM in Figure 
2b) which leverages the structure of XML by 
annotating data and its structure with semantics. 
RDF has tags that have a similar syntax to XML 
(DM in Figure 2b) and utilizes the data types 
defined in the XML Schema grammar. For 
example, in Figure 4, Heart Attack – hasSymp-
tom – Stroke is an RDF triple statement where 
“Heart Attack” is the Subject, “hasSymptom” is 
the Predicate and “Stroke” is the Object. This 
supports a transition from the domain model 
to the domain data layer. RDFS (MM in Fig-
ure 2b) was developed for providing schema 
modeling elements like class (rdfs:Class) 
and property elements like rdfs:subClassof, 
rdfs:subPropertyOf, etc. However, both RDF 
and RDFS are constrained with respect to the 
expressiveness (i.e., axioms, unique key, and 
reasoning, etc.) to build complex knowledge 

Figure 2. A layered organization of metamodels

Figure 3. XML example illustrating the semantic ambiguity in data interpretation
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structures. OWL (OWL Guide, 2004), also at 
M2 in Figure 2b, is built on top of RDF/RDFS 
to take advantage of RDF triples and provides 
richer semantics with greater expressive power 
for defining complex ontologies via three 
variants: OWL Lite an easy to use functional 
subset of OWL; OWL Description Logic (DL) 
to support the existing description logic and 
to provide a language subset that has desir-
able computational properties for reasoning 
systems; and, OWL Full that relaxes some of 
the constraints on OWL DL. However, OWL 
Full semantics are undecidable (Motik, 2005) 
making OWL DL the most popular framework 
used for developing ontologies that combine 
expressiveness and complexity; as a result, our 
focus is on OWL DL.

Concepts in OWL DL are represented 
as classes of type owl:Class, which can be 
instantiated to form data instances of type 
owl:NamedIndividual. OWL DL has the unique-
ness to define new classes from existing classes 

via boolean operators such as union, intersec-
tion, negation, and number restrictions. OWL 
DL specifications also have three role variants, 
as shown in Figure 5, which act as “binary re-
lationships or associations” between concepts 
or classes of type owl:Class (hasSymptom in 
Figure 4), defined as:

1. 	 ObjectProperty: Is a binary relation or a 
role between two individuals:

<owl:ObjectProperty	  
rdf:ID=”hasSymptom”>	
“hasSymptom” relates two individuals as 	
shown in Figure4	

2. 	 DateTypeProperty: Represents the prop-
erties of classes whose values are datatype 
like Integer, URI, and String, etc. The OWL 
grammar uses most of the built-in XML 
Schema datatypes:

Figure 4. RDF statement example in triple format

Figure 5. An extended OWL property metamodel in ODM
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<owl:DatatypeProperty 	
rdf:ID=”hasScienticName”>	

3. 	 AnnotationProperty: Allows annota-
tion of various ontology concepts using 
rdfs:Comment, rdfs:SeeAlso, etc. In ODM, 
OWLAnnotationProperty entity represents 
<owl:AnnotationProperty> as shown in 
Figure 5.

In summary, this section provides the reader 
with a basic understanding of RDF/RDFS and 
OWL frameworks and their potential alignment 
with MOF layers. The OWL Semantic Web 
guide (Lacy, 2005; Motik, 2005; Motik, Patel-
Schneider, & Grau, 2009) provides in-depth 
knowledge on the model-theoretic semantics 
of the framework and the work of (Horrocks, 
Sattler, & Tobies, 1999) explains the semantics 
in detail.

5. EXTENSIONS TO OWL, 
ODM, AND OMV

Ontologies are primarily built to support 
knowledge-based systems or the key terms and 
their relationships for a given domain, where 
an ontology designer focuses on defining a 
specific instance-based solution for the given 
application. As a result, the ability to reuse 
and share of existing knowledge to facilitate 
semantic interoperability between information 
exchanging systems is difficult to achieve when 
ontologies are constructed for such specific and 
narrow purposes. OWL provides a framework 

for embedding knowledge semantics and to 
develop complex ontologies. Section 3 identi-
fied the key capabilities missing in OWL when 
compared to UML, ERD, and XML, result-
ing in a lack of software modeling concepts 
and an engineering process when designing, 
developing, and deploying ontologies. These 
missing components in OWL make the ontology 
integration process to be highly inefficient and 
laborious in nature; the emphasis has been on 
building an ontology instance-based solution 
which limits the ability to reuse the ontology in 
other applications of the same domain.

The objective of this section is to pro-
pose three extensions to the OWL and ODM 
frameworks in combination with the Ontol-
ogy Metadata Vocabulary (OMV) (Hartmann, 
Palma, & Sure, 2005) to yield an approach that 
improves the design and modeling capabilities 
thereby defining a software engineering process 
for ontology design, development, and deploy-
ment (see Section 6). As shown in Figure 6, we 
leverage MOF concepts and the four layers (M3 
to M0) and the discussion in Section 3 in order 
to transition to an engineering-based process 
for ontology construction. OWL provides a 
framework for developing ontologies and 
enables reasoning by exploiting the underly-
ing description logic representation of the 
knowledge, shown in the middle of Figure 6.

ODM is an instance (indicated by solid 
black arrow) of MOF as shown in Figure 6, and 
provides visual modeling diagrams for develop-
ing ontologies. As a result, this section provides 
a detailed discussion on two recommendations 
for extending OWL, ODM, and OMV in order 

Figure 6. Representing OWL and ODM at the various design phases
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to enhance modeling capabilities of ontology 
models. The remainder of this section details 
our proposed OWL extensions for the frame-
work of Figure 1. Section 5.1 examines the first 
proposed extension to OWL that adds Attribute 
as a means capture the characteristics of a class. 
Section 5.2 details the second proposed exten-
sion to OWL that adds Domain Profile to OWL 
in order to capture domain specific concepts at 
the meta-model (M2 in Figure 6) level. Finally, 
Section 5.3 presents the third extension for 
schema associations by leveraging OMV to 
define Ontology Schema Associations to work 
with the two extensions in Sections 5.1 and 
5.2 to define associations. The first two exten-
sions leverage the modeling capabilities of the 
OWL/ODM meta-model, thereby influencing 
the OWL domain model design; the usage of 
OMV’s to define ontology associations will 
allow dependencies across ontologies to be 
defined. Note that further implementation 
details of the work in this paper that integrate 
our OWL extensions into the Protégé tool (Pro-
tege, 2012) and provide an implementation of 
the ontology in this paper are provided at the 
web site: http://www.engr.uconn.edu/~steve/
KanthSaripalle.html.

