
1

Role Delegation for a Distributed, Unified RBAC/MAC†

† Support for the work in this paper was provided in part by the GE Foundation through a grant to the School of
Engineering at the University of Connecticut.

M. Liebrand and H. Ellis
Dept. of Engineering and Science

275 Windsor Street
Rensselaer at Hartford

Hartford, CT 06120-2991
mark.liebrand@snet.net, heidic@rh.edu

860.548.5387, fax: 860.547.0868

C. Phillips, S. Demurjian and T.C. Ting
Dept. of Computer Science & Engineering

191 Auditorium Road
The Univ. of Connecticut,
Storrs, CT, 06269-3155

{charlesp, steve, ting}@engr.uconn.edu,
860.486.3719, fax: 860.486.4817

Abstract

The day-to-day operations of corporations and government agencies rely on inter-operating
legacy, COTs, databases, clients, servers, etc., which are brought together into a distributed
environment running middleware (e.g., CORBA, JINI, DCOM, etc.). Both access control and
security assurance within these distributed applications is paramount. Of particular concern is the
delegation of authority, where an authorized individual (not the security officer) may delegate all
or part of his/her authority to another individual, increasing security risk. The ability of an
authorized individual to operate in a manner akin to a security officer, without oversight, must be
carefully considered. This paper explores the definition and inclusion of role delegation into an
existing distributed, unified role-based/mandatory access-control (RBAC/MAC) security model
and enforcement framework. The RBAC/MAC model/framework controls access to software
APIs to limit, by role, which users (clients) can access which parts of APIs, constrained by time,
classification, and data values. This paper uses the RBAC/MAC model/enforcement framework
as a context for a detailed examination of role delegation, including: the general characteristics of
role delegation; the incorporation of role-delegation into the RBAC/MAC security model; and, the
impact of role delegation on security assurance at design and run times.

1 INTRODUCTION

The assembling of legacy, COTs, databases, clients, servers, etc., into meaningful distributed applications
via middleware (e.g., CORBA, JINI, DCOM, etc.) has emerged as a norm as companies and government
agencies seek to allow existing software artifacts to inter-operate with new artifacts, as illustrated in the
top portion of Figure 1. The security capabilities embodied within these distributed applications must
enforce the security policy for all users and protect sensitive information from access and misuse [DoD88,
Sand98]. We must be concerned with both controlling the access of individual users and the interactions
among users. In the latter case, there has been increased attention on the delegation of authority, where
an authorized individual (not the security officer) may delegate all or part of his/her authority to another
individual, increasing security risk, and raising interesting security assurance implications [Bark00,
Lin99, Na00, Zhan01]. Large organizations often require delegation to meet demands on individuals in
specific roles for certain periods of time. In fact, this work grew out of the actual needs of the lead author,
who also works as an information systems specialist for a large financial management/insurance
company, where delegation is critical for a number of in-house applications and processes. The main
objective of this paper is to examine role delegation, proposing a means to allow individuals to delegate
roles within security policy guidelines, while simultaneously maintaining security assurance at run time.

In support of this objective, we leverage our ongoing research on a unified role-based/mandatory access
control (RBAC/MAC) security model and enforcement framework for a distributed environment

2

comprised of software resources (interacting via middleware) that has been under design and
development for the past three years [Demu01, Phil02a, Phil02b], based on our prior research on security
for object-oriented systems [Demu97]. Our approach concentrates on the APIs of software resources,
providing the means for them to be customizable and restricted by time intervals, data values, and
clearance levels to support: RBAC – which portions of APIs can be invoked based on the responsibilities
of a user role; and, MAC – only access portions of APIs based on the security level of the user. The
associated security administrative tools and enforcement framework for this research is shown in the
bottom half of Figure 1. The enforcement framework, the Unified Security Resource (USR), consists of
three sets of services: Security Policy Services to manage roles and their privileges; Security
Authorization Services to authorize roles to users; and, Security Registration Services to identify clients
and track security behavior. The USR is a repository for all static and dynamic security information on
roles, clients, resources, authorizations, etc. Figure 1 also depicts the Security Policy Client (SPC) to
manage URs by granting/revoking privileges and setting classification (CLS) levels, and the Security
Authorization Client (SAC) to assign clearances (CLRs) and authorize roles to end users.

The major focus of this paper is to extend the RBAC/MAC security model and enforcement framework
(Figure 1) with role delegation, allowing a security officer to assign delegation authority at design time,
which can then be enforced, at run time. Role delegation will need to adhere to the same rules already in
place for RBAC and MAC, but the security model must be expanded to support delegation concepts at
design time, and to incorporate delegation and its enforcement into the run-time environment. A
secondary focus of this paper is to detail the attainment of security assurance, at design time via SPC,
SAC, and a Security Delegation Client (SDC) to grant, update, and revoke delegations (see Figure 1), and
at run time by extensions to the enforcement framework (USR) to support delegation. To address these
two foci, Section 2 presents a unified RBAC/MAC security model, as background material. Section 3
examines role delegation, detailing extensions to the RBAC/MAC model and enforcement framework to
support delegation and revocation [Zhan01], and analyzing our approach against delegation
characteristics (e.g., monotonicity, permanence, totality, etc.) [Bark00]. Section 4 discusses security
assurance of the security model/enforcement framework in the presence of role delegation. Conclusions
and future work are reviewed in Section 5.

Wrapped
Resource
for Legacy
Application

Wrapped
Resource

for Database
Application

Figure 1: Clients/Resources in a Distributed Environment.

 Lookup

Service

General
Resource

Wrapped
Resource
for COTS

Application

Java
Client

Legacy
Client

Database
Client

Software
Agent

COTS
Client

 Lookup
Service

Security Authorization
Client (SAC)

Security Policy
Client (SPC)

Global Clock
Resource (GCR)

Security
Registration

Services

Unified Security Resource (USR)

Security
Policy

Services

Security
Authorization

Services

Security
Analysis and

Tracking (SAT)

Security Delegation
Client (SDC)

Joint Service with Methods: a.k.a
 (S)Weather (Token); METOC
 (S)VideoTeleconference (Token, fromOrg, toOrg); TLCF
 (S)JointOperationsPlannning (Token, CrisisNum); JOPES
 (S)CrisisPicture (Token, CrisisNum, Grid1, Grid2); COP
 (S)TransportationFlow (Token); JFAST
 (S)LogisticsPlanningTool (Token, CrisisNum); LOGSAFE
 (S)DefenseMessageSystem (Token); DMS
 (T)NATOMessageSystem (Token); CRONOS

Component Service with Methods:
 (S)ArmyBattleCommandSys (Token, CrisisNum); ABCS
 (S)AirForceBattleManagementSys (Token, CrisisNum); TBMCS
 (S)MarineCombatOpnsSys (Token, CrisisNum); TCO
 (S)NavyCommandSystem (Token, CrisisNum); JMCIS

Note: Access Classification Precedes Each Entry.

Figure 2: A GCCS Resource with Two Services.