5.1. The Owl Attribute Extension

This section examines the first extension to 
OWL that adds Attribute as a means capture the 
characteristics of a class as defined in Section 
4; this is akin to attributes in UML meta-model 
(Booch, Rumbaigh, & Jacobson, 2005). The 
reason that we are proposing attributes is to 
augment OWL with the capability to capture 
characteristics owned by a class and define 
an OWL class as an aggregation of attributes. 
When the semantics of OWL DL are utilized 
for this purpose, the result is that a class (identi-
fied as a concept in DL) is formed by grouping 
a set of objects (Horrocks, Sattler, & Tobies, 
1999; Kuhn, 2010), but not by identifying and 
grouping the attributes of those objects (Baader, 
McGuinness, Nardi, & Patel-Schneider, 2005). 
To further support this argument, consider the 
UML diagram shown in the Figure 7, which is 
a subset of the XML standard Health Language 
Seven (HL7) Standard Clinical Document Ar-
chitecture (CDA) (Boone, 2011). The Patient 
class has attributes id (type Integer), Weight 
(type Double), Height (type Double), and 
hasName (type Name), and is associated with 
the Provider class using an association hasPri-

Figure 7. A conceptual HIT system model in UML via HL7 CDA
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maryProvider. The Patient is also associated 
with the Observation class using the association 
hasMedicalObservations, the Procedure class is 
associated with the Substance classs with asso-
ciation involvesSubstance, etc. When this UML 
model is mapped to an OWL model (Baclawski, 
et al., 2002), the attributes id, Weight, Height 
are mapped to owl:DatatypeProperty, while 
the attributes hasName, has Address, hasVitals, 
etc., and the associations hasPrimaryProvider, 
hasMedicalObservations, performedProce-
dures, etc., are mapped to owl:ObjectProperty. 
As a result, there is no semantic differentiation 
shown between association (identified as roles 
in DL) and attribute, which can cause semantic 
ambiguity in representing a link between the 
concepts and results in a lack of a true “class” 
concept with attributes in OWL.

Our intent with the addition of attributes 
to OWL is to eliminate this semantic ambigu-
ity in representing a relationship between 
classes and characteristics owned by a class. 
Therefore, in order to capture the essence of a 
class from a modeling perspective, we redefine 
the semantics of the entity Class in OWL and 
introduce a new first class element OWLAt-
tribute (owl:Attribute) as shown in the Figure 
8 to handle attributes and utilize the existing 
owl:ObjectProperty entity to capture the as-
sociations between the classes. The domain and 
range of the owl:Attribute entity is owl:Class, 
but is constrained and is placed at the same 
layer as OWLObjectProperty in the ODM 
property hierarchy as was shown in Figure 5. 
The semantics of the class can be defined as 
Class {At0, At1… Atn; Dt0, Dt1… Dtn}, a set of 

attributes, where each Ati is the attribute and 
Dti is the datatype for all n define the class. For 
providing a syntactical and semantic definition 
consistent with the OWL 2 guide (OWL 2, 
2004), the attribute can be defined as a role Ati 
(A, B) ⊆ ΔI x ΔI with additional constraint that 
there exists no R (C, B) ⊆ ΔI x ΔI, where R is 
a binary predicate in the same domain of 
disclosure(ΔI). Correspondingly, we can repre-
sent the same definition axiomatically as 
Ati(A,B) ∩ ∉  R(C,B) ⊆ ΔI x ΔI, which also 
states that the concept A has an attribute concept 
B connected through the attribute Ati and the 
concept B can’t be involved in a binary relation-
ship R with any other concept such as C. For 
example, the concept A (Observation and Pro-
cedure) are connected to the concept B (Vitals 
and IVL) through attribute (hasVitals and hasEf-
fectiveTime), and then there is no other concept 
C (Patient) that can form a relationship or role 
or association with B (Vitals or IVL).

The syntax of the attribute element is 
defined using the notation: <owl: Attribute 
rdf:ID=”hasVitals”/>. Using this OWL attribute 
definition, and the structure as given in Figure 
8, the Vitals class shown in the Figure 7 with 
attributes and can capture actual patient vitals 
(pulse, BP, respirations).

The patient vitals could be a crucial part of 
a study when researchers identify the required 
patient population for the research topics RT2.A, 
RT3.A, RT4.A, etc., as presented at the end of 
Section 2. Notice that each UML class has been 
translated to an OWL class, with the proposed 
owl:Attribute capturing the attribute hasVitals 
between the Observation and Vitals classes. The 

Figure 8. The structure of an OWL Attribute model element
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result as given in Figure 9 can be considered 
an ontology schema since it is defining the data 
types, structure, and associations.

To summarize, by introducing the concept 
of attribute for OWL, a class can be defined as a 
group of attributes, employ owl:ObjectProperty 
for representing associations, and define es-
sentially a schema for the ontology as given 
in Figure 9. This is equivalent to a UML class 
diagram (Figure 7) which defines classes, at-
tributes, and associations. As a result, rather 
than integrating ontologies at the instance 
level, it is now possible to integrate ontologies 
at a schema level, to allow associations across 
different ontology schemas to be mapped with 
integration rules. As a result, when one then at-
tempts to integrate domain data from multiple 
ontologies, the mapping integration rules can be 
applied with the potential of alleviating or even 
eliminating semantic interoperability issues. 
This mapping across ontologies at the schema 
level is the subject of our ongoing research.

5.2. The Owl Domain 
Profile Extension

In this section, we define the OWL Domain 
Profile (ODP), our second extension to OWL, 
a feature for extending the primitive OWL 
meta-modeling elements for developing do-
main specific meta-modeling entities. Our 
intent with OWL Domain Profile is to capture 
abstract concepts that are initially laid out by 
the stakeholders in order to build the domain 
model. In UML, the developers employ UML 
Profile that provides a means to customize 
the UML meta-model to a particular domain. 
Generally, in software engineering, before de-
veloping domain models or schemas (M1 Level, 
Figure 6), stakeholders agree on a higher-level 
abstract theory based on which a domain model 
is realized. Once there is agreement on the ab-
stract theory (i.e., abstract type concepts), the 
ontology designer traditionally focuses on the 
domain model concepts and its vocabulary at 

Figure 9. The OWL Translation of UML diagram in Figure 7
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the instance level (e.g., actual terms and their 
structure in an ontology), neglecting to capture 
the agreed abstract theory and its type concepts. 
Our intent with ODP is to capture the abstract 
theory and its concepts that are initially laid 
out by the stakeholders in order to build the 
domain model.