2 BACKGROUND: A DISTRIB UTED, UNIFIED RBAC/MAC SECURITY MODEL

This section reviews the definitions for the security model introduced in [Demu01] and formalized in
[Phil02a, Phil02b]. Note that all of the definitions have been reorganized and renumbered from [Phil02b].
We begin the discussion with two definitions for the concepts of lifetimes and security levels, as follows:

3

Definition 1: A lifetime, LT, is defined as a discrete time interval with start time (st) and end time (et),
denoted [st, et], that an entity is available for use, where et > st, and st or et is of the form
(month, day, year, hour, minute, second). Operations on LTs X and Y are as follows:

• X � Y means that Y’s LT is within X’s LT (stXstY .. ≥ and etXetY .. ≤)

• X � Y is equivalent to Y � X

• Let }.,.min{}.,.max{ etYetXETandstYstXST == . Then





>
≤

=∩
)2.1(],[

)1.1(Ø

STETifETST

STETif
YX

Note that intersection can be generalized to multiple operands.

• LT = [ct, ���������	
����
����

����������ct) onward.

Note that in Definition 1 for intersection, we are defining a null overlap when the start time of Y is equal
to or after the end time of X (1.1), with 1.2 representing the case where the LT of Y overlaps the LT of X.

Definition 2: The important concepts that underlie mandatory access control are as follows:
• A sensitivity level, SLEVEL, a set of values that represent the degree of impact on

security by the exposure of information which has a particular level. For our purposes,
},,,{ TSCUSLEVEL = where: unclassified (U) or no impact; confidential (C), expected

to cause some damage; secret (S), expected to cause serious damage; and top secret (T)
expected to cause exceptionally grave damage [Exec82].

• SLEVELs form a hierarchy: U < C < S < T [Exec82].
• Clearance (CLR) is the SLEVEL given to users for access to information.
• Classification (CLS) is the SLEVEL given to entities (roles, objects, methods, etc.).

Note that while we are using four SLEVELs, any number will work with any hierarchy in our approach.

Definitions 3 through 6 are for a distributed application comprised of resources, services, and methods,
utilizing both lifetimes (when a resource/service/method is available) and classifications (what is the
SLEVEL of a resource/service/method).

Definition 3: A distributed application, DAPPL, is composed of a set of unique software/system
resources (e.g., a legacy, COTS, DB, etc.), }1|{ miRR i �== , each of which is

composed of a set of unique services, }1|{ iiji njSS �== , each of which is

composed of a set of unique methods, }1|{ ijijkij qkMM �== .

Definition 4: Every method ijiijk qknjmisomeforM ��� 1,1,1, === of service ijS of resource

iR is registered from a security perspective as:],,,[Params
ijk

CLS
ijk

LT
ijk

Name
ijkijk MMMMM =

where Name
ijkM is the method name, LT

ijkM is the security LT for which the method is

available for use with default [ct, ���� SLEVELM CLS
ijk ∈ with default U, and

Params
ijkM is the list of parameter names and types.

Note that the Name, LT, CLS, and Params for each method are all set when the resource registers itself,
its services, and their methods with the security middleware (USR in Figure 1).

Definition 5: Every service ,1,1, iij njmisomeforS �� == of resource iR is registered from a

security perspective as:],,[CLS
ij

LT
ij

Name
ijij SSSS = where Name

ijS is the service name,

4

LT
ijS is the security LT where }...1|min{ ..

ij
stLT

ijk
stLT

ij qkMS =≤ and

}...1|max{ ..
ij

etLT
ijk

etLT
ij qkMS =≥ , and }1|min{ ij

CLS
ijk

CLS
ij qkMS �== .

Note that the Name for each service is set when the resource registers itself, its services, and their
methods with the USR. The CLS and LT for each service are calculated as given in Definition 5, with
CLS set as the minimum CLS of all methods of the service, and LT set with the earliest start time and the
latest end time of its methods.

Definition 6: Every resource ,1, misomeforRi �= is registered from a security perspective as:

],,[CLS
i

LT
i

Name
ii RRRR = where Name

iR is the resource name, LT
iR is the security LT

where }...1|min{ ..
i

stLT
ij

stLT
i njSR =≤ and }...1|max{ ..

i
etLT

ij
etLT

i njSR =≥ ,

and }1|min{ i
CLS
ij

CLS
i njSR �== .

Note that the Name for each resource is set when the resource registers itself, its services, and their
methods with the USR. The CLS and LT for each resource are calculated as given in Definition 6, with
CLS set as the minimum CLS of all services of the resource, and LT set with the earliest start time and the
latest end time of its services. For illustrative purposes, we use the U.S. Global Command and Control
System (GCCS), an automation tool that provides a U.S. commander with operational awareness of the
situation (crisis) in near real-time through integrated sets of services. GCCS provides information-
processing for planning, mobility, sustainment, and messaging, by bringing together 20 separate
automated systems in over 625 locations worldwide [GCCS99] in a private network. Figure 2 contains a
GCCS resource with two services, Joint and Component, for our examples.

The remaining set of definitions, 7 through 18, involves the privilege specification process for user roles
against the resources, services, and methods. Definitions 7 and 8 involve user roles for a DAPPL.

Definition 7: A user role, UR, is a uniquely named entity representing a specific set of responsibilities

against an application, and is defined as:],,[CLSLTName URURURUR = where
NameUR is the role name, LTUR is the role LT with default [ct, ���� ���

 SLEVELURCLS ∈ is the role classification level, with default U.

Note that the name, LT, and CLS of each user role is set by the security officer when designing and
defining the security policy for a DAPPL.

Definition 8: A user-role list, }1|{ riURURL i �== , is the set of r unique roles that have been defined

for DAPPL, where each role is as specified in Definition 7.

Note that user role names cannot be reused with different lifetimes and/or different clearances.
Representative user roles for GCCS could be Commander [CDR_CR1, [ct, ��, T] and Joint Planner
[JPlannerCR1, [01dec00, 01jun01, S], where [ct, ���for LT is the default. From a privilege perspective,
URs will be granted access to resources, services, and methods, which have classification levels that are
at or below the role’s classification level. For the two GCCS services in Figure 2, CDR_CR1 may be
granted access to both services or JPlannerCR1 to all methods from either service that have levels S, C, or
U. Next, Definitions 9 and 10 involve users for a DAPPL.

Definition 9: A user, U, is a uniquely named entity who will be accessing the DAPPL via a client

application, and is defined as:],,[CLRLTUserId UUUU = , where UserIdU is the user

identifier, LTU is the user LT with default [ct, �������� SLEVELU CLR ∈ is the user

clearance level with default U.

5

Note that the name, LT, and CLS of each user is set by the security officer when designing and defining
the security policy for a DAPPL.

Definition 10: A user list, }1|{ uiUUL i �== , is the set of u users that have been defined for DAPPL,

where each user is as specified in Definition 9.

To support information assurance of clients accessing methods based on role, three types of constraints
are utilized to verify allowable values, time limits, and CLR/CLS. First, signature constraints limit user
role access to methods based on allowable data values.