For the conceptual understanding of ab-
stract theory and type concepts, consider the 
sample ontology domain models developed 
using UML as shown in the Figures 10, 11, and 
12. Briefly, Figure 10 presents the Diagnosis 
Ontology Model that captures the required 
knowledge for identifying a patient’s conditions, 
its causes, and the approaches to mitigate these 
conditions. Figure 11 details the Test Ontology 
Model that captures the knowledge on various 
medical tests required for analyzing various 
patient conditions. Then, Figure 12 represents 
the Anatomy Ontology Model that captures 
knowledge on physical parts and their inter-
actions of the human body. To fully explain, 
Figure 10 presents the Diagnosis Ontology 
Model that defines classes such as Metabolic 
System Diseases, Digestive System Diseases, 
Cardiac System Diseases, Skin Diseases, etc., 
which will each include attributes to represent 
what needs to be recorded for each class and 
defines and represents associations between 
the participating classes. These classes are 
used to realize the actual medical instances or 
vocabulary of the ontology such as digestive 
system disease instances, cardiac system disease 
instances, respiratory system disease instances, 
skin diseases instances, etc. Similarly, other 
classes with their respective attributes (such as 
hasCode, hasEffectiveTime, hasLimits, etc.) in 
the ontology model such as Respiratory System 
Procedure, Digestive System Medications, 
Fractures, Dislocations, etc., can be utilized 
to capture the respective medical vocabulary 
and are interconnected via associations such 
as hasCardiacSymptoms, hasGeneralSymp-
toms, hasMentalDisorderSymptoms, has-
CardiacProcedure, causedByGeneralInjury, 
hasCardiacMedication, etc. Figure 11 details 
the Test Ontology Model that defines classes 
such as Physical Tests, Laboratory Test, Blood 

Test, etc., with respective attributes (hasCode, 
uId, MedicalName) to represent features of the 
class and associations (is-a, etc.) between the 
classes to capture the interactions between the 
defined classes. These classes are later real-
ized to capture actual medical test instances 
or the vocabulary of the ontology. Similarly, 
the Anatomy Ontology model shown in the 
Figure 12 captures human anatomy using the 
class Human Parts with respective attributes 
to describe the human part and associations to 
capture various relationships between them. 
This model is later instantiated to capture 
instances of human parts such as Heart, Veins, 
Arteries, etc.

However, from the perspective of the 
meta-model (Level M2, Figure 6) and by using 
the exemplified ontology models in Figures 
10-12, a ontology designer can abstract and 
define generic domain specific type concepts 
shown in Figure 13, that include: classes such 
as Metabolic System Diseases, Respiratory 
System Diseases, Digestive System Diseases, 
etc., which are all of type Disease; classes 
such as General Symptoms, Cardiac System 
Symptoms, Respiratory System Symptoms, etc., 
which are all of type Symptom; classes such as 
Cardiac System Medication, Respiratory Sys-
tem Medication, Nervous System Medication, 
etc., which are all of type Medication; classes 
such as Cardiac System Procedures, Respiratory 
System Procedures, etc., which are all of type 
Procedure; classes such as Cardiac System Test, 
Respiratory System Test, Blood Test, etc., which 
are all of type Test; classes such as Fracture, 
Sprain, Dislocation etc., which are all of type 
Injury; and, classes such as General Diagnostics, 
Radiology, Nuclear Medicine, etc., which are 
all of type Diagnostic.

Within these abstract type concepts (Figure 
13), abstract attribute types can be defined, 
namely: hasPharmaceuticalName, hasCode-
Name, hasCommonName, etc., which are all 
of type hasName; and, hasUId, hasDeaNumber, 
etc., which all are of type hasId. Figure 13 il-
lustrates the abstract associations types: hasGen-
eralSymptoms, hasMentalDisorderSymptoms, 
hasCardiacSymptoms, etc., which are all of type 
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hasSymptom; hasCardiacProcedure, hasRespi-
ratoryProcedure, hasDigestiveProcedure, etc., 
which are all of type hasProcedure; hasBlood-

Test, hasPhysicalTest, performXRay, etc., which 
are all of type hasTest;(hasCardiacMedication, 
hasSkinMedication, hasDigestiveMedication, 

Figure 10. Sample diagnosis ontology models developed in UML
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Figure 11. A test ontology model in UML

Figure 12. An anatomy ontology model in UML

Figure 13. The abstract theory from ontology models shown in Figures 10-12
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etc., which are all of type hasMedication; 
hasNuclearDiagnostic, hasRadioDiagnostic, 
etc., which are all of type hasDiagnostic; and, 
isCausedByFracture, isCausedByDislocation, 
sprainedBy, etc., which are all of type causedBy.

Essentially, the ontology models in Figures 
10-12 are used as the basis to yield a more gen-
eralized knowledge base for the given domain. 
The result in Figure 13 is an abstract theory with 
type concepts that can be reused in multiple 
contexts for many HIT systems and EHRs for 
the development of multiple domain models.

For example, another domain ontology 
model can be developed involving: classes 
such as Ear Diseases, Swelling, Eye and Cornea 
Diseases, etc., which are of type Disease; as-
sociations such as hasEyeInfections, develop-
sEarInfection, showsSwelling, etc., which are of 
type hasSymptom; and, attributes hasSynonym, 
hasBiologicalName, previouslyNamed, etc., 
which are of type hasName. This signifies that 
even though the ontology model (classes, at-
tributes, and associations) expresses knowledge 
on different domains, both the domain models 
use the same abstract theory (Figure 13) for 
developing multiple ontology models as shown 
in the Figure 14a.

Thus, the sample abstract theory captured 
as a domain profile (Figure 13) at a higher level 
(meta-model level, Figure 6) can be used as a 
base theory to develop a global ontology model 

capturing knowledge about various domains 
such as diseases, symptoms, tests, medications, 
procedure, etc., or another biomedical ontology 
model which can meet the knowledge require-
ment of the researchers RT’s. For instance, 
the knowledge required for RT1.A and RT1.B 
(Section 2) will involve types Disease and Medi-
cation with their respective association type 
(hasMedication) to obtain an output which can 
be of type Symptom or Injury, RT3.A requires 
types Disease and Test to obtain common test 
patterns between similar disease profiles, etc.