Definition 11: A signature constraint, SC, is a boolean expression defined on the signature of method
ijkM iji qknjmisomefor ��� 1,1,1 === , of a service ijS of a resource iR , to limit

the allowable values on the parameters, Params
ijkM . The SC is a boolean expression

(with default “true”) defined on parameter names and values (type specific) constructed
with operators: AND, OR, and NOT.

Note that while it is called the “signature constraint,” currently, the constraint only involves the
parameters and does not yet involve the return values (subject of future work). SCs limit the conditions
under which a method may be invoked. For example, an ArmyLogCR1 UR can use method CrisisPicture
from the Joint Service, but needs an SC (Grid1 ≤ NA20 AND Grid2 ≤ NC40) to limit the view. Thus,
methods are off/on based on a specialization of the parameter/return values. Second, a time constraint
limits the execution based on when a user (playing a role) can execute a method.

Definition 12: A time constraint, TC, is a lifetime, and is defined to represent when a method can be
assigned to a user role (or invoked by a user) or when a user is allowed to play a role. A
TC has the default of [ct, ��� �
��
� �������� ���� �
�� ���
�
���� ���� ���
��� ��
constraining when the method can be assigned; the user role, method, and user LTs
constraining when the method can be invoked; and the user role and user LT
constraining when the user can be authorized to the role at design time and at runtime.

JPlannerCR1 has a TC on ArmyBattleCommandSys of [10dec00, 16feb01]. In the ArmyLogCR1 UR, we
combine SC and TC to limit access to the LogPlanningTool method to a specified timeframe, for a
specific crisis leading to SC: (CrisisNum = CR1), TC: [10dec00, 16feb01].

The third type of constraint is for MAC to support CLR and CLS. As discussed in Definition 4, 5, and 6,
the CLS level is assigned to individual methods that comprise each service of a resource (see Figure 2),
and on user roles (Definition 7) and users (Definition 9). By enforcing the relationship among CLR and
CLS at design and run times, it is possible to realize MAC and the Bell and LaPadula Model [Bell75].

Definition 13: A mandatory access control constraint, MACC, is the domination of the SLEVEL of
one entity (e.g., user, role) over another entity (e.g., role, method), which is the valid
relationship between CLR and CLS. In some cases, we must check CLR ≥ CLS (user
CLR vs. role CLS), in others, CLS ≥ CLS (role CLS vs. method CLS).

Since all resources, services, methods, and roles have CLSs, MACC can be utilized to properly compare
subject (user) CLR to CLS and deny or accept based on MAC rules. Since a UR is assigned a CLS, the
authorized user must possess a CLR greater than or equal to the role CLS. At run time, MACC verifies if
the client (user with a CLR level) playing a role (with a CLS level) is allowed to invoke a specific method
(with a CLS level) at a particular time.

The final set of definitions involves different types of authorizations, of method(s) to a user role, and of a
user role to a user, which are captured in the following:

Definition 14: A user-role authorization, URA, signifies that a user role can be authorized to invoke a
method under optional TC and/or SC, and is defined as:],,,[SCTCMURURA = ,

6

where UR is as given in Definition 7, M is as given in Definition 4, TC is as given in
Definition 12 and represents when (LT) the method is available to UR for invocation
with default of [ct, ��� ���� ��� ��� ������ ��
���� �
� ��� �� ��� ��� !�	�������� ""� ���
represents the values under which the invocation can occur.

Definition 15a: For each DAPPL, there is a UR authorization matrix, URAM, an qr × matrix, where

∑
=
=

=

inj
mi

ijqq

..1
..1

, indexed by roles and methods, with each entry defined as:





=
otherwise

MinvoketoauthorizedisUR
MURURAM ji

ji 0

1
),(

Note that we assume that initially, URAM, contains all 0 entries. Note also when the
value is equal to 1 for some],,,[SCTCMAURA = , the authorization is called a valid
URA, VURA. At design time, a VURA must satisfy the CLS domination of role over
method and the overlap of TC and lifetimes to allow the matrix entry to be set to 1.

Definition 15b: A valid user-role authorization list, }1{ viVURAVURAL i �=∀= , where

qrv ×≤ , is the set of all VURAs for which URAM(UR,M) = 1.

Definition 16: A user authorization, UA, signifies that a user is authorized to play a specific role and is
defined as:],,[TCURUUA = , where U is as given in Definition 9, UR is as given in
Definition 7, and TC is as given in Definition 12 and represents when (LT) the role is
available for use by U with default of [ct, ��#

Definition 17a: For each DAPPL, there is a user authorization matrix, UAM, an ur × matrix, indexed
by roles and users, with each entry defined as:





=
otherwise

URtoauthorizedisU
UURUAM ij

ji 0

1
),(

Note that we assume that initially, UAM, contains all 0 entries. Note also when the
value is equal to 1 for some],,[TCURUUA = , the authorization is called a valid UA,
VUA. At design time, a VUA must satisfy the CLR/CLS domination of user over role
and the overlap of TC and lifetimes to allow the matrix entry to be set to 1.

Definition 17b: A valid user authorization list, }1|{ wiVUAVUAL i �== , where urw ×≤ , is the set
of all VUAs for which UAM(UR,U) = 1.

Definition 18: A client, C, represents an authorized user U, and is uniquely identified for each session
via a client token C = [U, UR, IP-Address, Client-Creation-Time]. The Client-
Creation-Time is the clock time at client startup.

Note that we will defer examples related to user and clients to Section 3.1, where they can be more
complete and inclusive of role delegation concepts.

3 ROLE DELEGATION

Role delegation is a user-to-user relationship that allows one user to transfer responsibility for a particular
role to another authorized individual, and can be classified as: administratively-directed delegation, where
an administrative infrastructure outside the direct control of a user mediates delegation [Linn99]; and,
user-directed delegation where an individual (playing a role) determines if and when to delegate
responsibilities to another individual to perform the role’s permissions [Na00]. User-directed delegation is
situation specific. For example, suppose that a delegation is defined to allow a supervisor to delegate a

7

role to a subordinate. In practice, one supervisor may want to delegate the role to a subordinate while
another supervisor may not. While subordinates may have the same official job function and permission,
the authority is granted at the discretion of the supervisor; it is user directed. We have concentrated on
user-directed delegation due to its interesting characteristics and challenges. User-directed delegation
does not eliminate security administrators, who must continue to establish the security policy and
maintain delegation authority, including who can do delegation at what times. User-directed delegation is
not intended to take over complete control of the administration of the user-role relationship. When a
user’s function changes, whether it is to add privileges or revoke privileges, this belongs in an
administrative infrastructure governed by policy, which will be set by an administrator. Administration of
RBAC, MAC, and delegation must be carefully controlled to ensure that policy does not drift away from
its original objective [Sand00].

The concept of delegation can cause some confusion. For example, when a user delegates their role, they
can delegate: authority, responsibility, or duty. The authority, responsibility, and duty to perform a task
are often used interchangeably when discussing delegation, but have different connotations. In most
organizations, authority can be delegated, but responsibility can never be delegated. Authority to do the
task, carries the least responsibility necessary to execute the task, but does mean the delegated user can
execute the delegated task or role. Responsibility to do a task implies accountability and a vested interest
that a task or role can be executed properly. The duty to perform a task implies that the delegated user is
obligated to execute the given task. The focus of this section is the inclusion of delegation authority in
our unified RBAC/MAC model and enforcement framework.

The remainder of this section investigates and analyzes the extensions to the unified RBAC/MAC
security model and enforcement framework [Demu01, Phil02a, Phil02b], presented in Section 2, to
support all aspects of role delegation. In Section 3.1, the focus is on security model extensions to support
delegation. In Section 3.2, the emphasis is on the enforcement framework modifications, exploring the
inclusion of role delegation and revocation rules [Zhan01]. Finally, in Section 3.3, the model extensions
and framework modifications are analyzed against a set of delegation characteristics: monotonicity,
permanence, totality, administration, levels of delegation, multiple delegation, agreements, and cascading
revocation and grant-dependency revocation [Bark00].

3.1 Security Model Extensions for Role Delegation

In this section, we examine the RBAC/MAC security model extensions that are needed in support of role
delegation. The extensions are necessary to support changes to the enforcement framework (see Section
3.2) in order to attain security assurance (see Section 4). First, we define the concept of delegatable:

Definition 19: A delegatable UR, DUR, is a URLUR ∈ that is eligible for delegation.

Definition 20: The delegatable UR vector, DURV, is defined for all r URLURs ∈ as:





=
DURanotisUR

DURaisUR
URDURV

i

i
i 0

1
)(

Initially, all entries in DURV are set to 0. As a security officer is defining the security requirements for an
application, whenever a role is designated as delegatable, then the relevant role entry is set to 1. Figures
3a and 3b contain a detailed example using GCCS, including U, UR, and VURAs. URs for Crisis 1 are:
Commander [CDR_CR1, [ct, ���� ��$� %����� &�����
� '%&�����
�("�� ')"���))��)"*��)"��� ��$� ���� +
��
Logistics Officer [ArmyLogCR1, [10dec00, 01mar01], S]. In Figures 3a and 3b, the roles CDR_CR1,
JPlannerCR1, JPlannerCR2, are delegatable (respective DURV(UR) = 1) and ArmyLogCR1, and
ArmyLogCR2 are not delegatable (respective DURV(UR) = 0).

The next three definitions are for the concepts of an original user, a delegated user, and a matrix that
stores whether a user is original, delegated, or unauthorized for each role.

8

Definition 21: An original user, OU∈ UL, of a UR is defined as being authorized to the UR as part of
the security policy definition (there exists a VUA for the OU/UR, i.e., UAM(UR,OU) =
1 and not as a result of a delegation).

Definition 22: A delegated user, DU∈ UL, is a user U who is eligible to be delegated a UR by an OU
or a DU (there is not a VUA for the DU/UR, i.e., UAM(UR,DU) ,"�#�-�����
�����!.
of a UR cannot be an OU for that same UR.

Definition 23: The user delegation/authorization matrix, UDAM, is an ur × matrix indexed by roles
and users, with each entry of the matrix is defined as:








=

)3.23(

)2.23(

)1.23(

0

1

2

),(

ij

ij

ij

ji

URtoauthorizednotisU

URofOUanisU

URofDUaisU

UURUDAM

Initially, all entries in UDAM are set to 0. As users are authorized to roles via VUAs (see Definition 17a),
then the relevant (user, role) entry is set to 1.

������������

����������	
���
��	�
���
��	����	"]�		��
����������	
������	�
������	������������������	��
��������	
�������		�
�������	������������������	��
��������	���
�������	����
������������������ �!���	��

],,[CLRLTUserId UUUU =

],,[CLSLTName URURURUR =����������������������

��
�"����	������������������		��
�#$����������	���������	���������	��
�#$��������%�	���������	��
�&����	��
�'�()*������	���������	��(������	��
�'�()*����%�	���������	���������	��

����	����	
��
���������������	����	
��
�����������

�#$����������	���
�
$�������	����	" �������
�#$����������	'�()��������((����)
�	����������+ �!����	�����

�'�()*������	���
�
$�������	����������+ �!����
�����	≤	,'%�	',
	����%	≤	,�-���

�'�()*������	*��$������������	����������+ �!�������
�
,�(.����

],,,[SCTCMURURA =

Figure 3a: Sample Users, U; User-Roles, URs; and User-Role Authorizations, URA. Figure 3b: Sample UAM, URAM, UDAM, URAM.

User\ User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0 0 0 0 1
DoGood 0 0 1 1 0
DoRight 1 0 0 0 0
CanDoRight 0 1 0 0 0

User\ User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0 0 0 0 2
DoGood 0 0 1 1 0
DoRight 0 0 0 0 0
CanDoRight 0 0 0 0 0

User\ User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0 0 0 0 1
DoGood 0 0 1 1 0
DoRight 1 0 0 0 0
CanDoRight 0 1 0 0 0

Method\User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
ArmyBattleCommamdSys 1 1 1 1 1
CrisisPicture 1 1 1 1 1
MarineCombatOpnsSys 0 0 1 1 1
LogPlanningTool 1 1 0 0 1

User Authorization Matrix (UAM): 1 = authorized, 0 = other

Delegation Authority Matrix (DAM): 2 = has DA and PODA, 1 = has DA, 0 = neither

User Delegation/Authorization Matrix (UDAM): 2 = U is a DU, 1 = U is a OU, and 0 = not authorized

User-Role Authorization Matrix (URAM): 1 = UR authorized to invoke Method, 0 = otherwise

The remaining three definitions for the model are critical to establish regular and pass-on delegation
authority, which are needed to realize role delegation in the enforcement framework (Sections 3.2 and 4).
Essentially, we are allowing, at design time, the ability to have delegation authority (able to delegate) or
pass-on delegation authority (able to pass on the authority to delegate) for a given user of a role.

Definition 24: Delegation authority, DA, is the authority given to the OU to allow delegation of a DUR
to another user.

Definition 25: Pass-on delegation authority, PODA, is the authority given to an OU or a DU to pass on
the delegation authority for a DUR to another user (OU or DU).

Definition 26: The delegation authority matrix, DAM, is an ur × matrix indexed by roles and users,
with each entry of the matrix is defined as:








=

)3.26(0

)2.26(1

)1.26(2

),(

ij

ij

ij

ji

URforPODAnorDAneitherhasU

URforDAonlyhasU

URforPODAandDAhasU

UURDAM

Note that we assume that initially, DAM, contains all 0 entries. To illustrate the concepts of delegation
definitions, in Figures 3a and 3b, there are URs: CDR_CR1, JPlannerCR1, and ArmyLogCR1. Figures 3a

9

and 3b also contain users, U: General DoBest, Colonel DoGood, Major DoRight, and Major CanDoRight
with CLR levels and relevant authorization matrices.