The proposed OWL Domain Profile (ODP) 
supports the OWL framework by allowing the 
ontology designer to capture the abstract type 
concepts as profile concepts akin to UML 
profiles at the meta-model level, and to impose 
(reuse) them onto the multiple ontology models 
(Level M1, Figure 6) as shown in Figure 14b. 
In order to impose the profile concepts onto 
the domain model entities and automate the 
load/parse/save process, we have designed and 
implemented a DomainProfileParser algorithm 
that authenticates and validates the imposing 
of the profile entities onto the ontology model 
concepts and structural associations. Figure 15 
illustrates the comparison of ontology modeling 
using OWL and OWL supported with ODP to 
define the same (Figure 13) information us-
ing both OWL (Figure 15a) and our proposed 
extensions with ODP (Figure 15b). Figure 15a 

Figure 14. An architectural perspective of OWL ODP and its domain models
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demonstrates the development of a domain 
ontology using traditional OWL, where the con-
cept Disease is defined as an owl:Class entity, 
which in turn is instantiated to define domain 
instances such as Brittle Asthma captured as 
owl:NamedIndividual. In contrast, in Figure 
15b, OWL is extended with ODP, allowing a 
generic concept such as Disease to be abstracted 
as a profile concept (Sample Abstract theory, 
Figure 13) that is then imposed onto the concept 
Asthma (read as Asthma isofType Disease) 
defined as a class by instantiating owl:Class, 
which is turn is instantiated to define domain 
instances such as Brittle Asthma captured as 
owl:NamedIndividual. In general, when OWL is 
used alone, the owl:Class metamodel element is 
instantiated to create domain classes (applicable 
to a general HIT system’s concepts) which are 
later instantiated for capturing domain data (for 
a specific vendor’s HIT sytem’s concepts). Us-
ing OWL extended with ODP, the defined ODP 
entities can be imposed onto the domain model 

that are then instantiated to capture instances; 
this is shown in the transition from the classes 
in Figure 15a to the domain profile entities in 
Figure 15b.

The ODP entities extend OWL primitive 
meta-modeling elements by creating a depen-
dency relationship with the OWL meta-model 
and, hence, can only be utilized in the OWL 
meta-model framework as shown in the Figure 
15b (M2 – meta-model level). In ODP at the 
meta-model level, there are four extensions: 
Profile Class (PC) is utilized for capturing do-
main specific type concepts; Profile Attribute 
(PA) is intended to capture the characteristics 
of a Profile Class, namely the comprising at-
tributes; Profile ObjectProperty (POP) captures 
all of the interactions between profile classes, 
which may be inheritance or associations; and, 
ProfileDatatypeProperty (PDP) defines proper-
ties to capture datatype values (such as integer, 
URI, String etc.) for a profile class. From a 
practical perspective, these four extensions of 

Figure 15. A comparison of modeling using OWL and OWL+ODP
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ODP extend OWL first-class entities: owl:Class, 
owl:Attribute, owl:ObjectProperty, and 
owl:DatatypeProperty to define ODP entities 
odp:ProfileClass(PC), odp:ProfileAtrribute(PA), 
odp:ProfileObjectProperty(POP) and odp:Pro
fileDatatypeProperty(PDP), respectively. The 
primary objective of ODP is to encapsulate 
the abstract theory which can be reused across 
multiple settings (instantiated differently for 
each vendor’s HIT System). A secondary 
objective is to leverage PC, PA, POP, and PDP for 
defining meta-schema at M2 Level which can 
be referred to when developing ontology models 
at M1 Level in Figure 6. The remainder of this 
section reviews PC, PA, POP, and PDP:

Profile Class (PC): A Profile Class is an ODP 
meta-modeling entity that is represented 
using the tag odp:ProfileClass for develop-
ing domain specific class meta-model (M2 
Level, Figure 6) entities such as Disease, 
Virus, etc., by extending OWL’s owl:Class 
primitive element. A Profile Class extends 
the core element owl:Class but does not 
change the semantics of the element. As 
given in Figure 16, Disease, Procedure, 
Treatment, Symptom and Medication are 
of type ProfileClass, which are imposed 
onto the domain model concepts with our 
extended ODP syntax;

Profile Attribute (PA): A Profile Attribute is 
an ODP meta-modeling entity utilized for 
defining domain specific attributes such as 
hasSymptom, hasScientificName, hasICD-
Code, etc., by extending owl:Attribute 
element. A Profile Attribute is represented 
by the tag element odp:ProfileAttribute 
which extends owl:Attribute element, 

but does not change the semantics of the 
core element. From Figure 17, name is a 
odp:ProfileAttribute with domain Disease 
and range EName, with our extended ODP 
syntax in Figure 17;

Profile ObjectProperty (POP): The Profil-
eObjectProperty is represented by the 
tag element odp:ProfileObjectProperty is 
a member of the ODP for encapsulating 
abstract domain specific roles (Figure 13) 
such as hasProcedure, hasMedication, 
hasSymptom, hasTreatment, etc. Profil-
eObjectProperty follows the semantics of 
owl:ObjectProperty for capturing associa-
tions. A ProfileObjectProperty can only 
capture interactions between entities of 
type odp:ProfileClass, with our extended 
ODP syntax in Figure 18;

Profile DatatypeProperty (PDP): The Profile-
DatatypeProperty captures domain specific 
roles whose range is a datatype such as in-
teger, double, URI, time, etc. This element 
extends OWL’s owl:DatatypeProperty 
and is represented using with element 
odp:ProfileDatatypeProperty. Profile-
DatatypeProperty follows the semantics 
of owl:DatatypeProperty and takes domain 
values only of type odp:ProfileClass. The 
datatype uid from Figure 13 is of type 
ProfileDatatypeProperty with our extended 
ODP syntax in Figure 19;

In summary, the ODP provides a means to 
transition to a higher level of conceptualization 
that promotes ontology design. As a result, as 
illustrated in Figure 13, 14 and Figure 15b, stake-
holders can agree on ontology meta-schema 
details at a higher conceptual level and create 

Figure 16. Sample code illustrating the profile class



Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013   85

type concepts that are reusable. Once the abstract 
type concepts are captured as profile concepts, 
they can be employed by different HIT system, 
where each HIT system would build their own 
ontology model based on their specific data, 
but all of the systems would share the same 
abstract theory (same generalized meta-schema) 
at the meta-model level, thus reusing the core 
conceptual abstract theory and type concepts.

5.3. The OWL/OMV Schema 
Associations Extension

The primary goal for developing Ontology 
Schema Associations or Ontology Schema 
Relationships for OWL ontology models is 
to capture appropriate associations between 

and across ontology models. Current usage 
of OWL when developing ontologies often 
embeds these associations within a single ontol-
ogy. As a result, an ontology that has diseases 
referencing symptoms referencing treatments 
can be searched in that structured order, but, 
if one wants to find all diseases that have the 
same treatments, such a search is very difficult 
to write. With ontology schema associations, 
there would be separate ontologies for disease, 
symptoms, and treatments, that can be linked in 
different ways to allow a wider variety of queries 
using a higher-level structure that doesn’t bury 
linkages deep with an ontology tree.