Example 1: To illustrate delegation, suppose that General DoBest wishes to delegate his UR (CDR_CR1)
to Colonel DoGood with delegation authority (DA), where DoBest, CDR_CR1, and DoGood are defined
in Figures 3a and 3b.

This delegation can take place because General DoBest is an OU (UDAM(CDR_CR1, DoBest) = 1) of
CDR_CR1, DoGood is not an OU or DU (UDAM(CDR_CR1, DoGood) = 0), the UR is delegatable
(assume DURV(CDR_CR1) = 1), and Colonel DoGood holds the correct clearance ((CDR_CR1CLS = T)
≤ (DoGoodCLR= T)). General DoBest can also grant delegation authority, DA, because he has pass-on
delegation authority, PODA (DAM(CDR_CR1, DoBest) = 2). Note that Colonel DoGood can execute
the UR: CDR_CR1, but is limited to the LT for Colonel DoGood. Also note, that the User Authorization
Matrix, UAM(CDR_CR1, DoGood) is set to “1” (authorized), the User Delegation/Authorization Matrix,
UDAM (CDR_CR1, DoGood) is set to “1” (delegated user, DU), the Delegation Authority Matrix,
DAM(CDR_CR1, DoGood), is set to “1” (has delegation authority) and a Valid User Authorization, VUA
= [DoGood, CDR_CR1, [ct, ��������
����������/����	��������'ct, ����/�������/����������	�
�
�
������
���
the delegation).

Example 2: Continuing from Example 1, suppose Colonel DoGood wishes to also delegate UR:
CDR_CR1 to Major CanDoRight.

This delegation can take place because the role is delegatable (assume DURV(CDR_CR1) = 1),
CanDoRight is not an OU or DU (UDAM(CDR_CR1, CanDoRight) = 0), Major CanDoRight does have
the prerequisite clearance ((CDR_CR1CLS = T) ≤ (CanDoRightCLR= T)) and the delegation authority
(DAM(CDR_CR1, DoGood) = 1) from Example 1. However, this delegation will be limited to the LT of
Major CanDoRight (CanDoRightLT = [01jan01, 01feb01]). Note, that the User Authorization Matrix,
UAM(CDR_CR1, CanDoRight) is set to “1” (authorized), the User Delegation/Authorization Matrix,
UDAM (CDR_CR1, DoGood) is set to “1” (delegated user, DU), the Delegation Authority Matrix,
DAM(CDR_CR1, CanDoRight), remains “0” (has no delegation authority) and a Valid User
Authorization, VUA = [CanDoRight, CDR_CR1,[ct, ���� ��� �
������ ���� /�� ��	����� ��� 'ct, ���� /��� ���
further constrain the delegation).

3.2 Enforcement Framework Delegation and Revocation Rules

In addition to the RBAC/MAC security model extensions for role delegation in Section 3.1, there are also
infrastructure-related extensions that are needed in support of the enforcement framework. In the
definitions given in Section 3.1, the DU is only allowed permissions because of the OU, and if the OU
delegates a user role, and then has that role revoked, the DU, will also lose the delegated role. This is an
example of cascading deletes, which must be handled dynamically via an enforcement framework rather
than by security administrative intervention. Thus, Definitions 19 to 26 are required to track the
relationships between users and delegated roles, to maintain security assurance and reduce risk or
compromise of the security policy.

To augment Definitions 19 to 26 and support role delegation in our enforcement framework (i.e., the
Unified Security Resource and associated security tools in Figure 1), we employ a useful set of definitions
and rules for delegation which underlie a proposed delegation language [Zhan01].

• Original User (OU), Delegated User (DU), Delegation Authority (DA), Pass-On Delegation
Authority (PODA), and Delegatable User Role (DUR) as given in prior definitions.

• Original User Delegation Relation – the relation between an original user and a delegated user.

• Delegated User Delegation Relation – the relation between a delegated user and its delegated
user.

• Delegation Path – a set of ordered user role assignments of OU to DU (to DU, etc.).

10

• Prior – a function that maps one user role relation to another user role relation, or to null if that
user role relation is for an original user.

• Revocation Authority (RA) – the authority to revoke a delegation path, which can be only taken
by the security administrator and the OU or the DU initiating the delegation.

Granting, revoking, and delegating user roles, while a simple process, has the potential to have a wide-
ranging impact, particularly during revocation of delegated roles. The delegation and revocation rules for
our enforcement framework are a simplified version of those proposed in [Zhan01]. The two main
differences are: 1. a simplification of the rules with the PODA and DA matrices used to manage
delegation depth rather than an integer; and 2. the prohibition of independent (by another OU) revocation,
i.e., revocation only by the security officer. The rules that are being incorporated into our enforcement
framework are:

• User-To-User Delegation Authority Rule: A user (OU or DU) who is a current member of a
delegatable role (DUR), can delegate that user role to any user that meets the prerequisite
conditions of the role: the DU receiving the role is not a member of the role; the OU or DU is
identified as having delegation authority for the role; the DU meets the mandatory access control
constraints (MACC); and the DU satisfies lifetime constraints.

• Delegation Revocation Authorization Rule: An original user (OU) can revoke any delegated user
(DU) from a user role in which the OU executed the delegation. This is a stricter interpretation
than [Zhan01], which allows any OU of a role revocation authority over a DU in the delegation
path. In addition, a security administrator can revoke any delegation.

• Cascading Revocation Rule: Whenever an original user (OU) or delegated user (DU) in the
delegation path is revoked, all DUs in the path are revoked.

These rules and definitions detail the critical run-time considerations of role delegation, that must be
supported as part of the Unified Security Resource (see Figure 1), and at design time, incorporated into
the security administrative tools to be discussed in Section 4.

3.3 Analyses of Role Delegation Capabilities

This section analyses the role-delegation extensions of the RBAC/MAC security model (Section 3.1) and
enforcement framework (Section 3.2) against a number of different criteria, providing the opportunity to
assess our work on role delegation versus the context of other research efforts. Specifically, we leverage
the work of [Bark00] for a set of critical identifying characteristics of delegation including: monotonicity,
permanence, totality, administration, levels of delegation, multiple delegation, agreements, cascading
revocation, and grant-dependency revocation. We evaluate each of these delegation characteristics for
incorporation into our security model.

- Monotonicity (monotonic/non-monotonic) refers to the state of control the original user (OU)
possesses after role delegation. Monotonic delegation means that the OU maintains control of the
delegated role. Non-monotonic means that the OU passes the control of the role to a delegated user
(DU). In most real-world environments, the original user does not relinquish control of the role, and
this is the approach we have taken in our security model and enforcement framework.

- Permanence refers to delegation in terms of time duration. Permanent delegation is when a delegated
user (DU) permanently replaces the original user (OU). Temporary delegation has an associated time
limit with each role. When the time limit passes, the DU no longer has that role. Temporal
constraints are an important part of our security model, since limiting access is in concert with the
concept of least privilege. We are incorporating temporary delegation into our security model by
allowing the OU to set lifetimes for each role delegation and by allowing the OU to revoke the
delegation at anytime (monotonicity).

11

- Totality refers to how completely the permissions assigned to the role are delegated. Partial
delegation refers to the delegation of a subset of the permissions of the role. In total delegation, all
of the permissions of the role are delegated. Barka and Sandhu [Bark00] note that partial delegation
works best in a hierarchical RBAC model. Our position is that partial delegation defeats the purpose
of creating roles and since our model is not hierarchical, we are implementing total delegation.

- Administration refers to how delegation will be administered. The two obvious alternatives to
administration are user-directed and administrator-directed (third party, agent-directed) delegation.
Administrator-directed delegation already exists in our security model to the extent that the security
administrator currently assigns all privileges. Our enforcement framework is being extended to
support user-directed delegation with revocation.

- Levels of delegation refers to the ability of a delegated user (DU) to further delegate a role (PODA)
and the number of vertical levels the delegated role can be delegated. Barka and Sandhu [Bark00]
identify a single step delegation where a DU would not be able to re-delegate and a multi-step
delegation where a DU could re-delegate the role. [Zhan01] extended [Bark00] by describing three
ways to control the depth or levels of delegation: no control – where roles can be re-delegated
without limit; boolean control – where roles can be re-delegated until a delegating user says no; and
integer control – where roles can be re-delegated until a certain number of re-delegations have
occurred. In order to maintain control of delegation at the policy level, but still allow the original
user (OU) some flexibility in delegating roles, we employ a modified boolean control and use the
Delegation Authority Matrix, DAM, to control delegation. This matrix limits the levels of delegation
by allowing only the OU to have delegation authority, DA, and pass-on delegation authority, PODA,
which is consistent with our monotonicity approach, where the OU maintains control of the role. An
OU can grant PODA to a DU, but a DU cannot pass on PODA again, there by limiting the delegation
depth. This also reflects evaluation and information flow paradigms of the military and other large
organizations, where a senior leader rates a subordinate two levels below and the subordinate is
responsible for knowing the mission intent two levels above. The security policy will determine
what OUs have DA and PODA and what roles can be delegated. The OU will have the option of
allowing DA, DA and PODA or neither to a DU. A DU given DA can delegate the delegated role,
but the DU cannot grant DA (PODA) to the next DU. We feel this delegation process will satisfy
most organizations. Note that limiting who can have PODA enforces the two-level limit.

- Multiple Delegations refers to the number of delegated users (DU) (horizontally) to whom a
delegatable user role (DUR) can be delegated to at any given time. We are including unlimited
delegations in our security model since we want to maintain the user’s flexibility. Cardinality within
a role has been found not to be used [Awis97]; cardinality within a delegated role would also
probably not be used. A limit on the number of DUs to a role, particularly when greater than one, is
subjective. Subjective limits are not often enforced; there are no hard bases for them.

- Agreements refer to the delegation protocol of the original user (OU) to the delegated user (DU).
There are two types of agreements, bilateral and unilateral [Bark00]. In bilateral agreements, the DU
needs to accept the delegated role. In unilateral agreements, the OU delegates the user role
permissions and the DUs are not required to accept or even acknowledge the delegation. Bilateral
agreements make sense if the responsibilities of the role placed upon the DU require action (duty or
responsibility) vs. just the ability to perform an action (authority). For example, if there is a task that
needs to be done by everyone in a role on a monthly basis, then a bilateral agreement would make
sense as the user should acknowledge that responsibility. However, that is more of an operational
policy than security policy. In our model, all tasks given to a role are added capabilities and the
operational actions required for those users are of operational concern, therefore unilateral agreement
is being modeled and implemented.

12

- Cascading Revocation refers to the indirect revocation of all delegated users (DUs) when the original
user (OU) revokes delegation or administration revokes the OU’s delegated role. Non-cascading
revocation could be useful in the event a middle manager user is fired without replacement and
subordinates need to execute the vacated roles. However, having uncontrolled delegation is an
unnecessary assurance risk, so this special case will be handled by security administration, but will
not effect a cascading revocation policy. Our existing enforcement framework is being modified to
support cascading revocation.

- Grant-Dependency Revocation refers to who has authority to revoke a delegated user (DU). In grant-
dependent revocation, only the original user (OU) can revoke the delegated role. In grant-
independent revocation, any original member of the DUR can revoke a delegated role. We are
utilizing a limited form of grant-independent revocation where only the delegating user and the
security administrator can revoke a DUR. The goal is to let the OU have some delegating authority,
but still allow the security administrators to have final control. Allowing a second party OU to
revoke a delegation of a fellow OU is not necessary as long as the security administrator maintains
the revocation capability.

4 SECURITY ASSURANCE AND DELEGATION ENFORCEMENT

For the RBAC/MAC model of Section 2, extended for role delegation (Section 3), the ability of the
resulting administrative tools and enforcement framework to support delegation with a degree of security
assurance must be demonstrated. These checks must occur at both design and run times, so that the
consistency of user roles, CLR/CLS levels, lifetimes, role delegations, and end-user authorizations, is
meticulously verified whenever the security policy is changed, modified, or augmented. The main issue is
to provide a detailed set of security assurance checks for role delegation that augment the ones described
in [Phil02b], which did not include role delegation. There must be automatic alerts to the security officer
when potential conflicts occur during the delegation process, thereby heading off possible inconsistencies.
The intent of design and run-time assurance checks is to have a distributed application that provides
strong confidence to both system administrators and users in the attainment of the RBAC/MAC security
policy with role delegation.

4.1 Security Assurance at Design and Run Times

The administrative tools and enforcement framework for the RBAC/MAC security model and its role
delegation extensions must support security assurance at design time (for security officers creating the
security policy and for users establishing delegation) and at run time (for enforcing the delegation and
revocation rules in Section 3.2 and the critical delegation concepts in Section 3.3). Design-time checks
prevent illegal actions at definition, while run-time checks insure that the model and its concepts are
enforced operationally. Design-time assurance checks are enumerated and discussed below:

1. MACC Domination: There is a MACC check when adding a role to a user. Recall that the user
must dominate the role with respect to clearance vs. classification. This check has a direct impact
on role delegation because MAC constraints cannot be violated.

2. Role Delegation: The security system checks to make sure the delegated user (DU) is not
already a member of the delegated role before allowing a delegation to be defined. For example,
if user X is assigned role B, and is attempting to delegate B to user Y, then for that delegation to
be successful, user Y cannot be an OU or a DU of role B (UDAM(B,Y) = 0).

3. User-To-User Delegation Authority: Recall that a user (OU or DU) who is a current member of
a delegatable role (DUR), can delegate that role to any user that meets the prerequisite conditions
of the role: the DU receiving the role is not a member of the role; the OU or DU is identified as
having DA for the role (DAM(UR,U) > 0); and, the DU meets the mandatory access control
constraints (MACC). This rule is partially checked during definition.