The first two extensions for Attribute (Sec-
tion 5.2) and OWL Domain Profile (Section 5.2) 
are focused on the OWL features and capabilities 

Figure 19. Sample code illustrating the profile data type property

Figure 17. Sample code illustrating the profile attribute

Figure 18. Sample code illustrating the ProfileObjectProperty
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applied at the metamodel and domain model 
level to dictate the way that domain models 
are developed. The intent of Ontology Schema 
Associations is to leverage realize the Ontology 
Meta Vocabulary (OMV) (Hartmann, Palma, 
& Sure, 2005) model using OWL framework, 
which is then instantiated for each ontology 
model to capture the respective metadata and 
later interrelated with another ontology model 
metadata concepts to define schema associa-
tions. The OMV is a domain model for providing 
metadata for the ontology and was developed 
as part of NeOn project group. OMV provides 
a way to capture the metadata for the ontology 
as related to domain, organization, language, 
place, version, tools, etc. To demonstrate, Figure 
20 provides an overview of core OMV concepts. 
In Figure 20, in a typical ontology engineering 
process has a Person(s) or Organization(s) 
responsible for developing an ontology repre-
sented using Ontology entity can be grouped 
to form a generic entity Party by a subclass-of 
relation. The geographical information for 
the party is described by the Location entity. 
Further, the engineering process employed for 
building the ontology is captured by Ontolo-
gyEngineeringMethodology and development 
tools, namely, OntologyEngineeringTool. The 
entity OntologyTask describes the primary task 
of the ontology and LicenceModel describes the 
usage boundaries of the ontology schema. The 
entities OntologySyntax, OntologyLanguage 
and KnowledgeRepresentationParadigm cap-
ture the implementation details of the ontology 
schema. A further classification of the ontology 
schema relies on their level of formality captured 
using FormalityLevel and types of knowledge 
representation primitives supported using 
KnowledgeRepresentationParadigam. The 
domain the ontology describes is represented 
by the entity OntologyDomain, while Onotolo-
gyType describes the nature of the content of 
the ontology.

Our intent for leveraging OMV is to al-
low ontology associations at the schema level. 
For instance, consider a medical domain that 
needs an ontology that contains information on 

diseases, medications, treatments, symptom, 
assessment, and test. In a traditional ontology 
approach, an ontology designer would put 
together these concepts into single source ontol-
ogy (Os), and say organize the concepts first by 
disease, then symptoms of each disease, along 
with treatments, medication, assessment and test 
for each disease. If one only wants to reuse the 
disease, tests and assessment concept models, 
it may involve a complex ontology transforma-
tion or importing the complete source ontology, 
which also imports unwanted concepts. This 
becomes a huge issue when dealing with large 
ontologies (thousands of concepts) which have 
a direct impact on performance as the applica-
tion parser and reasoners also needs to import, 
read and parse unwanted concepts. In order to 
address this issue, our approach as shown in 
Figure 21, is to separate Disease, Tests, and 
Assessment concepts into independent ontology 
schemas and then interconnect the schemas us-
ing relationships. As shown in Figure 21, the 
Diagnosis Ontology Schema (O1) links Disease 
to Symptoms, Treatment, Procedure, and Medi-
cation; a Test Ontology Schema (O2) describes 
various tests such as Cardiac Test, Blood Test, 
Image Test, and Respiratory Test etc.; and, a 
Triage1 Ontology Schema (O3) provides initially 
assessment about vitals and previous injuries 
and also may provide medication information. 
Each of these ontology schemas can be described 
(metadata about the ontology) by associating 
various OMV concepts. As shown in Figure 
21, the ontology schema O1 has OMV concept 
ontologyDomain with value “Condition”, O2 has 
ontologyDomain with value “Triage” and O3 has 
the concept ontologyDomain with value “Test”. 
These OMV concepts across these individual 
ontology schemas (O1, O2, and O3) are associ-
ated to form Ontology Schema Associations.

By separating the domain model into 
multiple schemas, pieces of the domain model 
can be reused in other applications, much as a 
subset of a UML class diagram can be utilized 
in different solutions of a similar domain. This 
contrast with a single ontology that may either be 
unable to represent the knowledge requirement 
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of the system and also be incapable of being 
seperated easily to be reused in other contexts, 
as we described above. Trying to capture entire 
knowledge within a single ontology will sac-
rifice modularity and the potential for reuse.

Figure 21 shows hasAssessment and hasT-
est which are Ontology Associations which 
are binary predicates between OMV concepts 
across multiple ontology schemas as indicated 
by the dotted lines. Ontology Associations are 

Figure 20. An overview of OMV core concepts
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similar to package imports and class diagrams 
in UML and schema reference in XML. OWL 
also has the ability to reference other ontolo-
gies, but with OMV, ontology designers can 
define customized ontology relationships 
between OMV concepts across multiple ontol-
ogy models. Besides providing modularity and 
knowledge reuse, schema associations assist 
the user to identify required knowledge sources 
through ontological relationships for RT’s. For 
instance, while a user is researching on side 
effects of hyperglycemic agents on CHF and 
diabetes (RT2.B, Section 2) using the Diagnosis 
Ontology, the researcher might be interested in 
also knowing the various tests which can be 
performed for conducting statistical analysis. 
The schema association hasTest between the 
Diagnosis and Tests ontologies assists the re-
searcher in identifying the appropriate ontology 
for obtaining medical test knowledge. Similarly, 
for finding the physical impact of diabetes while 
using metformin (RT3.A, Section 2) can be 
explored using knowledge captured in anatomy 
ontology related to diagnosis ontology using 
effects schema associations.

6. AN ONTOLOGY DESIGN AND 
DEVELOMPENT LIFE CYCLE

In this section, we briefly review our work on 
a software development life cycle for ontolo-
gies that provides the design methodology as 
characterized in Figure 1 in support of a design 
process for the three OWL extensions for At-
tribute, Domain Profile, and Schema Associa-
tions as discussed in Sections 5.1, 5.2 and 5.3, 
respectively. Historically, there are numerous 
life cycles including the waterfall model (Win-
ston, 1970), the iterative model (Basili & Turner, 
1975), the spiral model (Boehm, 1986), agile 
development (Craig, 2003), and others, that 
share phases such as requirements, specifica-
tion, design, analysis, implementation, testing, 
deployment and maintenance. For ontologies, 
there have been related efforts that are of note. 
Methonotology (Fernández-Lopez, Gomez-
Perez, & Juristo, 1997) employs phases: specifi-
cation for knowledge acquisition to develop an 
ontology vocabulary; and, conceptualization to 
structure the domain vocabulary and develop a 
conceptual model for the ontology, integration, 

Figure 21. Illustrating ontology relationships between ontology schemas
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implementation and evaluation. The approach 
leverages an evolutionary model to expand the 
ontology over time as new requirements emerge 
and was based on earlier work that proposed 
a method based on steps for requirements and 
specification, construction of data dictionary, 
concept classification, and other instance-based 
ontology considerations. Another effort (Us-
chold & King, 1996) proposed an enterprise 
ontology with requirements, conceptualization, 
implementation, and documentation phases that 
was later expanded (Uschold, 1998) in order to 
create a unified methodology.