13

4. Lifetime Consistency: In regard to the permanence criteria (Section 3.3), the lifetime of the DU
be within the lifetime of the delegating user (OU or DU), verified at design time, as given in
Definition 21.

5. Modified Boolean Delegation: In regard to the levels of delegation criteria (Section 3.3), the
combination of pass-on delegation authority, PODA, and delegation authority, DA, used in the
Delegation Authority Matrix, DAM, controls the levels of delegation. An OU can delegate – with
optional DA and PODA, and the delegated user can only DA. This must be enforced at design
time to insure more than two levels are prohibited. In order for a user to have PODA,
UDAM(UR,U) = 1 (U is an OU) and DAM(UR,U) = 2 (U has DA and PODA) for the UR.

These five different assurance checks can be formally supported in assurance rules. A security assurance
rule is a logical statement that must be satisfied in order for a status to be set (design-time check) or an
action to be performed (run-time check). Rules I and II are for the assignment of DA and PODA to a user
X at design time. We assume that a user must have DA in order to have PODA (e.g., a user cannot have
PODA without DA).

Rule I: Let ULX ∈ be a user (Definition 9) and URLA ∈ be a user role (Definition 7).

X can have DA for A (1),(=XADAM) iff

].,,[),(1)(),(1),(TCAXVUAaandDURaAADURVOUanXXAUDAM =∃==

Note that UDAM(A, X) =1 implies that UAM(A, X) = 1 (see Definition 17a).

Rule II: Let ULX ∈ be a user (Definition 9) and URLA ∈ be a user role (Definition 7).

X can have DA and PODA for A (2),(=AXDAM) iff

].,,[),(1)(),(1),(TCAXVUAaandDURaAADURVOUanXXAUDAM =∃==

Note that UDAM(A, X) =1 implies that UAM(A, X) = 1 (see Definition 17a). Note also that Rules I and
II, establish, respectively, DA or DA/PODA for user X to role A in the case where X is an OU. Rules I
and II lead to Rule III, for the delegation by a user of a role to another user, which is relevant at design
time. The delegation sets UAM and UDAM for the delegated user and delegated role.

Rule III: Let ULX ∈ be a user (Definition 9) and URLA ∈ be a user role (Definition 7), such that

1),(≥XADAM (Rules I or II).

X can delegate A to user Y limited by TC (1YAUAM =),(, 2),(=YAUDAM , and VUA
= [Y, A, TC]) iff

• Case 1: ,Ø)(,,),(≠∩≥≠ LTLTCLSCLR AYTCAY1YAUDAM � and ctetTC >.

when TC ,�Ø.

• Case 2: ,Ø)(,,),(≠∩=≥≠ LTLTCLSCLR AYQAY1YAUDAM and ctetQ >.

when TC = Ø. Set TC = Q.

For either case, VUAL = VUAL ∪ UA, where],,[TCAYUA = is the valid UA, VUA, for
the delegation of A to Y.

There are two cases for Rule III, based on whether there is a TC given or if the TC is null. In either case,
the condition checks that A is not an OU of Y, and Y’s CLR dominates A’s CLS. For Case 1, the given
TC must be within the non-null overlap of the LTs of Y and A, and the specified TC end time is after the
current time. For Case 2, the intersection of the LTs of Y and A must also be non-null, and the end time
of the intersection must be after the current time. In Case 2, when a TC is not given, TC is set to Q in the

14

VUA. Note that Rule III is utilized to establish that Y is a DU of A, assuming that X has at least DA for A
(X satisfies Rule I or II). Delegation requires Y to be authorized to A, hence UAM(A, Y) = 1.

Run-time assurance checks are similar to design time checks, and are enumerated and discussed below:

1. MACC Domination: The user CLR must dominate the role CLS. This dynamic check will
revalidate this relationship between role and the user at run time. This run-time check is needed
since the security privileges may have changed at the current time vs. the time of definition.

2. Role Delegation: At run-time, the security system must check to make sure the delegated user
(DU) is not already a member of the delegated role before allowing a delegation to occur. This
run-time check is needed since the security privileges may have changed at the current time vs.
the time of definition

3. User-To-User Delegation Authority Rule: A user (OU or DU) who is a current member of a
delegatable role (DUR), can delegate that user role at run time to any user that meets the
prerequisite conditions of the role. This rule must also be checked during run time.

4. Lifetime Consistency: In regard to the permanence criteria (Section 3.3), the lifetime of the DU
must be within the lifetime of the oOU as given in Definition 21. This run-time check is needed
since the lifetimes must also be verified with respect to the current time.

5. Modified Boolean Delegation: In regard to the levels of delegation criteria (Section 3.3), the two
levels (first, OU to DU – with optional DA and PODA, and second, DU to DU with only optional
DA) must be enforced at run time using the Delegation Authority Matrix, DAM and User
Authorization Matrix, UAM. Both levels of delegation must be checked at run time, with the
further check to prohibit the second DU from delegating, enforcing the two levels.

6. Delegation Revocation Authorization Rule: An original user (OU) can revoke any delegated
user (DU) from a role in which the OU executed the delegation. This is a stricter interpretation
than [Zhan01], which allows any OU of a role revocation authority over a DU in the delegation
path. In addition, a security administrator can revoke any delegation. This rule is checked during
run time.

7. Cascading Revocation Rule: Whenever an original user (OU) or delegated user (DU) in the
delegation path is revoked, all DUs in the path are revoked. This rule is checked during run time.

In addition to Rules I, II, and III, at runtime, there are additional rules that must be checked. First, Rule
IV for the passing on of DA or DA/PODA from a user (either OU or DU) to another DU.

Rule IV: Let ULX ∈ be an OU or a DU, URLA ∈ be a role, and ULY ∈ be a DU of A (Rule III is

satisfied).

• Case 1: Y can have DA for A (1),(=YADAM) if X has at least DA for

A(1),(≥XADAM).

• Case 2: Y can have DA and PODA for A (2),(=YADAM) if X has both DA and

PODA for A (2),(=XADAM).

Note that Rule IV establishes, respectively, DA or DA/PODA for user Y a DU of role A, and
assumes that Rule III is satisfied. While the rule is general to n levels, our enforcement
framework is limited to two levels.

Finally, Rule V, is for runtime delegation.

Rule V: Let ULX ∈ be an OU or a DU. Then, at run time, X can delegate role A to DU Y limited by

TC iff (Rule I or II) and Rule III.

15

Remember that the runtime check is needed since privileges are dynamic.

4.2 Administrative Tools for Role Delegation

For consistency in authorization, there must be the ability to define, examine, and control role consistency
and delegation authority. Recall that Figure 1 depicted the Security Policy Client (SPC), to manage URs
by granting/revoking privileges (TCs, methods, SCs) and setting CLS levels, the Security Authorization
Client (SAC) to assign CLRs and authorize roles to end users, the Security Delegation Client (SDC) to
grant, update, and revoke delegations, and the Security Analysis Tool (SAT) to dynamically track all client
activity, including logons and method invocations. SPC, SAC, and SDC all have different responsibilities
in defining and assuring role delegation. In Figure 4, SPC is used to establish whether a role is
delegatable (DUR). In Figure 5, SAC is used to authorize role delegation. From the user’s point of view,
once given authority by the security administrator to delegate roles, there must be tools for the OU to
manage delegation of his/her roles (which are also used by the security administrator), which is
accomplished via SDC, as we will shortly discuss. In addition to these definitional capabilities, Figure 6
is an example of one output of SAT. SAT will not prevent an unwanted delegation, but can track when
delegations occur and how the delegated role is being used, which allows a security officer to hold a DU
accountable, or assist in recovery when problems are detected.

The Security Delegation Client (SDC) is depicted in Figures 7, 8, and 9, and has three primary delegation
functions: Grant, Update, and Revoke. In order to invoke the SDC, one must be an authorized user of a
delegatable role. If this is the case, an OU will be able to invoke SDC. The Grant tab (Figure 7) allows
the user to choose a DU, the delegatable roles, set the lifetime, and authorize pass on delegation, PODA.
The Update tab allows a user to modify any existing delegation (Figure 8), while the Revoke tab enables
the user to cancel any delegation (Figure 11). The delegation of a role by a user is similar to the security
officer assigning roles, works in conjunction with the other elements of the Unified Security Resource
(see Figure 1 and [Phil02a]), and utilizes the same underlying databases. With SDC, an organization has
the flexibility to give certain users DA, while still maintaining administrative control and security
assurance.
Finally, the design-time assurance checks, Rules I, II, and III, as given in Section 4.1, are summarized
below with respect to the tool (SAC or SDC) that is utilized to perform the check.

1. MACC Domination: This check is performed by SAC.

2. Role Delegation: This check is performed by SAC.

3. User-To-User Delegation Authority: This check is performed by SDC.

4. Lifetime Consistency: This check is performed by SDC.

5. Delegation Authority Matrix: This check is performed by SDC.

Remember, all of the information for delegation is accessible via the Unified Security Resource (see
Figure 1) which contains a database for storing and managing all security-related meta data. Thus, the
design-time assurance checks can be in separate tools since the database is shared.

16

Figure 4: Security Policy Client, Create Role.

Delegatable

Figure 5: Security Authorization Client, Grant Role.

Delegation Authority

Pass-on Delegation Authority

Figure 6: Security Access History from SAT. Figure 7: SDC Granting Delegation.

Pass-on Delegation Authority

Figure 8: SDC Update Delegation.

Pass-on Delegation Authority

Figure 9: SDC Revoke Delegation.

5 CONCLUSIONS AND FUTUR E WORK

This paper has examined the inclusion of role-delegation into a distributed, unified RBAC/MAC security
model and associated enforcement framework with an added focus on attaining security assurance. To
facilitate the discussion, in Section 2, we provided an updated version of our RBAC/MAC security model
[Demu01, Phil02a], with minor revisions to support lifetimes of roles and users, which are important for

17

supporting role delegation. In Section 3, we presented the role-delegation modifications and extensions in
three parts: the detailed extensions to the RBAC/MAC security model; the critical delegation rules to
support enforcement [Zhan01]; and, an analysis of our approach against a set of delegation criteria
[Bark00]. In Section 4, the revised and extended RBAC/MAC model/framework has security
administrative tools (design time) and accompanying infrastructure (run time) for security assurance of
user roles, classifications, end-user authorizations, and delegation. Overall, we believe this work provides
a strong foundation towards role delegation for a distributed setting.

Ongoing research and prototyping efforts are in a number of different areas. First, there is ongoing
research in the ability to define and establish user constraints, which in turn leads to a second area, role
deconfliction, which involves both consistency constraints and mutual exclusion. Second, the prototyping
in support of role delegation, namely, changes to SPC and SAC, development of SDC, and modifications
to the Unified Security Resource, is ongoing (see http://www.engr.uconn.edu/~steve/DSEC/dsec.html).
Finally, we are also investigating security issues for the dynamic coalition (DCP)[Phil02c] with an
emphasis on the ability of our model (see Sections 2 & 3.1) and enforcement framework to support DCP.

REFERENCES

[Awis97] R. Awischus, “Role Based Access Control with Security Administration Manager (SAM),”
Proc. of 2nd ACM Wksp. on Role-Based Access Control, November 1997.

[Bark00] E. Barka and R. Sandhu, “Framework for Role-Based Delegation Models,” Proc. of 23rd

National Information Systems Security Conf., October 2000.
[Bell75] D. Bell and L. LaPadula, “Secure Computer Systems: Mathematical Foundations Model.” M74-

244, Mitre Corporation, Bedford, Massachusetts, 1975.
[Demu97] S. Demurjian and T.C. Ting, “Towards a Definitive Paradigm for Security in Object-Oriented

Systems and Applications, ” J. of Computer Security, Vol. 5, No. 4, 1997.
[Demu01] S. Demurjian, et. al., “A User Role-Based Security Model for a Distributed Environment,”

Research Advances in DB. and Info. Systems Security, Therrien (ed.), Kluwer, 2001.
[DoD88] DoD Directive 5200.28, “Security Requirements for Automated Information Systems (AIS),”

March 1988.
[GCCS99] Joint Operational Support Center. “GCCS,” DISA, 1999. http://gccs.disa.mil/gccs/
[Linn99] J. Linn and M. Nystrom, “Attribute Certification: An Enabling Technology for Delegation and

Role-Based Controls in Distributed Environments,” Proc. of 4th ACM Wksp. on Role-Based
Access Control, October 1999.

[Na00] S. Na and S. Cheon. “Role Delegation in Role-Based Access Control,” Proc. of 5th ACM Wksp.
on Role-Based Access Control, July 2000.

[Phil02a] C. Phillips, et al., “Security Engineering for Roles and Resources in a Distributed Environment,
,” Proc. of the 3rd Annual ISSEA Conf, March 2002.

[Phil02b] C. Phillips, S. Demurjian, and T.C. Ting, “Towards Information Assurance in Dynamic
Coalitions,” Proc. of the 2002 IEEE Information Assurance Wksp., June 2002.

[Phil02c] C. Phillips, T.C. Ting, and S. Demurjian, “Information Sharing and Security in Dynamic
Colaitions,” Proc. of the 7th ACM Symp.on Access Control Models and Technologies, June
2002.

[Sand98] R. Sandhu, “Role-Based Access Control”, Adv. in Computer Science, Vol. 48. Zerkowitz (ed.),
Academic Press, 1998.

[Sand00] R. Sandhu and Q. Munawer, “The ARBAC99 Model for Administration of Roles,” Proc. of the
15th Annual Computer Security Application Conf., October 2000.

[Zhan01] L. Zhang, G. Ahn, B. Chu. “A Rule Based Framework for Role-Based Delegation,” Proc. of 6th

ACM Symp. on Access Control Models and Technologies, Fairfax, Virginia, May 2001.