In this section, we review our work on a 
Hybrid Ontology Design and Development 
Life Cycle (HOD2LC) model (Saripalle & De-
murjian, 2012) that leverages various software 
engineering process and methodologies which 
can be applied to ontologies. The intent is to 
provide a concrete context for utilizing the 
OWL extensions coupled with the alignment 
with the meta-model to yield a design process. 
The HOD2LC model has a number of phases 
that represent different aspects of the ontology 
design and development process, and integrate 
with approach (Figure 1) and proposed exten-
sions (Sections 5.1 to 5.3):

Phase 1: The Problem Analysis phase identi-
fies and analyzes the problem faced in 
information system leading to the develop-
ment of new ontology and/or extending an 
existing ontology. Generally the problems 
faced are related to instance data of the 
domain or a state of the ontology, from 
which an abstract domain problem has to 
be formulated. For example, list all of the 
symptoms of Radiation Chemotherapy 
on Breast Cancer; when rewritten into a 
domain problem, the query is focusing on 
domains of symptoms, treatment and dis-
eases. The problem analysis is to identify 
the abstract meta-concepts (M2 Level, 
Figure 6) and the domain model concepts 
(M1 Level, Figure 6) from instance data 
(M0 Level, Figure 6);

Phase 2: The Integration Phase allows design-
ers to search for existing ontologies meeting 

the problem criteria. For instance, reusing 
RxNorm (Liu, Ma, Moore, Ganesan, & 
Nelson, 2005) which provides normal-
ized names for clinical drugs and UMLS 
provides semantic types and network 
(Bodenreider, 2004) to in support various 
medical concepts;

Phase 3: In the Knowledge Acquisition phase, 
designers interact with domain experts 
(providers, researchers, etc.) searching 
multiple resources (medical records, data, 
ontologies, etc.) to identify the concepts 
and domain vocabulary required to develop 
the complete ontology. This phase can be 
performed in parallel with Specification, 
Design and/or Analysis phases;

Phase 4: In the Specification phase the designer 
firmly defines the domain’s scope and 
functional details of the ontology and its 
concepts. For instance, the disease domain 
from Phase 1 can be refined by specifying 
types of diseases, associating diseases 
with symptom(s) and name as its attribute 
(see Figure 7), resulting in a conceptual 
schema for disease and symptom and then 
associating these schemas;

Phase 5: In the Design Phase, the concepts 
in the domain are identified, including: 
classes, attributes, and associations that can 
be classified into meta-concepts (Figure 
13) and model concepts (Figures 10-12). 
For instance, the type concept Disease and 
Symptom (Figure 13) can be meta-concepts 
with hasSymptom a meta-association 
to capture their interactions. The meta-
concepts can further be refined to identify 
domain model concepts (Figure 15);

Phase 6: In the Analysis phase, designers and 
the end users (and domain experts) revisit 
the specification phase to validate (all re-
quired system requirements are met) the 
design models developed in the Design 
Phase. The cycling between Specification, 
Design, and Analysis phases promotes an 
incremental learning process;

Phase 7: The Implementation phase provides 
the transition from conceptual model (UML 
Class Diagram or ERD diagram) to concrete 
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implementation (using OWL DL, OWL 
Lite, Frames, etc.). This phase requires de-
cisions to be made regarding the particular 
ontology language and framework for the 
implementation, which can be based on 
issues related to usability, performance, 
interoperability, and availability;

Phase 8: The Testing phase carries out a tech-
nical judgment of the ontologies, their 
software environment, and documentation 
with respect to a frame of reference (in 
our case, the requirements specification 
document) during each phase and between 
phases of their life cycle, using techniques 
such as Ontolingua (Gomez-Porez, Ju-
risto, & Pazos, 1995) or a framework for 
evaluating knowledge sharing technology 
(software, ontologies and documentation) 
(Gomez-Porez, 1996);

Phase 9: The Maintenance and Documentation 
phase is where the developed ontology has 
to be monitored for smooth and efficient 
performance of the system (maintenance) 
backed by a detailed narrative report of the 
ontology concepts, its axioms, and usage 
(documentation). This phase can start with 
knowledge acquisition and run in parallel 
with subsequent phases.

To form the complete life cycle model, 
Figure 22 illustrates a Hybrid Ontology Design 
and Development Life Cycle (HOD2LC) involv-
ing the aforementioned phases. The HOD2LC is 
an agile methodology through Phase 2 to Phase 
7. The iterative and incremental approach as-
sists developers to take advantage of what was 
learned during previous phases. There is also a 
need of loop between Analysis and Specification 
phases, as the developers have to validate the 
ontology model to check if the specifications 
have met. This loop is represented using a dotted 
line differentiating it from the life cycle’s solid 
line. This loop helps the end users to verify or edit 
specifications so as to make necessary changes 
to the ontology model without go through 
the whole cycle. The Knowledge Acquisition 
phase can be executed in parallel with other 
phase until the Implementation phase, which 

is responsible for developing the vocabulary 
of the domain from the information gathered 
from the Knowledge Acquisition phase. The 
Documentation phase of the ontology can also 
be executed in parallel starting from Analysis 
phase. To support the iterative process em-
ployed in the Design phase, we utilize Feature 
Driven Development methodology (FDD) 
(Palmer & Felsing, 2002), a model driven agile 
software development process. Abstracting 
out the steps from FDD and applying it to our 
approach (Figure 23), we have the following 
steps. In Step 1, a higher-level walkthrough of 
the domains involved in the domain problem 
should be performed to identify type concepts 
(Figure 13). For example, type concepts such 
as Disease, Symptom, Medication, Treatment, 
etc.; type concept attributes such as uid, name, 
etc.; and type concept associations such as 
hasSymptom, hasTreatment, hasMedication, 
hasParent, and isa. This step is equivalent to 
identifying domain profile concepts at the meta-
model level (M2 Level) as shown in Figure 
15. In Step 2, once there is agreement on the 
abstract theory and its type concepts, they are 
decomposed into smaller domain concepts by 
multiple groups. For example, classes such as 
Respiratory Diseases, and Cardiac Diseases can 
be defined which are of type Disease; Cardiac 
Symptoms and Mental Disorder Symptoms, etc., 
of type Symptom. The respective attributes and 
associations are also identified. Finally, in Step 
3, as the respective models have been built, the 
modular models can be interconnected using 
ontology schema associations to form a network 
of ontology models (Figure 21). The iterative 
nature of the cycle will help developers learn 
from the previous phase and the incremental 
nature shows the sign of progress and partial 
output to the end users. The cycle is stopped once 
an agreement has been reached on structural 
and semantic aspects of the ontology. The work 
presented in this section is our initial effort to 
quantify an ontology design and development 
process; our work is ongoing in this area to fine 
tune the process and apply to more complex, 
realistic examples.
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Figure 22. HOD2LC, the hybrid ontology design and development life cycle

Figure 23. A feature driven development (FDD) of the ontology design phase
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7. RELATED WORK

There are many related works that have influ-
enced our objective of driving ontology develop-
ment towards a model drive approach (MDA) 
that leverages software engineering. Gruniger 
and Fox (1995) has proposed a methodology to 
develop or enhance the ontology by formulating 
application scenarios which often are problems 
encountered in an enterprise application, giv-
ing rise to informal competency questions. 
The underlying existing ontology is enhanced 
to solve the problem by making sure that the 
queries against the ontology satisfy the com-
petency questions. Bendaoud, Rouane-Hacene, 
Toussaint, Delecroix, and Napoli (2007) have 
proposed a methodology for developing ontolo-
gies using formal concept analysis. Similarly in 
Aussenac-Gilles, Biebow, and Szulman (2000), 
Bendaoud, Napoli, and Toussaint (2005), and 
Cimiano, Hotho, and Staab (2005), the research 
methodologies primarily focus on developing/
enriching underlying application ontology con-
cepts or roles between the concepts, but not on 
enhancing the core modeling capabilities of the 
ontology language. All of these efforts have the 
underlying intent of our work to improve the 
ontology design, development, and deployment 
process, but our work is more focused on extend-
ing OWL and ODM and leveraging OMV for 
a more software engineering-based approach.

The Network Ontology Model (NeOn) has 
a primary purpose to define a metamodel for 
integrating heterogeneous ontologies together 
by defining an OWL metamodel by extending 
MOF. The project also encompassed metamod-
els for SWRL, Rules, Mapping, and OMV. We 
have clearly leveraged their work as part of Sec-
tion 5. Similarly, the work of Baclawski, Kokar, 
Kogut, Hart, Smith, Letkowski, and Emery 
(2002) has studied OWL and extended UML to 
provide visual models for developing ontolo-
gies. However, they found that the extensions 
were too complicated to understand and difficult 
to implement, and hence they proposed a Unified 
Ontology Language (UOL). The author’s inten-
tions were to provide a modeling environment 
for OWL similar to UML and in this process they 

mapped OWL language constructs onto UML 
concepts; this is comparable to our work, but, 
we differ since we want to try to incorporate 
additional capabilities into OWL and ODM 
rather than define an entire new model. The 
research presented in ODM (2009) discusses the 
development of an Ontology Definition Model 
(ODM) built on the top of MOF for enabling 
MDA for ontology engineering. This effort 
primarily focus on providing an MDA approach 
by extending MOF 2.0, but does not provide in-
depth analysis about the modeling capabilities 
of OWL when compared to the UML software 
modeling techniques; our approach as presented 
in Section 3 seeks to leverage MDA and MOF 
to allow a similar process for ontology design, 
development, and deployment. The work of 
Kuhn (2010) supports our argument to advocate 
that the primary goal of an ontology engineer is 
to encode as much knowledge as possible and 
to exploit automated reasoning or discovering 
implicit knowledge, while acknowledging the 
lack of the essence of software modeling; like 
us, the work strongly recommends separating 
modeling and encoding concerns as modeling 
semantics as a design task while encoding is 
implementation oriented. This is also supported 
in Guranio (2001) that proposed the definition 
of an ontology as a commitment by a language 
(L) for capturing the intended meaning of the 
conceptualization. The intent of the ontology is 
to define a set of axioms in L such that the set 
captures the appropriate best possible model of 
conceptualization. The definition capture two 
aspects model and axioms, clearly emphasiz-
ing a design task and an implementation task, 
respectively.

Recently, researchers have been focusing 
on extending the OWL grammar with metamod-
eling capabilities Motik (2005). Recall that the 
OWL family encompasses three models (OWL 
Lite, OWL DL and OWL Full) arranged in 
ascending order of their expressiveness. OWL 
Full, the most expressive language supports 
metamodeling since a class can be viewed as 
group of instances or individual by itself, i.e., 
a class can refer to another class as if the lat-
ter is an instance of the former, which is basic 
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essence of metamodeling, and similar to our 
intent to associate ontology schemas. However, 
the underlying semantics of OWL Full are 
undecidable making it difficult for automated 
reasoning engines. The work of Motik (2005) 
demonstrated that OWL Full semantics are 
undecidable for metamodeling and bestowed 
metamodeling capabilities in OWL DL in two 
ways: contextual semantics and Hilog seman-
tics. Similarly, the work in Glimm, Rudolph, 
& Völker (2010) explained the need to add 
metamodeling capabilities to OWL framework. 
However, both efforts focus on providing 
metamodeling capabilities to OWL, but not on 
extending existing OWL metamodel elements 
to define profiles and capture domain specific 
entities (Section 5.2).

The latest version of OWL 2.0 has intro-
duced OWL Profiles (OWL 2 Profile, 2012), 
which is essentially a reduced version of com-
plete OWL 2 semantics that trades expressive 
power for the efficiency of reasoning. OWL 
2 has three profile formats: OWL2 EL for 
applications employing ontologies that con-
tain very large numbers of properties and/or 
classes; OWL2 QL for applications that use 
very large volumes of instance data, and where 
query answering is the most important reason-
ing task; and, OWL2 RL for applications that 
require scalable reasoning without sacrificing 
too much expressive power. These OWL pro-
file languages have restricted semantics from 
OWL, while the OWL Domain Profile proposed 
which is similar to UML profile, is a structural 
aspect acting in parallel with OWL (similar to 
UML Profile which acts according to UML) as 
shown in the Figures 17 and 18. The semantics 
and the decidability of the OWL language are 
unchanged. In the Software Design process, 
various methodologies and methods have been 
proposed by Fernandez-Lopez, Grüninger, and 
Fox (1995), Gomez-Porez (1996), Fernández-
Lopez, Gomez-Perez, and Juristo (1997), Us-
chold and King (1996), and Uschold, (1998), 
but they are focused around the conceptualiza-
tion phase and are attempting to maximize the 
domain vocabulary of the ontology, while they 

do not address the conceptual design phase and 
complete life cycle model, which are prominent 
in the software process and in our approach. 
Also, the design phases in these techniques 
are primarily centered on developing domain 
models using metamodels such as UML, RDF, 
and OWL, etc., but not a well-proven layered 
architectural approach such as UML Profile, 
DOGMA, and ODP. The Analysis phase (see 
Section 6) which is a crucial phase in the soft-
ware engineering primarily responsible for 
analyzing the conceptual model and validating 
the model with specification, is not a part of the 
development cycle of many of these efforts, or 
has at best given just a limited consideration. 
UPON (Nicola, Missikoff, & Navigli, 2005) is 
an instance of Unified Process consisting of four 
phases (inception, elaboration, construction, and 
transition) and each phase is furthered iterated 
over five workflows (requirements, analysis, 
design, implementation, and test). The HOD2LC 
is agile methodology over various enhanced 
phases (without cycles and workflows) and also 
leveraging proven software design techniques: 
meta-schema (ODP, Section 5.3) and the FDD 
approach (Figure 23) in our Design Phase and 
inner feedback loops in the Analysis Phase, 
and Testing Phase.

8. CONCLUSION AND 
ONGOING RESEARCH

This paper has addressed the issue of the current 
approach to ontology design, development, and 
deployment that is primarily focused on encod-
ing the concepts and relationships directly at 
the instance level rather than fostering a model-
driven approach like UML, ERD, and XML in 
which structural and relational artifacts of the 
data model are captured and the instance data 
follows the model rules. Towards this goal, 
in Section 3, we have reviewed our previous 
work (Saripalle, Demurjian, & Behre, 2011) 
and re-defined critical modeling characteristics 
and evaluated them against UML, ERD, and 
XML. Using this as a basis, in Section 4, we 
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explored domain modeling for UML using a 
layered OMG’s Meta Object Facility (MOF) 
and then applying this approach in concept to 
XML, RDF, and OWL to demonstrate a more 
software engineering like process approach that 
aligns RDF and OWL to the layers of MOF. The 
main contribution of the work presented herein 
is in Section 4 with two extensions attribute 
(Section 5.1) and domain profile (Sections 5.2). 
With Ontology Metadata Vocabulary (OMV) 
framework and the ability to model ontology 
relations in Section 5.3. Both Sections 4 and 
5 utilized an example in clinical informatics 
as presented in Section 2, to demonstrate the 
concepts. To place the work in this paper into 
a large concept, a software life cycle model is 
proposed via the Hybrid Ontology Design and 
Development Life Cycle (HOD2LC) in Section 
6 which provides a process for ontology design, 
development, and deployment using OWL. We 
believe that the work presented herein is an 
important step towards a model-driven ontology 
design and development process that leverages 
software engineering principles and practices. 
The interested reader is referred to http://www.
engr.uconn.edu/~steve/KanthSaripalle.html 
for supplemental material on implementation 
details of the work in this paper that integrate 
our OWL extensions into the Protégé tool 
(Protege, 2012).

Our ongoing research seeks to work to-
wards a framework for ontology integration that 
operates at an ontology schema level and our 
contribution in Sections 5.1, 5.2, and 5.3, can be 
utilized to view ontologies at a schema level. If 
we are in a specific domain, say medicine, where 
we need to integrate ontologies from multiple 
HIT systems, the ability to define ontology sche-
mas for each that break apart a traditional single 
ontology, and merging at the schema rather than 
the instance level, which has the potential to fully 
automate ontology integration. Additionally, 
with the ability to extend metamodel entities, 
we can capture generic domain concepts of 
medicine in a profile and impose them across 

multiple HIT settings. We are also considering 
and expanding UML via its metamodel with 
extensions to support an ontology design and 
development process integrated into UML. Our 
prior work on security access-control model 
(Pavlich-Marsical, Demurjian, & Michel, 2010) 
and collaborative security (Berhe, Demurjian, 
Gokhale, Pavlich-Mariscal, & Saripalle, 2011) 
extensions to existing UML and proposed new 
UML diagrams in support of role-based, dis-
cretionary, mandatory, and collaborative access 
control that were integrated into a UML setting, 
allowing for a comprehensive design process 
that included security. We believe such an ap-
proach would also benefit our work by including 
ontology design and development directly into 
the software process as another facet of overall 
information systems design.
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ENDNOTES
1 	 A medical term denoting the priority of pa-

tients treatments based on the severity of their 
condition.



Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 9(2), 62-97, April-June 2013   97

Rishi Kanth Saripalle is a final year Ph.D. student in the Department of Computer Science & 
Engineering at the University of Connecticut, under the supervision of Dr. Steven A. Demur-
jian. His research interests include: software engineering and modeling using various domain 
modeling standards, ontology design and development, knowledge engineering and modeling, 
software engineering applied to biomedical informatics. His research focuses on imposing 
software engineering, modeling and life cycle modeling concepts onto the domain ontologies, 
with the end purpose of defining a software engineering approach to designing and developing 
ontologies. He received his Masters, with a major in Computer Engineering, from the University 
Massachusetts, where he had research experiences in developing ontologies for aiding medical 
decision support system.

Steven A. Demurjian is a Full Professor and Director of Graduate Studies in Computer Science 
& Engineering at the University of Connecticut, and co-Director of Research Informatics for the 
Biomedical Informatics Division, with research interests of: collaborative security and access 
control models for role-based, mandatory, and discretionary approaches with security assurance 
for UML, XML, and cloud computing; biomedical informatics and software architectures for 
health information exchange; secure software engineering with UML; and, ontology design and 
development models and methodologies. Dr. Steven A. Demurjian has 150 archival publications, 
in the following categories: 1 book, 2 edited collections, 50 journal articles and book chapters, 
and 98 refereed conference/workshop articles.

Alberto De la Rosa Algarín is a Ph.D. student of Computer Science & Engineering at the Univer-
sity of Connecticut, with research interests including: information and knowledge-level security 
and privacy enforcement, document-level information security, identity-inferred access control, 
knowledge modeling and ontology engineering. He holds two majors, one in Computer Science 
and another in Mathematics, from the University of Puerto Rico.

Michael Blechner is an Assistant Professor of Pathology and Laboratory Medicine and Director 
of Pathology Informatics and Transfusion Medicine at UCHC, and a faculty member of the Bio-
medical Informatics Division, with medical informatics fellowship training as a National Library 
of Medicine (NLM) funded fellow in 2006. He is a skilled educator with teaching experience in 
both clinical and technology settings. Dr. Blechner’s research interests include computerized 
decision support for laboratory medicine, data warehousing and optimization of clinical labora-
tory data for research and patient safety initiatives, and intelligent tutoring systems for medical 
training, especially in the context of laboratory utilization and test interpretation.


